
Classification 
Lecture 3: Advanced Topics 

Jing Gao 
SUNY Buffalo 

 

 

1 



Outline 

• Basics 
– Problem, goal, evaluation 

• Methods 
– Decision Tree  

– Naïve Bayes 

– Nearest Neighbor 

– Rule-based Classification 

– Logistic Regression 

– Support Vector Machines 

– Ensemble methods 

– ……… 

• Advanced topics 
– Semi-supervised Learning 

– Multi-view Learning 

– Transfer Learning 

– …… 
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Multi-view Learning 

• Problem 

– The same set of objects can be described in multiple 
different views 

– Features are naturally separated into K sets: 

 

 

– Both labeled and unlabeled data are available 

– Learning on multiple views: 
• Search for labeling on the unlabeled set and target functions on X: 

{f1,f2,…,fk} so that the target functions agree on labeling of 
unlabeled data 

),...,,( 21 KXXXX 
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Learning from Two Views 

• Input 

– Features can be split into two sets: 

– The two views are redundant but not completely correlated 

– Few labeled examples and relatively large amounts of 
unlabeled examples are available from the two views 

• Conditions 

– Compatible --- all examples are labeled identically by the 
target concepts in each view 

– Uncorrelated --- given the label of any example, its 
descriptions in each view are independent 

21 XXX 
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How It Works? 

• Conditions 
– Compatible --- Reduce the search space to where 

the two classifiers agree on unlabeled data 

– Uncorrelated --- If two classifiers always make the 
same predictions on the unlabeled data,  we 
cannot benefit much from multi-view learning 

• Algorithms 
– Searching for compatible hypotheses 

– Canonical correlation analysis 

– Co-regularization 
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Searching for Compatible Hypotheses 

• Intuitions 

– Two individual classifiers are learnt from the labeled 
examples of the two views 

– The two classifiers’ predictions on unlabeled examples are 
used to enlarge the size of training set 

– The algorithm searches for “compatible” target functions  

• Algorithms 

– Co-training [BlMi98] 

– Co-EM [NiGh00] 

– Variants of Co-training [GoZh00] 
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Labeled Data 
View 1 

Classifier 
1 

Classifier 
2 

Labeled Data 
View 2 

Unlabeled Data 
View 1 

Unlabeled Data 
View 2 



*[BlMi98] 

Co-Training* 

Train two classifiers from two views 

Select the top unlabeled examples with the most confident 
predictions from the other classifier 

Add these self-labeled examples to the training set 
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Applications: Faculty Webpages Classification 
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Co-EM* 
• Algorithm 

– Labeled data set L, Unlabeled data set U, Let U1 be empty, 
Let U2=U 

– Iterate the following 
• Train a classifier h1 from the feature set X1 of L and U1 

• Probabilistically label all the unlabeled data in U2 using h1 

• Train a classifier h2 from the feature set X2 of L and U2 

• Let U1=U, probabilistically label all the unlabeled data in U1 using 
h2  

– Combine h1 and h2 

• Co-EM vs. Co-Training 
– Labeling unlabeled data: soft vs. hard 

– Selecting unlabeled data into training set: all vs. the top 
confident ones 

*[NiGh00] 
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Canonical Correlation Analysis 

• Intuitions 
– Reduce the feature space to low-dimensional space 

containing discriminative information 

– With compatible assumption, the discriminative 
information is contained in the directions that correlate 
between the two views 

– The goal is to maximize the correlation between the data 
in the two projected spaces 

View 1 View 2 
1 2 

Projected Space 

Correlated 
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Algorithms 

• Co-training in the reduced spaces [ZZY07] 

– Project the data into the low-dimensional spaces by 
maximizing correlations between two views 

– Compute probability of unlabeled data belonging to 
positive or negative classes using the distance between 
unlabeled data and labeled data in the new feature spaces 

– Select the top-confident ones to enhance the training set 
and iterate 

• SVM+Canonical Correlation Analysis [FHM+05] 

– First reduce dimensions, then train SVM classifiers 

– Combine the two steps together 
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Co-Regularization Framework 
• Intuitions 

– Train two classifiers from the two views simultaneously 

– Add a regularization term to enforce that the two classifiers 
agree on the predictions of unlabeled data 

 

 

 

 

• Algorithms 
– Co-boosting [CoSi99] 

– Co-regularized least squares and SVM [SNB05] 

– Bhattacharyya distance regularization [GGB+08] 

),;,();();(min 21212211 UUffRLfRLfR 

Risk of classifier 1 on view 1 of labeled data 

Risk of classifier 2 on view 2 of labeled data 

Disagreement between two classifiers on unlabeled data 
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Bhattacharyya 
distance 

Exponential loss 

Least square 
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Comparison of Loss Functions 

• Loss functions 

– Exponential: 

 

– Least Square:  

 

– Bhattacharyya distance:  

 

• When two classifiers don’t agree 

– Loss grows exponentially, quadratically, linearly 

• When two classifiers agree 

– Little penalty            Penalize the margin 
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[SNB05] 
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Semi-supervised Learning 

• Learning from a mixture of labeled and unlabeled examples 

Labeled Data Unlabeled Data 

)(xfy 
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Why Semi-supervised Learning? 

