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• We have too many dimensions 

– To reason about or obtain insights from 

– To visualize 

– Too much noise in the data 

– Need to “reduce” them to a smaller set of factors 

– Better representation of data without losing much 

information 

– Can build more effective data analyses on the 

reduced-dimensional space: classification, clustering, 

pattern recognition 

Why Dimensionality Reduction? 
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• Discover a new set of factors/dimensions/axes 

against which to represent, describe or evaluate 

the data 

 

• Factors are combinations of observed variables  

– May be more effective bases for insights 

– Observed data are described in terms of these factors 

rather than in terms of original variables/dimensions 

Component Analysis 
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Basic Concept 

• Areas of variance in data are where items can be best 
discriminated and key underlying phenomena 
observed 
– Areas of greatest “signal” in the data 

• If two items or dimensions are highly correlated or 
dependent 
– They are likely to represent highly related phenomena 

– If they tell us about the same underlying variance in the 
data, combining them to form a single measure is 
reasonable 
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Basic Concept 

• So we want to combine related variables, and focus 
on uncorrelated or independent ones, especially 
those along which the observations have high 
variance 

• We want a smaller set of variables that explain most 
of the variance in the original data, in more compact 
and insightful form 

• These variables are called “factors” or “principal 
components” 
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Principal Component Analysis 

• Most common form of factor analysis 

• The new variables/dimensions 

– Are linear combinations of the original ones 

– Are uncorrelated with one another 

• Orthogonal in dimension space 

– Capture as much of the original variance in the 
data as possible 

– Are called Principal Components 
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What are the new axes? 
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• Orthogonal directions of greatest variance in data 
• Projections along PC1 discriminate the data most along  any one axis 
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Principal Components 

• First principal component is the direction of greatest 
variability (covariance) in the data 

• Second is the next orthogonal (uncorrelated) 
direction of greatest variability 

– So first remove all the variability along the first 
component, and then find the next direction of greatest 
variability 

• And so on … 
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Principal Components Analysis (PCA) 

• Principle 
– Linear projection method to reduce the number of 

parameters  
– Transfer a set of correlated variables into a new set of 

uncorrelated variables 
– Map the data into a space of lower dimensionality 

 

• Properties 
– It can be viewed as a rotation of the existing axes to new 

positions in the space defined by original variables 
– New axes are orthogonal and represent the directions with 

maximum variability 
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Algebraic definition of PCs 
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Given a sample of n observations on a vector of p variables 

define the first principal component of the sample 

by the linear transformation 

where the vector 
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Algebraic derivation of PCs 

To find           first note that   

where  

is the covariance matrix.   
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Data is centered. 0x
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Algebraic derivation of PCs 
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then 
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To find       that  maximizes                subject to 

Let λ be a Lagrange multiplier 

is an eigenvector of  S 

corresponding to the largest eigenvalue 

therefore 

Algebraic derivation of PCs 
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To find the next coefficient vector         maximizing  

then let λ and φ be Lagrange multipliers, and maximize 

subject to 

and to 

Algebraic derivation of PCs 
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We find that          is also an eigenvector of  S   

whose eigenvalue                  is the second largest.              

In general   

• The kth largest eigenvalue of  S  is the variance of the kth PC. 

• The kth PC          retains the kth greatest fraction of the variation  

   in the sample. 

Algebraic derivation of PCs 
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Algebraic derivation of PCs 

• Main steps for computing PCs 
– Form the covariance matrix S. 

 
– Compute its eigenvectors: 

 
– Use the first d eigenvectors                 to form the 

d PCs. 
 

– The transformation G is given by 
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Dimensionality Reduction 

dY pdTG 

pX 

dTdp XGYXG   :

Linear transformation 

Original data reduced data 
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Steps of PCA 

• Let      be the mean vector (taking the mean of 
all rows) 

• Adjust the original data by the mean 

X’ = X –  

• Compute the covariance matrix S of adjusted X 

• Find the eigenvectors and eigenvalues of S. 

 

X

X
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Principal components - Variance 
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Transformed Data 

• Eigenvalues j corresponds to variance on each 

component j 

• Thus, sort by j  

• Take the first d eigenvectors ai;  where d is the number 

of top eigenvalues 

• These are the directions with the largest variances 
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An Example 

X1 X2 X1' X2' 

 

19 63 -5.1 9.25 

 

39 74 14.9 20.25 

 

30 87 5.9 33.25 

 

30 23 5.9 -30.75 

 

15 35 -9.1 -18.75 

 

15 43 -9.1 -10.75 

 

15 32 -9.1 -21.75 

 

30 73 5.9 19.25 
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Covariance Matrix 

• C= 

 

 

• We find out: 

– Eigenvectors:  

– a2=(-0.98,-0.21), 2=51.8 

– a1=(0.21,-0.98),  1=560.2 
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Transform to One-dimension 

• We keep the dimension 
of a1=(0.21,-0.98) 

• We can obtain the final 
data as 
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