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Motivation

Complex cluster shapes

— K-means performs poorly because it can only find spherical
clusters

— Density-based approaches are sensitive to parameters

Spectral approach
— Use similarity graphs to encode local neighborhood information
— Data points are vertices of the graph
— Connect points which are “close”
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Similarity Graph

Represent dataset as a weighted graph G(V,E)

All vertices which can be reached from each other by a path
form a connected component

Only one connected component in the graph—The graph is
fully connected

V={x.} Set of n vertices representing data points
E={W;} Set of weighted edges indicating pair-wise similarity
between points




Graph Construction

* g-neighborhood graph

— |ldentify a threshold value, €, and include edges if the
affinity between two points is greater than €

* k-nearest neighbors

— Insert edges between a node and its k-nearest
neighbors

— Each node will be connected to (at least) k nodes
* Fully connected

— Insert an edge between every pair of nodes

— Weight of the edge represents similarity

— Gaussian kernel:

W =exp (= % —x; I/ o)



g-neighborhood Graph

e g-neighborhood

— Compute pairwise distance between any two
objects

— Connect each point to all other points which have
distance smaller than a threshold €

 Weighted or unweighted

— Unweighted—There is an edge if one point
belongs to the e—neighborhood of another point

— Weighted—Transform distance to similarity and
use similarity as edge weights



NN Graph

* Directed graph

— Connect each point to its k nearest neighbors
* kNN graph

— Undirected graph

— An edge between x; and x;: There’s an edge from x; to
x; OR from x; to x; in the directed graph

 Mutual kNN graph
— Undirected graph
— Edge set is a subset of that in the kNN graph

— An edge between x; and x;: There’s an edge from x; to
x; AND from x; to x; in the directed graph
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Clustering Objective

Traditional definition of a “good” clustering
* Points assigned to same cluster should be highly similar
* Points assigned to different clusters should be highly dissimilar

Apply this objective to our graph representation

/

Minimize weight of between-group connections



Graph Cuts

Express clustering objective as a function of the edge
cut of the partition

Cut: Sum of weights of edges with only one vertex in
each group

We wants to find the minimal cut between groups

C, CUt(Cl,C )= Z

'''''' 1eCy, jeC2

[\ ‘ cut(C,, C,) = 0.3
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Bi-partitional Cuts

 Minimum (bi-partitional) cut

min Cut(Cyp,Cs) = T T Wij

1eCy JeCy
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Example

* Minimum Cut

Cut(BCDE, A) = 0.17
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Normalized Cuts

 Minimal (bipartitional) normalized cut

. Cut(Cy,Ca)  Cut(Cy,Cp) 1 1 |
. Vol(Cy) " Vol(Cy) B Vol(Ch) " Vol(Cy) Cut(Cr, C2)
Vol(C)= > w;

1eC, jeV

e Unnormalized cuts are attracted to outliers
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Example

e Normalized Minimum Cut

B Cut(Cy,Cs)  Cut(Cy,Cs)
NormCut(Cy,Cs) = Vol(Cy) + Vol(Cy)

A

NormCut(BCDE, A) = 1.067
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Example

e Normalized Minimum Cut

B Cut(Cy,Cs)  Cut(Cy,Cs)
NormCut(Cy,Cs) = Vol(Cy) + Vol(Cy)

A

NormCut(BCDE, A) = 1.067
NormCut(ABC,DFE) = 1.038
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Problem

* |dentifying a minimum cut is NP-hard

* There are efficient approximations using linear
algebra

* Based on the Laplacian Matrix, or graph
Laplacian



Matrix Representations

e Similarity matrix (W)
— N X N matrix

—W =[w;] : edge weight between vertex X; and X;

Xy

X2

X3

0.6

e Important properties

— Symmetric matrix
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Matrix Representations

* Degree matrix (D)
— N X N diagonal matrix
— D(,1) = Zwij : total weight of edges incident to vertex x;
j

* Used to
— Normalize adjacency matrix
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Matrix Representations
* Laplacian matrix (L) L=D-W

— N X N symmetric matrix

e Important properties
— Eigenvalues are non-negative real numbers
— Eigenvectors are real and orthogonal

— Eigenvalues and eigenvectors provide an insight into the
connectivity of the graph...
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Find An Optimal Min-Cut (Hall’70,
Fiedler'73)

* Express a bi-partition (C,,C,) as a vector
1 1If x. eC,
-1 if x €C,

e \We can minimise the cut of the partition by
finding a non-trivial vector f that minimizes the
function

g(f)= Y w, (f—f)? =L f
1 jev "™ Laplacian

matrix
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Why does this work?