• Labeling 
– Expensive and difficult 

– Unreliable 

• Unlabeled examples 
– Easy to obtain in large numbers 

– Ex. Web pages, text documents, etc. 
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Manifold Assumption 

• Regularize the classification function f(x) 

• Graph representation 
• Vertex: training example 

(labeled and unlabeled)  

• Edge: similar examples 

Labeled 
examples 

x1 and x2 are connected ->                              
distance between f(x1) and f(x2) is small 



Label Propagation: Key Idea 

• A decision boundary 
based on the labeled 
examples is unable to take 
into account the layout of 
the data points 

• How to incorporate the 
data distribution into the 
prediction of class labels? 
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Label Propagation: Key Idea 

• Connect the data points 
that are close to each 
other 
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Label Propagation: Key Idea 

• Connect the data points 
that are close to each 
other 

• Propagate the class labels 
over the connected graph 
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Matrix Representations 

• Similarity matrix (W) 
– n x n matrix 

–                 : similarity between  xi and xj 

x1 x2 x3 x4 x5 x6 

x1 0 0.8 0.6 0 0.1 0 

x2 0.8 0 0.8 0 0 0 

x3 0.6 0.8 0 0.2 0 0 

x4 0 0 0.2 0 0.8 0.7 

x5 0.1 0 0 0.8 0 0.8 

x6 0 0 0 0.7 0.8 0 
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Matrix Representations 

• Degree matrix (D) 
– n x n  diagonal matrix 

–                           : total weight of edges incident to vertex xi 

x1 x2 x3 x4 x5 x6 

x1 1.5 0 0 0 0 0 

x2 0 1.6 0 0 0 0 

x3 0 0 1.6 0 0 0 

x4 0 0 0 1.7 0 0 

x5 0 0 0 0 1.7 0 

x6 0 0 0 0 0 1.5 


j

ijwiiD ),(

0.1 

0.2 

0.8 

0.7 

0.6 

0.8 

0.8 

0.8 

1 

2 

3 

4 

5 

6 

25 



Matrix Representations 

• Normalized similarity 
matrix (S) 

– n x n symmetric matrix 

𝑺 = 𝑫−𝟎.𝟓𝑾𝑫−𝟎.𝟓 
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x1 x2 x3 x4 x5 x6 

x1 0 0.52 0.39 0 0.06 0 

x2 0.52 0 0.5 0 0 

x3 0.39 0.5 0 0.12 0 0 

x4 0 0 0.12 0 0.47 0.44 

x5 0.06 0 0 0.47 0 0.5 

x6 0 0 0 0.44 0.5 0 
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Normalized Similarity Matrix 
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Initial Label and Prediction 

• Let Y be the initial assignment of class labels 
– yi = 1 when the i-th node is assigned to the positive class 

– yi = -1 when the i-th node is assigned to the negative class 

– yi = 0 when the i-th node is not initially labeled 

• Let F be the predicted class labels 
– The i-th node is assigned to the positive class if fi >0 

– The i-th node is assigned to the negative class if fi < 0 
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Initial Label and Prediction 
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Initial Label Prediction 
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Label Propagation 

• One iteration 

– F = Y + aSY = (I + aS)Y 

–  a weights the propagation values 
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Label Propagation 

• Two iteration 

– F =Y + aSY + a2S2Y = (I + aS + a2S2)Y 
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Label Propagation 

• More iterations 

 F = (n=0a
nSn)Y = (I - a S)-1Y 
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Graph Partitioning 

• Classification as graph partitioning 

• Search for a classification boundary  

– Consistent with labeled examples 

– Partition with small graph cut 

Graph Cut = 1 
Graph Cut = 2 
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Graph Partitioning 

• Classification as graph partitioning 

• Search for a classification boundary  

– Consistent with labeled examples 

– Partition with small graph cut 

Graph Cut = 1 
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Review of Spectral Clustering 

• Express a bi-partition (C1,C2) as a vector 

2
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Spectral Bi-partitioning Algorithm 
 

1. Pre-processing 
– Build Laplacian  

matrix L of the  
graph 
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2. Decomposition 

