Classification Lecture 3: Advanced Topics

Jing Gao SUNY Buffalo

Outline

Basics

Problem, goal, evaluation

Methods

- Decision Tree
- Naïve Bayes
- Nearest Neighbor
- Rule-based Classification
- Logistic Regression
- Support Vector Machines
- Ensemble methods
- **—**

Advanced topics

- Semi-supervised Learning
- Multi-view Learning
- Transfer Learning
- **—**

Multi-view Learning

Problem

- The same set of objects can be described in multiple different views
- Features are naturally separated into K sets:

$$X = (X^1, X^2, ..., X^K)$$

- Both labeled and unlabeled data are available
- Learning on multiple views:
 - Search for labeling on the unlabeled set and target functions on X: $\{f_1,f_2,...,f_k\}$ so that the target functions agree on labeling of unlabeled data

Learning from Two Views

Input

- Features can be split into two sets: $X = X_1 \times X_2$
- The two views are redundant but not completely correlated
- Few labeled examples and relatively large amounts of unlabeled examples are available from the two views

Conditions

- Compatible --- all examples are labeled identically by the target concepts in each view
- Uncorrelated --- given the label of any example, its descriptions in each view are independent

How It Works?

Conditions

- Compatible --- Reduce the search space to where the two classifiers agree on unlabeled data
- Uncorrelated --- If two classifiers always make the same predictions on the unlabeled data, we cannot benefit much from multi-view learning

Algorithms

- Searching for compatible hypotheses
- Canonical correlation analysis
- Co-regularization

Searching for Compatible Hypotheses

Intuitions

- Two individual classifiers are learnt from the labeled examples of the two views
- The two classifiers' predictions on unlabeled examples are used to enlarge the size of training set
- The algorithm searches for "compatible" target functions

Algorithms

- Co-training [BIMi98]
- Co-EM [NiGh00]
- Variants of Co-training [GoZh00]

Co-Training*

Given:

- a set L of labeled training examples
- a set U of unlabeled examples

Train two classifiers from two views

Create a pool U' of Select the top unlabeled examples with the most confident Loop for k iteration predictions from the other classifier

Use L to train a classifier h_1 that considers only the x_1 portion of x Use L to train a classifier h_2 that considers only the x_2 portion of x Allow h_1 to label p positive and n negative examples from U' Allow h_2 to label p positive and n negative examples from U' Add these self-labeled examples to L Randomly choose 2p + 2n examples from U to replenish U'

Add these self-labeled examples to the training set

Applications: Faculty Webpages Classification

View1: Page Text

View2: Hyperlink Text

Figure 2: Error versus number of iterations for one run of co-training experiment.

Co-EM*

Algorithm

- Labeled data set L, Unlabeled data set U, Let U_1 be empty, Let $U_2=U$
- Iterate the following
 - Train a classifier h_1 from the feature set X_1 of L and U_1
 - Probabilistically label all the unlabeled data in U_2 using h_1
 - Train a classifier h_2 from the feature set X_2 of L and U_2
 - Let U_1 =U, probabilistically label all the unlabeled data in U_1 using h_2
- Combine h_1 and h_2

Co-EM vs. Co-Training

- Labeling unlabeled data: soft vs. hard
- Selecting unlabeled data into training set: all vs. the top confident ones

Canonical Correlation Analysis

Intuitions

- Reduce the feature space to low-dimensional space containing discriminative information
- With compatible assumption, the discriminative information is contained in the directions that correlate between the two views
- The goal is to maximize the correlation between the data in the two projected spaces

Algorithms

Co-training in the reduced spaces [ZZY07]

- Project the data into the low-dimensional spaces by maximizing correlations between two views
- Compute probability of unlabeled data belonging to positive or negative classes using the distance between unlabeled data and labeled data in the new feature spaces
- Select the top-confident ones to enhance the training set and iterate

SVM+Canonical Correlation Analysis [FHM+05]

- First reduce dimensions, then train SVM classifiers
- Combine the two steps together

Co-Regularization Framework

Intuitions

- Train two classifiers from the two views simultaneously
- Add a regularization term to enforce that the two classifiers agree on the predictions of unlabeled data