How eigen decomposition of L relates to clustering?

L=D-W f(z;) = f; cluster assignment
ffLf = [f'Df-fWf

= Zd-:;ff - Zﬁ:fj“»’ij

[

= i—) (Z (Z 'uu,;a) fi - QZ Jifjwij + Z (Z ’”7;3) f}?)

i\ J

1 ) N .
= 5 > wy(fi— f;)*  ~Cluster objective function
ij

if we let f be eigen vectors of L, then the eigenvalues are the
cluster objective functions
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Optimal Min-Cut

e The Laplacian matrix L is semi positive definite
e The Rayleigh Theorem shows:

— The minimum value for g(f) is given by
the 2nd smallest eigenvalue of the Laplacian L

— The optimal solution for f is given by the
corresponding eigenvector A,, referred as the
Fiedler Vector



1.

2.

Spectral Bi-partitioning Algorithm

Pre-processing

— Build Laplacian

matrix L of the
graph

Decomposition

Find eigenvalues X
and eigenvectors /
of the matrix L

Map vertices to
corresponding
components of A,
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Spectral Bi-partitioning Algorithm
The matrix which represents the eigenvector of the

Laplacian (the eigenvector matched to the corresponded
eigenvalues with increasing order)

0.41| -0.41| 0.65- 0.31- 0.38- 0.1

0.41| -044| 0.01 030 0.71 0.22

041| -0.37| 064 004 039- 037- e s o LLLRIL

041 0.37| 0.34 045- 0.00 0.61

0.41| 041 0.17- 0.30- 0.35 0.65-

041 045| 0.18- 0.72 0.29- 0.09




S

Spectral Bi-partitioning
Grouping

Sort components of reduced 1-dimensional vector

Identify clusters by splitting the sorted vector in two
(above zero, below zero)

Splitat 0

< | 02 —  Cluster C;:
: Positive points

X, | 02 )
X; | 02 ‘ - Cluste.r C,: | ‘ l. 0 -
X, | -04 Negative points |
Xg | 0.7 X; | 0.2 X, | -0.4
Xg | 0.7 X, | 02 Xs | -0.7

X3 | 02 Xg | -0.7
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Normalized Laplacian

e Laplacian matrix (L) L=D1YD-w)
L = D—O.S(D _ W)D—O.S

1.00 -0.52 -0.39 0.00 -0.06 0.00

-0.52 1.00 -0.50 0.00 0.00 0.00

-0.39 -0.50 1.00 | -0.12 0.00 0.00

0.00 0.00 -0.12 1.00 0.47- 0.44-

-0.06 0.00 0.00 -0.47 1.00 0.50-

0.00 0.00 0.00 0.44- 0.50- 1.00



K-Way Spectral Clustering

 How do we partition a graph into K clusters?
1. Recursive bi-partitioning (Hagen et al.,’91)

e Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner.

e Disadvantages: Inefficient, unstable

2. Cluster multiple eigenvectors (Shi & Malik,’00)

e Build a reduced space from multiple
eigenvectors.

e Commonly used in recent papers
e A preferable approach
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Eigenvectors & Eigenvalues

. Eigenvalues
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K-way Spectral Clustering Algorithm

* Pre-processing
— Compute Laplacian matrix L
* Decomposition
— Find the eigenvalues and eigenvectors of L

— Build embedded space from the eigenvectors
corresponding to the k smallest eigenvalues

* Clustering

— Apply k-means to the reduced n x k space to
produce k clusters
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How to select &?

* Eigengap: the difference between two consecutive eigenvalues

* Most stable clustering is generally given by the value K that
maximizes the expression _
Ak — M« _ﬂ’k—l‘

A
o
]

45 Ay
40 ﬁ\
max A, =|4, -4 éd\\
= Choose k=2 : iz \;\%
N

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
K




Take-away Message

Clustering formulated as graph cut problem

How min-cut can be solved by eigen decomposition
of Laplacian matrix

Bipartition and multi-partition spectral clustering
procedure