– Find eigenvalues X  
and eigenvectors Λ  
of the matrix L 
 

-0.7 x6 

-0.7 x5 

-0.4 x4 

0.2 x3 

0.2 x2 

0.2 x1 – Map vertices to 
corresponding 
components of λ2 

 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 0 0 -0.2 1.7 -0.8 -0.7 

x5 -0.1 0 0 -0.8 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 
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Semi-Supervised Learning 
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Clustering Assumption 
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Clustering Assumption 

– Points with same label are connected through high 
density regions, thereby defining a cluster  
 

– Clusters are separated through low-density regions 
39 



Transductive SVM 

• Decision boundary given a 
small number of labeled 
examples 

40 



Transductive SVM 

• Decision boundary given a 
small number of labeled 
examples 

• How will the decision 
boundary change given both 
labeled and unlabeled 
examples? 
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Transductive SVM 

• Decision boundary given a 
small number of labeled 
examples 

• Move the decision 
boundary to place with low 
local density 
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Transductive SVM 

• Decision boundary given 
a small number of 
labeled examples 

• Move the decision 
boundary to place with 
low local density 

• Classification results 

• How to formulate this 
idea? 
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Transductive SVM: Formulation 

• Labeled data L: 

• Unlabeled data D: 

• Maximum margin principle for mixture of 
labeled and unlabeled data 

– For each label assignment of unlabeled data, 
compute its maximum margin 

– Find the label assignment whose maximum 
margin is maximized  

1 1 2 2{( , ), ( , ),..., ( , )}n nL x y x y x y

1 2{( ), ( ),..., ( )}n n n mD x x x  

44 



Tranductive SVM 

Different label assignment for unlabeled data  

 different maximum margin 
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SVM Formulation 

• We want to maximize: 

 

– Which is equivalent to minimizing: 

– But subjected to the following constraints: 
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Transductive SVM: Formulation  
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Constraints for 
unlabeled data 

A binary variables for 
label of each example 
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Alternating Optimization 

• Step 1: fix yn+1,…, yn+m, 
learn weights w 

 

• Step 2: fix weights w, try 
to predict  yn+1,…, yn+m 
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Standard Supervised Learning 

New York Times 

training 
(labeled) 

test 
(unlabeled) 

 Classifier 85.5% 

New York Times 
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In Reality…… 

New York Times 

training 
(labeled) 

test 
(unlabeled) 

 Classifier 64.1% 

New York Times 

Labeled data not 
available! Reuters 
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Domain Difference  Performance Drop 

train test 

NYT NYT 

New York Times New York Times 

Classifier 85.5% 

Reuters NYT 

Reuters New York Times 

Classifier 64.1% 

ideal setting 

realistic setting 
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Other Examples 

• Spam filtering 
– Public email collection  personal inboxes 

• Intrusion detection 

– Existing types of intrusions  unknown types of intrusions  

• Sentiment analysis 
– Expert review articles blog review articles 

• The aim 

– To design learning methods that are aware of the training and test 

domain difference 

• Transfer learning 

– Adapt the classifiers learnt from the source domain to the new 

domain 
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Approaches to Transfer Learning 

Transfer learning approaches Description 

Instance-transfer To re-weight some labeled data in a source 

domain for use in the target domain 

Feature-representation-transfer  Find a “good” feature representation that reduces 

difference between a source and a target domain 

or minimizes error of models  

Model-transfer Discover shared parameters or priors of models 

between a source domain and a target domain  

Relational-knowledge-transfer Build mapping of relational knowledge between a 

source domain and a target domain. 
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All Sources of Labeled Information 

training 
(labeled) 

test 
(completely 
unlabeled) 

 Classifier 

New York Times 

Reuters 

Newsgroup 

…… ? 
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A Synthetic Example 

Training 

(have conflicting concepts) 

Test 

Partially 
overlapping 
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Goal 

Source 
Domain Target 

Domain 

Source 
Domain 

Source 
Domain 

• To unify knowledge that are consistent with the test 

domain from multiple source domains (models) 
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Locally Weighted Ensemble 
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Synthetic Example Revisited 

Training 

(have conflicting concepts) 

Test 

Partially 
overlapping 

M1 M2 
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Graph-based Heuristics 

• Graph-based weights approximation 

– Map the structures of models onto test domain 

Clustering 
Structure 

M1 
M2 

weight 
on x 

60 



Graph-based Heuristics 

• Local weights calculation 

– Weight of a model is proportional to the similarity 
between its neighborhood graph and the clustering 
structure around x. 

 

Higher Weight 
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A Synthetic Example 

Training 

(have conflicting concepts) 

Test 

Partially 
overlapping 
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Experiments on Synthetic Data 
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