Risk of classifier 2 on view 2 of labeled data
$$\min \ R(f_1;L_1) + R(f_2;L_2) + R(f_1,f_2;U_1,U_2)$$
 Risk of classifier 1 on view 1 of labeled data

Disagreement between two classifiers on unlabeled data

Algorithms

- Co-boosting [CoSi99]
- Co-regularized least squares and SVM [SNB05]
- Bhattacharyya distance regularization [GGB+08]

Comparison of Loss Functions

Loss functions

- Exponential:
$$\sum_{x \in U} \exp\left(-\widetilde{y}_2 f_1(x)\right) + \exp\left(-\widetilde{y}_1 f_2(x)\right)$$

- Least Square:
$$\sum_{x \in U} (f_1(x) - f_2(x))^2$$

- Bhattacharyya distance:
$$E_U(B(p_1, p_2))$$

$$B(p_1, p_2) = -\log \sum_{y} \sqrt{p_1(y)p_2(y)}$$

- When two classifiers don't agree
 - Loss grows exponentially, quadratically, linearly
- When two classifiers agree
 - Little penalty
 Penalize the margin

View 1: RLS (2 labeled examples)

View 1: Co-trained RLS (1 step)

View 1: Co-RLS

View 2: RLS (2 labeled examples)

View 2: Co-trained RLS (1 step)

View 2: Co-RLS

Semi-supervised Learning

Learning from a mixture of labeled and unlabeled examples

Labeled Data

Unlabeled Data

$$L = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\} \quad D = \{(x_{n+1}), (x_{n+2}), ..., (x_{n+m})\}$$

$$y = f(x)$$

usage	supervised	semi-supervised	unsupervised
	learning	learning	learning
$\{(x,y)\}$ labeled data	yes	yes	no
$\{x\}$ unlabeled data	no	yes	yes

Why Semi-supervised Learning?

Labeling

- Expensive and difficult
- Unreliable

Unlabeled examples

- Easy to obtain in large numbers
- Ex. Web pages, text documents, etc.

Manifold Assumption

Graph representation

- Vertex: training example (labeled and unlabeled)
- Edge: similar examples

Regularize the classification function f(x)

 x_1 and x_2 are connected -> distance between $f(x_1)$ and $f(x_2)$ is small

Label Propagation: Key Idea

- A decision boundary based on the labeled examples is unable to take into account the layout of the data points
- How to incorporate the data distribution into the prediction of class labels?

Label Propagation: Key Idea

 Connect the data points that are close to each other

Label Propagation: Key Idea

- Connect the data points that are close to each other
- Propagate the class labels over the connected graph

Matrix Representations

- Similarity matrix (W)
 - $-n \times n$ matrix
 - $-W = [w_{ij}]$: similarity between x_i and x_j

	<i>X</i> ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	<i>X</i> ₆
<i>X</i> ₁	0	8.0	0.6	0	0.1	0
X ₂	8.0	0	0.8	0	0	0
<i>X</i> ₃	0.6	8.0	0	0.2	0	0
<i>X</i> ₄	0	0	0.2	0	8.0	0.7
<i>X</i> ₅	0.1	0	0	0.8	0	0.8
X ₆	0	0	0	0.7	0.8	0

Matrix Representations

- Degree matrix (D)
 - -n x n diagonal matrix
 - $-D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_i

	<i>X</i> ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	<i>X</i> ₆
<i>X</i> ₁	1.5	0	0	0	0	0
<i>X</i> ₂	0	1.6	0	0	0	0
<i>X</i> ₃	0	0	1.6	0	0	0
X ₄	0	0	0	1.7	0	0
X ₅	0	0	0	0	1.7	0
<i>X</i> ₆	0	0	0	0	0	1.5

Matrix Representations

Normalized similarity matrix (S)

$$S = D^{-0.5}WD^{-0.5}$$

 $-n \times n$ symmetric matrix

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆
<i>X</i> ₁	0	0.52	0.39	0	0.06	0
X ₂	0.52	0	0.5		0	0
<i>X</i> ₃	0.39	0.5	0	0.12	0	0
X ₄	0	0	0.12	0	0.47	0.44
X ₅	0.06	0	0	0.47	0	0.5
<i>X</i> ₆	0	0	0	0.44	0.5	0

