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Why Dimensionality Reduction?

* We have too many dimensions
— To reason about or obtain insights from
— To visualize
— Too much noise in the data
— Need to “reduce” them to a smaller set of factors

— Better representation of data without losing much
iInformation

— Can build more effective data analyses on the
reduced-dimensional space: classification, clustering,
pattern recognition



Component Analysis

* Discover a new set of factors/dimensions/axes
against which to represent, describe or evaluate

the data

 Factors are combinations of observed variables

— May be more effective bases for insights

— Observed data are described in terms of these factors
rather than in terms of original variables/dimensions



Basic Concept

e Areas of variance in data are where items can be best
discriminated and key underlying phenomena
observed

— Areas of greatest “signal” in the data

* If two items or dimensions are highly correlated or
dependent

— They are likely to represent highly related phenomena

— If they tell us about the same underlying variance in the

data, combining them to form a single measure is
reasonable



Basic Concept

 So we want to combine related variables, and focus
on uncorrelated or independent ones, especially
those along which the observations have high
variance

* We want a smaller set of variables that explain most
of the variance in the original data, in more compact
and insightful form

 These variables are called “factors” or “principal
components”



Principal Component Analysis

* Most common form of factor analysis
* The new variables/dimensions

— Are linear combinations of the original ones

— Are uncorrelated with one another
* Orthogonal in dimension space

— Capture as much of the original variance in the
data as possible

— Are called Principal Components



What are the new axes?

PC 2
PC1

Original Variable B

»
»

Original Variable A

e Orthogonal directions of greatest variance in data
e Projections along PC1 discriminate the data most along any one axis



Principal Components

First principal component is the direction of greatest
variability (covariance) in the data

Second is the next orthogonal (uncorrelated)
direction of greatest variability

— So first remove all the variability along the first
component, and then find the next direction of greatest

variability

And so on ...



Principal Components Analysis (PCA)

* Principle
— Linear projection method to reduce the number of
parameters

— Transfer a set of correlated variables into a new set of
uncorrelated variables

— Map the data into a space of lower dimensionality

* Properties

— |t can be viewed as a rotation of the existing axes to new
positions in the space defined by original variables

— New axes are orthogonal and represent the directions with
maximum variability



Algebraic definition of PCs

Given a sample of n observations on a vector of p variables
P
{X1’X2""’ Xn}efﬁ

define the first principal component of the sample
by the linear transformation

P
z=a X, =Y a;X;, j=12,---,n.
=1

where the vector al = (ail’ a21’“"ap1)
Xj = (X )y Xpj0 00 X

is chosen such that ~ var[z,] s maximum.



Algebraic derivation of PCs

Tofind @, first note that
_ 1< v
var(z]= E(( - 2)") = - >l x ~a x)

1=1
_ %Zn:af(x, ~x)x —xJ a, =4 Sa,
=1

where g _ Ezn:(xi —)_(Xxi _)_()T

Nn =1 . 1 n
is the covariance matrix. X=— Z X: 1S the mean.
n53

In the following, we assume the

Data is centered. X = O



Algebraic derivation of PCs

Assume X =0

Form the matrix: X :[Xl’ XZ’”'i Xn] = ERpxn

then q ZEXXT
N
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Algebraic derivation of PCs

To find @, that maximizes var[z,] subjectto a, a, =1

Let A be a Lagrange multiplier

L =a, Sa, - A(a, a, 1)
iL:Sal—/iaizo

oa,
= Sa, = 1,
= a, Sa, = A

therefore @, is an eigenvector of S

corresponding to the largest eigenvalue /] — ﬂ,l



Algebraic derivation of PCs

To find the next coefficient vector a, maximizing var[z, ]

subject to —
J cov[z,,72,]=0 uncorrelated

and to a; a, =1
T T
COV[22’ 21] =a, 58, =43, a,
then let A and ¢ be Lagrange multipliers, and maximize

L= a;Saz _Z(a;az _1) _¢a;a1



Algebraic derivation of PCs

We find that a, Is also an eigenvector of S

whose eigenvalue A —= 2,2 is the second largest.

In general

var[z,]=a, Sa, = 4,

» The k" largest eigenvalue of S is the variance of the k" PC.

« The k" PC  Z, retains the k" greatest fraction of the variation
In the sample.



Algebraic derivation of PCs

* Main steps for computing PCs
— Form the covariance matrix S.

— Compute its eigenvectors: {ai }ipzl

— Use the first d eigenvectors {ai }d to form the

d PCs.

=1

— The transformation G is given by

G<«J[a,a,, -,a,]

A testpoint

XeRP 5>G'xeR’.
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Dimensionality Reduction

Original data reduced data

Linear transformation

GeR"M: X 5Y=G"X eR*

Y e R
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Steps of PCA

Let X be the mean vector (taking the mean of
all rows)

Adjust the original data by the mean

X'=X=X

Compute the covariance matrix S of adjusted X
Find the eigenvectors and eigenvalues of S.



Principal components - Variance
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Transformed Data

Eigenvalues A; corresponds to variance on each
component |

Thus, sort by A

Take the first d eigenvectors a;. where d Is the number
of top eigenvalues

These are the directions with the largest variances
KYM\ /él\fxn_xl\
yi2 éZ Xiz o X2

\yid Y, \é:d /\Xin — Xn)




An Example

X1 X2 X1' X 2! Meanl1=24.1
Mean2=53.8
19 63 5.1 |9.25
39 74 14.9 | 20.25 i _ .
o i
30 87 5.9 | 33.25 o : _
30 23 59 |-30.75 i o 2w w w0
15 35 9.11|-18.75 -
15 43 -9.1|-10.75 — o
0 : 5 0 15 20
15 32 9.1]|-21.75 N
30 73 5.9 | 19.25 -




Covariance Matrix

75

106

106

482

* We find out:
— Eigenvectors:
— a2=(-0.98,-0.21), 12=51.8
— a1=(0.21,-0.98), 11=560.2

22



Transform to One-dimension

0.5 - yi
;; -10.14
) i -2 -16.72
We keep the dimension o a1t
of a1=(0.21,-0.98) o * T e . 31.374
We can obtain the final 1::21
data as ' 19.404
-0.5 -17.63

X.
y, =(0.21 —0.98)£ '1j:0.21*xi1—0.98*xi2

Xi2
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