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Outline 

• Basics 
– Motivation, definition, evaluation 

• Methods 
– Partitional 

– Hierarchical 

– Density-based 

– Mixture model 

– Spectral methods 

• Advanced topics 
– Clustering ensemble 

– Clustering in MapReduce 

– Semi-supervised clustering, subspace clustering, co-clustering, 
etc.  
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Partitional Methods 

• K-means algorithms 

• Optimization of SSE 

• Improvement on K-Means 

• K-means variants 

• Limitation of K-means 
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Partitional Methods 

• Center-based 
–  A cluster is a set of objects such that an object in a 

cluster is closer (more similar) to the “center” of a 
cluster, than to the center of any other cluster   

– The center of a cluster is called centroid 

– Each point is assigned to the cluster with the closest 
centroid 

– The number of clusters usually should be specified 

4 center-based clusters 
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K-means 

• Partition {x1,…,xn} into K clusters 

– K is predefined 

• Initialization 

– Specify the initial cluster centers (centroids) 

• Iteration until no change 

– For each object xi 
•  Calculate the distances between xi and the K centroids 

•  (Re)assign xi to the cluster whose centroid is the 
closest to xi 

– Update the cluster centroids based on current 
assignment 
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Initialization: Determine the three cluster centers 
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K-means Clustering: Cluster Assignment 
Assign each object to the cluster which has the closet distance from the centroid 
to the object 
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K-means Clustering: Update Cluster Centroid 

Compute cluster centroid as the center of the points in the cluster 
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K-means Clustering: Update Cluster Centroid 

Compute cluster centroid as the center of the points in the cluster 
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Assign each object to the cluster which has the closet distance from the centroid 
to the object 
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K-means Clustering: Update Cluster Centroid 

Compute cluster centroid as the center of the points in the cluster 
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K-means Clustering: Update Cluster Centroid 

Compute cluster centroid as the center of the points in the cluster 
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Partitional Methods 

• K-means  algorithms 

• Optimization of SSE 

• Improvement on K-Means 

• K-means variants 

• Limitation of K-means 
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Sum of Squared Error (SSE) 

• Suppose the centroid of cluster Cj is mj  

• For each object x in Cj, compute the squared error between x and the 
centroid mj  

• Sum up the error of all the objects  
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How to Minimize SSE 
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• Two sets of variables to minimize 

– Each object x belongs to which cluster?  

– What’s the cluster centroid? mj 

• Block coordinate descent 

– Fix the cluster centroid—find cluster assignment that 
minimizes the current error 

– Fix the cluster assignment—compute the cluster centroids 
that minimize the current error 
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Cluster Assignment Step 
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• Cluster centroids (mj) are known 

• For each object 

– Choose Cj among all the clusters for x such that 
the distance between x and mj is the minimum 

– Choose another cluster will incur a bigger error 

• Minimize error on each object will minimize 
the SSE  
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Cluster Centroid Computation Step 
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• For each cluster 

– Choose cluster centroid mj as the center of the 
points 

 

 

• Minimize error on each cluster will 
minimize the SSE  
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Example—Cluster Centroid Computation 

Given the cluster 
assignment,  compute 
the centers of the two 
clusters 
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Comments on the K-Means Method 

• Strength 

– Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # iterations. 

Normally, k, t << n 

– Easy to implement 

• Issues 

– Need to specify K, the number of clusters 

– Local minimum– Initialization matters 

– Empty clusters may appear 
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Partitional Methods 

• K-means algorithms 

• Optimization of SSE 

• Improvement on K-Means 

• K-means variants 

• Limitation of K-means 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 

23 



Problems with Selecting Initial Points 

• If there are K ‘real’ clusters then the chance of 
selecting one centroid from each cluster is small  

 
– Chance is relatively small when K is large 
– If clusters are the same size, n, then 

 
 

 
 

– For example, if K = 10, then probability = 10!/1010 = 
0.00036 
 

– Sometimes the initial centroids will readjust 
themselves in ‘right’ way, and sometimes they don’t 
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10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 
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10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have 
only one. 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other have 
only one. 
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Solutions to Initial Centroids Problem 

• Multiple runs 

– Average the results or choose the one that has the 
smallest SSE 

• Sample and use hierarchical clustering to determine initial 
centroids 

• Select more than K initial centroids and then select among 
these initial centroids 

– Select most widely separated 

• Postprocessing—Use K-means’ results as other algorithms’ 
initialization 

• Bisecting K-means 

– Not as susceptible to initialization issues 
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Bisecting K-means 