Normalized Similarity Matrix

Initial Label and Prediction

Let Y be the initial assignment of class labels

- $-y_i = 1$ when the i-th node is assigned to the positive class
- $-y_i = -1$ when the i-th node is assigned to the negative class
- $-y_i = 0$ when the i-th node is not initially labeled

Let F be the predicted class labels

- The i-th node is assigned to the positive class if $f_i > 0$
- The i-th node is assigned to the negative class if $f_i < 0$

Initial Label and Prediction

Label Propagation

One iteration

$$-F = Y + \alpha SY = (I + \alpha S)Y$$

 $-\alpha$ weights the propagation values

Label Propagation

Two iteration

$$-F = Y + \alpha SY + \alpha^2 S^2 Y = (I + \alpha S + \alpha^2 S^2)Y$$

Label Propagation

More iterations

$$\mathsf{F} = (\sum_{\mathsf{n}=\mathsf{0}}^{\infty} \alpha^{\mathsf{n}} \mathsf{S}^{\mathsf{n}}) \mathsf{Y} = (\mathsf{I} - \alpha \mathsf{S})^{-1} \mathsf{Y}$$

Graph Partitioning

- Classification as graph partitioning
- Search for a classification boundary
 - Consistent with labeled examples
 - Partition with small graph cut

Graph Partitioning

- Classification as graph partitioning
- Search for a classification boundary
 - Consistent with labeled examples
 - Partition with small graph cut

Review of Spectral Clustering

• Express a bi-partition (C_1, C_2) as a vector

$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimise the cut of the partition by finding a non-trivial vector f that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$
Laplacian matrix

Spectral Bi-partitioning Algorithm

1. Pre-processing

Build Laplacian matrix L of the graph

	<i>X</i> ₁	X ₂	<i>X</i> ₃	<i>X</i> ₄	X ₅	<i>X</i> ₆
X ₁	1.5	-0,8	-0.6	0	-0.1	0
X ₂	-0.8	1.6	-0.8	0	0	0
<i>X</i> ₃	-0.6	-0.8	1.6	-0.2	0	0
<i>X</i> ₄	0	0	-0.2	1.7	-0,8	-0.7
X ₅	-0.1	0	0	-0.8	1.7	-0.8
<i>X</i> ₆	0	0	0	-0.7	-0,8	1.5

2. Decomposition

Find eigenvalues X
 and eigenvectors Λ
 of the matrix L

$$1 = \frac{2.2}{2.3}$$

X =	0.4	0.2	0.1	0.4	-0.2	-0.9
	0.4	0.2	0.1	-0.	0.4	0.3
	0.4	0.2	-0.2	0.0	-0.2	0.6
	0.4	-0.4	0.9	0.2	-0.4	-0.6
	0.4	-0.7	-0.4	-0.8	-0.6	-0.2
	0.4	0.7	-0.2	0.5	8.0	0.9

_	Map vertices to
	corresponding
	components of λ_2

X ₁	0.2
X ₂	0.2
х ₃	0.2
X ₄	-0.4
x ₅	-0.7
X ₆	-0.7

Semi-Supervised Learning

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = f^T L f$$

Method 1: Fix y_l , solve for f_u

$$f = \begin{bmatrix} y_l \\ f_u \end{bmatrix} \qquad L = \begin{bmatrix} L_{ll} & L_{lu} \\ L_{ul} & L_{uu} \end{bmatrix}$$

$$\min_{f_u} f^T L f$$

$$\min_{f} f^{T}L f + (f - y)^{T} C (f - y)$$

$$C_{ii} = 1 \quad \text{if } x_{i} \text{ is labeled}$$

Clustering Assumption

Clustering Assumption

- Points with same label are connected through high density regions, thereby defining a cluster
- Clusters are separated through low-density regions

 Decision boundary given a small number of labeled examples

- Decision boundary given a small number of labeled examples
- How will the decision boundary change given both labeled and unlabeled examples?

- Decision boundary given a small number of labeled examples
- Move the decision boundary to place with low local density

- Decision boundary given a small number of labeled examples
- Move the decision boundary to place with low local density
- Classification results
- How to formulate this idea?

