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e Basics

Problem, goal, evaluation

e Methods

Decision Tree

Naive Bayes

Nearest Neighbor
Rule-based Classification
Logistic Regression
Support Vector Machines
Ensemble methods

 Advanced topics

Semi-supervised Learning
Multi-view Learning

— Transfer Learning

Outline



Multi-view Learning

* Problem

— The same set of objects can be described in multiple
different views

— Features are naturally separated into K sets:
X =(X X2,..., XX

— Both labeled and unlabeled data are available
— Learning on multiple views:

» Search for labeling on the unlabeled set and target functions on X:
{f,.f5-.fc} so that the target functions agree on labeling of
unlabeled data



Learning from Two Views

* Input
— Features can be split into two sets: X =X, xX,
— The two views are redundant but not completely correlated

— Few labeled examples and relatively large amounts of
unlabeled examples are available from the two views

e Conditions

— Compatible --- all examples are labeled identically by the
target concepts in each view

— Uncorrelated --- given the label of any example, its
descriptions in each view are independent



How It Works?

e Conditions

— Compatible --- Reduce the search space to where
the two classifiers agree on unlabeled data

— Uncorrelated --- If two classifiers always make the
same predictions on the unlabeled data, we
cannot benefit much from multi-view learning

* Algorithms
— Searching for compatible hypotheses
— Canonical correlation analysis
— Co-regularization



Searching for Compatible Hypotheses

 Intuitions

— Two individual classifiers are learnt from the labeled
examples of the two views

— The two classifiers’ predictions on unlabeled examples are
used to enlarge the size of training set

— The algorithm searches for “compatible” target functions

e Algorithms
— Co-training [BIMi98]
— Co-EM [NiGhO0O]
— Variants of Co-training [GoZh0O0]



Labeled Data Labeled Data

View 1 View 2
Classifier Classifier
1 2
Unlabeled Data Unlabeled Data

View 1 View 2




Co-Training*

(y1ven:

e a set L of labeled training examples

o a set U of unlabeled examples Train two classifiers from two views

Create a pool U’ of Select the top unlabeled examples withthe most confident

Loop for k iteratiol predictions from the other classifier

Use L to train a classifier 2; that consideps only the xq portion of x
Use L to train a classifier ho that considers only the x2 portion of x
Allow hq to label p positive gdnd n negative examples from U/’
Allow hs to label p positive and n negative examples from U’

Add these self-labeled examples to L

Randomly choose 2p + 2n exampl%/&om U to replenish U/’

Add these self-labeled examples to the training set

*[BIMi98]




Applications: Faculty Webpages Classification
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Percent Error on Test Data
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Figure 2: Error versus number of iterations for one run of co-training experiment.
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Co-EM*
* Algorithm

— Labeled data set L, Unlabeled data set U, Let U, be empty,
Let U,=U
— lterate the following

* Train a classifier h, from the feature set X, of L and U,
* Probabilistically label all the unlabeled data in U, using h,
* Train a classifier h, from the feature set X, of L and U,

* Let U,=U, probabilistically label all the unlabeled data in U, using
h2

— Combine h; and h,
* Co-EM vs. Co-Training
— Labeling unlabeled data: soft vs. hard

— Selecting unlabeled data into training set: all vs. the top
confident ones

*[NiGhOO]



Canonical Correlation Analysis

 Intuitions

— Reduce the feature space to low-dimensional space
containing discriminative information

— With compatible assumption, the discriminative
information is contained in the directions that correlate
between the two views

— The goal is to maximize the correlation between the data
in the two projected spaces

Projected Space

' \ |
View1l—_ | - > /Vlewz

Correlated



Algorithms

* Co-training in the reduced spaces [ZZY07]

— Project the data into the low-dimensional spaces by
maximizing correlations between two views

— Compute probability of unlabeled data belonging to
positive or negative classes using the distance between
unlabeled data and labeled data in the new feature spaces

— Select the top-confident ones to enhance the training set
and iterate

e SVM+Canonical Correlation Analysis [FHM+05]

— First reduce dimensions, then train SVM classifiers
— Combine the two steps together

13



Co-Regularization Framework

* |Intuitions
— Train two classifiers from the two views simultaneously

— Add a regularization term to enforce that the two classifiers
agree on the predictions of unlabeled data

Risk of cIassifif/r 2 on view 2 of labeled data
min  R(f;L)+R(f,;L)+R(f, f,;U,,U,)

__—r
Risk of classifier 1 on view 1 of labeled data I

Disagreement between two classifiers on unlabeled data

* Algorithms
— Co-boosting [CoSi99]
— Co-regularized least squares and SVM [SNBO5]
— Bhattacharyya distance regularization [GGB+08]

14
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Comparison of Loss Functions

 Loss functions

— Exponential: Zexp (— Y, fl(X))+ exp (— y, f, (X))

xeu

— Least Square: Z(fl(x) - f,(x))’

xeu

— Bhattacharyya distance: E, (B(p;: P,))