• Bisecting K-means algorithm 

– Variant of K-means that can produce a partitional or a hierarchical 
clustering 
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Handling Empty Clusters 

• Basic K-means algorithm can yield empty 
clusters 

 

• Several strategies 

– Choose the point that contributes most to SSE 

– Choose a point from the cluster with the highest 
SSE 

– If there are several empty clusters, the above can 
be repeated several times 

31 



Updating Centers Incrementally 

• In the basic K-means algorithm, centroids are 
updated after all points are assigned to a centroid 

 

• An alternative is to update the centroids after 
each assignment (incremental approach) 
– Each assignment updates zero or two centroids 

– More expensive 

– Introduces an order dependency 

– Never get an empty cluster 

– Can use “weights” to change the impact 
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Pre-processing and Post-processing 

• Pre-processing 

– Normalize the data 

– Eliminate outliers 
 

• Post-processing 

– Eliminate small clusters that may represent outliers 

– Split ‘loose’ clusters, i.e., clusters with relatively high 
SSE 

– Merge clusters that are ‘close’ and that have relatively 
low SSE 
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Partitional Methods 

• K-means  algorithms 

• Optimization of SSE 

• Improvement on K-Means 

• K-means variants 

• Limitation of K-means 
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Variations of the K-Means Method 

• Most of the variants of the K-means which differ in 

– Dissimilarity calculations 

– Strategies to calculate cluster means 

• Two important issues of K-means 

– Sensitive to noisy data and outliers 

• K-medoids algorithm 

– Applicable only to objects in a continuous multi-dimensional 

space  

• Using the K-modes method for categorical data 
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Sensitive to Outliers 

• K-means is sensitive to outliers 

– Outlier: objects with extremely large (or small) values 

• May substantially distort the distribution of the data 

+ 

+ 

outlier 
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K-Medoids Clustering Method 

• Difference between K-means and K-medoids 
– K-means: Computer cluster centers (may not be the original data 

point) 
– K-medoids: Each cluster’s centroid is represented by a point in the 

cluster 
– K-medoids is more robust than K-means in the presence of 

outliers because a medoid is less influenced by outliers or other 
extreme values 
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The K-Medoid Clustering Method 

• K-Medoids Clustering: Find representative objects (medoids) in clusters 

– PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987) 

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering 

• PAM works effectively for small data sets, but does not scale well for large 

data sets. Time complexity is O(k(n-k)2) for each iteration where n is # of 

data objects, k is # of clusters 

• Efficiency improvement on PAM 

– CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples 

– CLARANS (Ng & Han, 1994): Randomized re-sampling 
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PAM: A Typical K-Medoids Algorithm 
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K-modes Algorithm 

• Handling categorical data: 
K-modes (Huang’98) 
– Replacing means of clusters 

with modes 
• Given n records in cluster, 

mode is a record made up of 
the most frequent attribute 
values 

– Using new dissimilarity 
measures to deal with 
categorical objects 

 A mixture of categorical 
and numerical data: K-
prototype method 

 

age income student credit_rating

< = 30 high no fair

< = 30 high no excellent

31…40 high no fair

> 40 medium no fair

> 40 low yes fair

> 40 low yes excellent

31…40 low yes excellent

< = 30 medium no fair

< = 30 low yes fair

> 40 medium yes fair

< = 30 medium yes excellent

31…40 medium no excellent

31…40 high yes fair

mode = (<=30, medium, yes, fair) 



Limitations of K-means 

• K-means has problems when clusters are of 
differing  

– Sizes 

– Densities 

– Irregular shapes 
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Limitations of K-means: Differing Sizes 

 
 
 

 

Original Points K-means (3 Clusters) 
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Limitations of K-means: Differing Density 

 
 
 

 

Original Points K-means (3 Clusters) 
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Limitations of K-means: Irregular Shapes 

 
 
 

 

Original Points K-means (2 Clusters) 
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Overcoming K-means Limitations 

 
 
 

 

Original Points    K-means Clusters 

One solution is to use many clusters. 
Find parts of clusters, but need to put together. 
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Overcoming K-means Limitations 

 
 
 

 

Original Points    K-means Clusters 
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Overcoming K-means Limitations 

 
 
 

 

Original Points    K-means Clusters 

47 



Take-away Message 

• What’s partitional clustering? 

• How does K-means work? 

• How is K-means related to the minimization of SSE? 

• What are the strengths and weakness of K-means? 

• What are the variants of K-means? 
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