Principle Component Analysis

Jing Gao SUNY Buffalo

Why Dimensionality Reduction?

- We have too many dimensions
 - To reason about or obtain insights from
 - To visualize
 - Too much noise in the data
 - Need to "reduce" them to a smaller set of factors
 - Better representation of data without losing much information
 - Can build more effective data analyses on the reduced-dimensional space: classification, clustering, pattern recognition

Component Analysis

- Discover a new set of factors/dimensions/axes against which to represent, describe or evaluate the data
- Factors are combinations of observed variables
 - May be more effective bases for insights
 - Observed data are described in terms of these factors rather than in terms of original variables/dimensions

Basic Concept

- Areas of variance in data are where items can be best discriminated and key underlying phenomena observed
 - Areas of greatest "signal" in the data
- If two items or dimensions are highly correlated or dependent
 - They are likely to represent highly related phenomena
 - If they tell us about the same underlying variance in the data, combining them to form a single measure is reasonable

Basic Concept

- So we want to combine related variables, and focus on uncorrelated or independent ones, especially those along which the observations have high variance
- We want a smaller set of variables that explain most of the variance in the original data, in more compact and insightful form
- These variables are called "factors" or "principal components"

Principal Component Analysis

- Most common form of factor analysis
- The new variables/dimensions
 - Are linear combinations of the original ones
 - Are uncorrelated with one another
 - Orthogonal in dimension space
 - Capture as much of the original variance in the data as possible
 - Are called Principal Components

What are the new axes?

- Orthogonal directions of greatest variance in data
- Projections along PC1 discriminate the data most along any one axis

Principal Components

- First principal component is the direction of greatest variability (covariance) in the data
- Second is the next orthogonal (uncorrelated) direction of greatest variability
 - So first remove all the variability along the first component, and then find the next direction of greatest variability
- And so on ...

Principal Components Analysis (PCA)

- Principle
 - Linear projection method to reduce the number of parameters
 - Transfer a set of correlated variables into a new set of uncorrelated variables
 - Map the data into a space of lower dimensionality
- Properties
 - It can be viewed as a rotation of the existing axes to new positions in the space defined by original variables
 - New axes are orthogonal and represent the directions with maximum variability

Algebraic definition of PCs

Given a sample of *n* observations on a vector of *p* variables

$$\{x_1, x_2, \cdots, x_n\} \in \mathfrak{R}^p$$

define the first principal component of the sample by the linear transformation

$$z_1 = a_1^T x_j = \sum_{i=1}^p a_{i1} x_{ij}, \quad j = 1, 2, \cdots, n.$$

where the vector

$$a_{1} = (a_{11}, a_{21}, \dots, a_{p1})$$
$$x_{j} = (x_{1j}, x_{2j}, \dots, x_{pj})$$

is chosen such that $var[z_1]$ is maximum.

To find a_1 first note that $\operatorname{var}[z_1] = E((z_1 - \overline{z_1})^2) = \frac{1}{n} \sum_{i=1}^n \left(a_1^T x_i - a_1^T \overline{x_i}\right)^2$ $= \frac{1}{n} \sum_{i=1}^{n} a_{1}^{T} \left(x_{i} - \overline{x} \right) \left(x_{i} - \overline{x} \right)^{T} a_{1} = a_{1}^{T} S a_{1}$ where $S = \frac{1}{2} \sum_{i=1}^{n} \left(x_i - \overline{x} \right) \left(x_i - \overline{x} \right)^T$ is the covariance matrix. $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the mean.

In the following, we assume the Data is centered.

Assume
$$x = 0$$

Form the matrix:

$$X = [x_1, x_2, \cdots, x_n] \in \Re^{p \times n}$$

then
$$S = \frac{1}{n} X X^T$$

To find a_1 that maximizes var $[z_1]$ subject to $a_1^T a_1 = 1$

Let λ be a Lagrange multiplier

$$L = a_1^T S a_1 - \lambda (a_1^T a_1 - 1)$$
$$\frac{\partial}{\partial a_1} L = S a_1 - \lambda a_1 = 0$$
$$\Rightarrow S a_1 = \lambda a_1$$
$$\Rightarrow a_1^T S a_1 = \lambda$$

therefore a_1 is an eigenvector of S

corresponding to the largest eigenvalue $\lambda = \lambda_1$.

then let λ and ϕ be Lagrange multipliers, and maximize

$$L = a_2^T S a_2 - \lambda (a_2^T a_2 - 1) - \phi a_2^T a_1$$

We find that a_2 is also an eigenvector of S whose eigenvalue $\lambda = \lambda_2$ is the second largest.

In general

$$\operatorname{var}[z_k] = a_k^T S a_k = \lambda_k$$

- The k^{th} largest eigenvalue of S is the variance of the k^{th} PC.
- The k^{th} PC Z_k retains the k^{th} greatest fraction of the variation in the sample.

- Main steps for computing PCs — Form the covariance matrix S.
 - Compute its eigenvectors: $\{a_i\}_{i=1}^p$
 - Use the first d eigenvectors $\{a_i\}_{i=1}^d$ to form the d PCs.
 - The transformation G is given by

$$G \leftarrow [a_1, a_2, \cdots, a_d]$$

A test point $x \in \Re^p \rightarrow G^T x \in \Re^d$.

Dimensionality Reduction

Steps of PCA

- Let \overline{X} be the mean vector (taking the mean of all rows)
- Adjust the original data by the mean $X' = X \overline{X}$
- Compute the covariance matrix S of adjusted X
- Find the eigenvectors and eigenvalues of S.

Principal components - Variance

Transformed Data

- Eigenvalues λ_j corresponds to variance on each component j
- Thus, sort by λ_i
- Take the first *d* eigenvectors \mathbf{a}_{i} ; where d is the number of top eigenvalues
- These are the directions with the largest variances

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{id} \end{pmatrix} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \dots \\ \vec{a}_d \end{pmatrix} \begin{pmatrix} x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

An Example

X1	X2	X1'	X2'
19	63	-5.1	9.25
39	74	14.9	20.25
30	87	5.9	33.25
30	23	5.9	-30.75
15	35	-9.1	-18.75
15	43	-9.1	-10.75
15	32	-9.1	-21.75
30	73	5.9	19.25

Mean1=24.1 Mean2=53.8

Covariance Matrix

- We find out:
 - Eigenvectors:
 - a2=(-0.98,-0.21), λ2=51.8
 - a1=(0.21,-0.98), λ1=560.2

Transform to One-dimension

- We keep the dimension of a1=(0.21,-0.98)
- We can obtain the final data as

$$y_i = (0.21 - 0.98) \binom{x_{i1}}{x_{i2}} = 0.21 * x_{i1} - 0.98 * x_{i2}$$