B(p,, p,) =—log Z\/ p.(Y) P, (Y)
* When two classifiers don’t agree

— Loss grows exponentially, quadratically, linearly

 When two classifiers agree
— Little penalty === Penalize the margin

16



View 1: RLS (2 labeled examples) View 2: RLS (2 labeled examples’

[SNBO5]




Semi-supervised Learning

* Learning from a mixture of labeled and unlabeled examples

Labeled Data

Unlabeled Data

L ={(X1, yl), (Xz’ yz)’ e (Xn’ yn)} D :{(Xn+1)’ (Xn+2)’ e (Xn+m)}

- _/
e

y=1(x)

usage supervised semi-supervised unsupervised
learning learning learning
{(z,y)} labeled data yes yes no
{z} unlabeled data no yes yes

18



Why Semi-supervised Learning?

* Labeling
— Expensive and difficult
— Unreliable

* Unlabeled examples
— Easy to obtain in large numbers
— Ex. Web pages, text documents, etc.

19



Manifold Assumption

Graph representation

Vertex: training example
(labeled and unlabeled)

Edge: similar examples

e Regularize the classification function f(x)

X, and x, are connected ->
distance between f(x,) and f(x,) is small



Label Propagation: Key Idea

v

A decision boundary
based on the labeled
examples is unable to take
into account the layout of
the data points

How to incorporate the
data distribution into the
prediction of class labels?
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Label Propagation: Key Idea

* Connect the data points
that are close to each
other

22



Label Propagation: Key Idea

* Connect the data points
that are close to each
other

* Propagate the class labels
over the connected graph
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Matrix Representations

e Similarity matrix (W)
— N X N matrix
—W =[w;] : similarity between X; and Xi

24



Matrix Representations

* Degree matrix (D)
— N X N diagonal matrix

— D(1,1) = Zwij : total weight of edges incident to vertex x;
j

25



Matrix Representations

* Normalized similarity
matrix (S)

S = D—O.SWD—O.S

— N X N symmetric matrix

26



Normalized Similarity Matrix

S _ D—O.SVVD—O.5
_1 30 ~
1 511 coe S]_f cee S]_n
S. .e. S

i1 it " in

S c o S e oo
30 | “n1 nf nn
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Initial Label and Prediction

* LetY be the initial assignment of class labels
— v; = 1 when the i-th node is assigned to the positive class
— V. =-1 when the i-th node is assigned to the negative class
— Y, = 0 when the i-th node is not initially labeled

* Let F be the predicted class labels
— The i-th node is assigned to the positive class if f, >0
— The i-th node is assigned to the negative class if . <0

28



Initial Label and Prediction

Initial Label Prediction
Y F
1 | yl | 1 I fl |
|
Yi f.
: 1
30 L yn _ 30 | fn A




Label Propagation

* One iteration
—F=Y+aSY=(+aS)Y
— o weights the propagation values

30



Label Propagation

e Two iteration

— F =Y + aSY + a?S?%Y = (I + aS + a?S?)Y




Label Propagation

e More iterations

F=(2ans"Y = (- aS)ty




Graph Partitioning

e Classification as graph partitioning
e Search for a classification boundary

— Consistent with labeled examples
— Partition with small graph cut

/ Graph Cut=1
Graph Cut = 2\\ / P

33



Graph Partitioning

e Classification as graph partitioning
e Search for a classification boundary

— Consistent with labeled examples
— Partition with small graph cut

// Graph Cut =1

34



Review of Spectral Clustering

* Express a bi-partition (C,,C,) as a vector
1 1f x. eC,
-1 1If x. eC,

e We can minimise the cut of the partition by
finding a non-trivial vector f that minimizes the
function

g(f)=> w(f—f) =f'Lf
eV \ Laplacian

matrix



1.

2.

Spectral Bi-partitioning Algorithm

Pre-processing

— Build Laplacian

matrix L of the
graph

Decomposition

Find eigenvalues X
and eigenvectors /A
of the matrix L

Map vertices to
corresponding
components of A,

0.0

04
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Semi-Supervised Learning

g(f)=> w(f—f) =f'Lf

I, jeVv

Method 1: f Yi | — L Ly
Fix y, solve for f, L, L,

min, f'L f

Method 2: min, fTL f+(f —y) C(f—vy)
Solve for f

C.=1 ifx;is labeled

37



Clustering Assumption

38



Clustering Assumption

— Points with same label are connected through high
density regions, thereby defining a cluster

— Clusters are separated through low-density regions



Transductive SVM

e Decision boundary given a
small number of labeled
examples




Transductive SVM

e Decision boundary given a
small number of labeled
examples

 How will the decision
boundary change given both
labeled and unlabeled
examples?




Transductive SVM

e Decision boundary given a
small number of labeled
examples

 Move the decision
boundary to place with low

local density P o o 0090
o o ° o
o8 © © o




Transductive SVM

Decision boundary given
a small number of
labeled examples

Move the decision
boundary to place with
low local density

Classification results

How to formulate this o

idea?