Transductive SVM: Formulation

- Labeled data L: $L = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
- Unlabeled data D: $D = \{(x_{n+1}), (x_{n+2}), ..., (x_{n+m})\}$
- Maximum margin principle for mixture of labeled and unlabeled data
 - For each label assignment of unlabeled data, compute its maximum margin
 - Find the label assignment whose maximum margin is maximized

Different label assignment for unlabeled data

→ different maximum margin

Traditional SVM

46

SVM Formulation

• We want to maximize: $M \operatorname{argin} = \frac{2}{\|\vec{w}\|^2}$

- Which is equivalent to minimizing: $\|\vec{w}\|^2 = \vec{w} \cdot \vec{w}$
- But subjected to the following constraints:

$$\vec{w} \cdot \vec{x}_i + b \ge 1 \text{ if } y_i = 1$$

$$\vec{w} \cdot \vec{x}_i + b \le -1 \text{ if } y_i = -1$$

$$y_i (\vec{w} \cdot \vec{x}_i + b) \ge 1$$

Transductive SVM: Formulation

Original SVM

A binary variables for label of each example

Transductive SVM

 $\{\vec{w}^*, b^*\} = \underset{y_{n+1}, \dots, y_{n+m}}{\operatorname{argmin}} \underset{\vec{w}, b}{\operatorname{argmin}} \vec{w} \cdot \vec{w}$ $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1$ $y_2(\vec{w} \cdot \vec{x}_2 + b) \ge 1$ labeled \dots $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1$ examples

Constraints for unlabeled data

 $y_{n+1}(\vec{w}\cdot\vec{x}_{n+1}+b) \ge 1$ $y_{n+m}(\vec{w}\cdot\vec{x}_{n+m}+b) \ge 1$

unlabeled examples

Alternating Optimization

$$\{\vec{w}^*, b^*\} = \underset{y_{n+1}, \dots, y_{n+m}}{\operatorname{argmin}} \vec{w} \cdot \vec{w}$$

$$y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1$$

$$y_2(\vec{w} \cdot \vec{x}_2 + b) \ge 1$$
 | labeled
$$\dots$$
 | examples
$$y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1$$

$$y_{n+1}(\vec{w} \cdot \vec{x}_{n+1} + b) \ge 1$$
 | unlabeled
$$\dots$$

$$y_{n+m}(\vec{w} \cdot \vec{x}_{n+m} + b) \ge 1$$
 | examples

- Step 1: fix y_{n+1},..., y_{n+m}, learn weights w
- Step 2: fix weights w, try to predict $y_{n+1},..., y_{n+m}$

Standard Supervised Learning

New York Times

New York Times

In Reality.....

New York Times

New York Times

Domain Difference \rightarrow **Performance Drop**

Other Examples

Spam filtering

Public email collection → personal inboxes

Intrusion detection

Existing types of intrusions → unknown types of intrusions

Sentiment analysis

Expert review articles → blog review articles

The aim

 To design learning methods that are aware of the training and test domain difference

Transfer learning

 Adapt the classifiers learnt from the source domain to the new domain

Approaches to Transfer Learning

Transfer learning approaches	Description
Instance-transfer	To re-weight some labeled data in a source domain for use in the target domain
Feature-representation-transfer	Find a "good" feature representation that reduces difference between a source and a target domain or minimizes error of models
Model-transfer	Discover shared parameters or priors of models between a source domain and a target domain
Relational-knowledge-transfer	Build mapping of relational knowledge between a source domain and a target domain.

All Sources of Labeled Information

Newsgroup

A Synthetic Example

• To unify knowledge that are consistent with the test domain from multiple source domains (models)

Locally Weighted Ensemble

Synthetic Example Revisited

Graph-based Heuristics

- Graph-based weights approximation
 - Map the structures of models onto test domain

Graph-based Heuristics

- Local weights calculation
 - Weight of a model is proportional to the similarity between its neighborhood graph and the clustering structure around x.

$$w_{M,\mathbf{x}} \propto s(G_M, G_T; \mathbf{x}) = \frac{\sum_{v_1 \in V_M} \sum_{v_2 \in V_T} \mathbf{1}\{v_1 = v_2\}}{|V_M| + |V_T|}$$

A Synthetic Example

Experiments on Synthetic Data