Transductive SVM: Formulation

e Labeleddata L: L=10X% ¥1):(X2,¥2)ses (X, Y )}
* Unlabeled data D: D ={(Xy11): (Xn12)s s (Xqym)}

 Maximum margin principle for mixture of
labeled and unlabeled data

— For each label assignment of unlabeled data,
compute its maximum margin

— Find the label assignment whose maximum
margin is maximized



Tranductive SVM

Different label assignment for unlabeled data

- different maximum margin

45



y

{

1
-1

Traditional SVM

B1
/{ O
?/ ®
1 = wWeX+b=+1
O
- - //////’
. 31
0 oy,
if WeX+b>1 1 | 2
_ Margin = ——
if WeX+b<-1 W
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SVM Formulation

* We want to maximize: Margin=——

- 12 — —
— Which is equivalent to minimizing: | W["=W-W
— But subjected to the following constraints:

WeX. +b>1ify, =1
WexX +b<—1lif y. =-1



Transductive SVM: Formulation

Original SVM

A binary variables for
label of each example

{W , b }= argminw-w

W, b
y, (W-% +b)>1
Yo (WX, +b)>1

3

labeled ‘

>
examples

Constraints for
unlabeled data

Yo (W-%, +b)>1

Transductive SVM

* *

: argmin

Yn+1 ----- yn+m

Vi (W-% +b)>1
Y, (W%, +b)>1

argmin w- w
Ww,b

labeled
>
examples

s

unlabeled
examples
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Alternating Optimization

Transductive SVM

° Step 1: fix yn+1,---; yn+m'

W, b }= argmin argminw-w .
{ } J J learn weights w

yn+1 ----- yn+m W’b
e Step 2: fix weights w, try

W-X, +b)>1 | labeled
Yo ( 2 ) . to predict Yn+1ro0 Ynem

examples

unlabeled
examples

s




Standard Supervised Learning

training test
(labeled) (unlabeled)

) Classifier )

New York Times New York Times

85.5%
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In Reality......

training
(labeled)

) Classifier

test

(unlabeled)

=)

Aata nnt

Reuters

New York Times

64.1%

New York Times

51



Domain Difference - Performance Drop

train test

jl> Classifier jl> 85.5%

New York Times New York Times

Classifier jl> 64.1%

Reuters New York Times
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Other Examples

Spam filtering
— Public email collection = personal inboxes

Intrusion detection
— Existing types of intrusions = unknown types of intrusions
Sentiment analysis

— Expert review articles—> blog review articles

The aim

— To design learning methods that are aware of the training and test
domain difference

Transfer learning

— Adapt the classifiers learnt from the source domain to the new
domain

53



Approaches to Transfer Learning

Transfer learning approaches

Description

Instance-transfer

To re-weight some labeled data in a source
domain for use in the target domain

Feature-representation-transfer

Find a “good” feature representation that reduces
difference between a source and a target domain
or minimizes error of models

Model-transfer

Discover shared parameters or priors of models
between a source domain and a target domain

Relational-knowledge-transfer

Build mapping of relational knowledge between a
source domain and a target domain.




All Sources of Labeled Information

training test
(labeled) (completely
unlabeled)
Reuters
...... > Claspier >
[ ]
7 New York Times

Newsgroup
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A Synthetic Example

" g g,
g
A
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R1 a2kt aly R2
A R3
Training Set 1 Training Set 2 Test Set
Training — Test

(have conflicting concepts) Partially
overlapping
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Source
Domain

e To unify knowledge that are consistent with the test
domain from multiple source domains (models)
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Locally Weighted Ensemble

1% y) e P(Y =y | x,M))

1
Training set 1 M, Fuy) x-feature value y-class label
wH(X)
Y
>’—< f2(x,y)
w2 (X) est example x
Training set \
-
k . .
............ fE(x,y) ZZW'(X)f'(X, y)
i=1
k .
4 (x, y) 2 W) =1
i=1
Training set k M, W (X)

y|x=argmax, f*=(x,y)



Synthetic Example Revisited

Training Set 1

Training Set 2

~

Training

(have conflicting concepts)

R1 a2kt aly R2
A R3
Test Set

Partially
overlapping
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Graph-based Heuristics

e Graph-based weights approximation
— Map the structures of models onto test domain

weight
on X
Clustering M, M,

Structure

60



Graph-based Heuristics

Clustering
Model 1 Model 2

Structure
Higher Weight Training Tesat Set
Information .
Information

e Local weights calculation

— Weight of a model is proportional to the similarity
between its neighborhood graph and the clustering
structure around x.

21-‘16 VM Zu EVr L{vy = va}

wprx X S(Gpr, Grix) = Varl + [V ]
A o
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A Synthetic Example

" g g,
g
A
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R1 a2kt aly R2
A R3
Training Set 1 Training Set 2 Test Set
Training — Test

(have conflicting concepts) Partially
overlapping
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Experiments on Synthetic Data
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