# Classification Lecture 1: Basics, Methods

Jing Gao SUNY Buffalo

#### **Outline**

#### Basics

Problem, goal, evaluation

#### Methods

- Nearest Neighbor
- Decision Tree
- Naïve Bayes
- Rule-based Classification
- Logistic Regression
- Support Vector Machines
- Ensemble methods
- **—** ......

#### Advanced topics

- Semi-supervised Learning
- Multi-view Learning
- Transfer Learning
- **—** .....

## Readings

- Tan, Steinbach, Kumar, Chapters 4 and 5.
- Han, Kamber, Pei. Data Mining: Concepts and Techniques.
   Chapters 8 and 9.
- Additional readings posted on website

### **Classification: Definition**

- Given a collection of records (training set)
  - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
  - A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

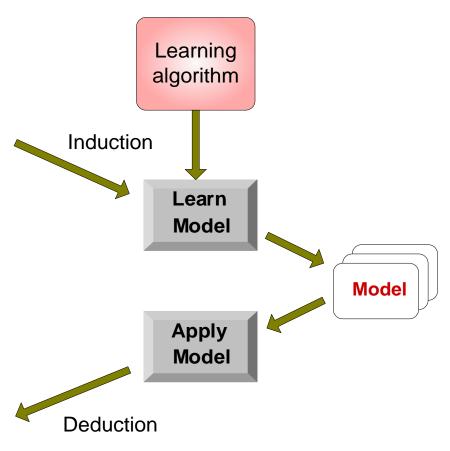
### **Illustrating Classification Task**



**Training Set** 

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

Test Set



## **Examples of Classification Task**

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent
- Classifying emails as spams or normal emails
- Categorizing news stories as finance, weather, entertainment, sports, etc

#### **Metrics for Performance Evaluation**

- Focus on the predictive capability of a model
  - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

|        | PREDICTED CLASS |           |          |  |
|--------|-----------------|-----------|----------|--|
|        |                 | Class=Yes | Class=No |  |
| ACTUAL | Class=Yes       | а         | b        |  |
| CLASS  | Class=No        | С         | d        |  |

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

#### **Metrics for Performance Evaluation**

|        | PREDICTED CLASS |           |           |  |
|--------|-----------------|-----------|-----------|--|
|        |                 | Class=Yes | Class=No  |  |
| ACTUAL | Class=Yes       | a<br>(TP) | b<br>(FN) |  |
| CLASS  | Class=No        | c<br>(FP) | d<br>(TN) |  |

Most widely-used metric:

Accuracy = 
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

# **Limitation of Accuracy**

- Consider a 2-class problem
  - Number of Class 0 examples = 9990
  - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
  - Accuracy is misleading because model does not detect any class 1 example

#### **Cost-Sensitive Measures**

Precision (p) = 
$$\frac{a}{a+c}$$

Recall (r) = 
$$\frac{a}{a+b}$$

F-measure (F) = 
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

#### **Methods of Estimation**

#### Holdout

Reserve 2/3 for training and 1/3 for testing

#### Random subsampling

Repeated holdout

#### Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k=n

#### Stratified sampling

oversampling vs undersampling

#### Bootstrap

Sampling with replacement

## **Classification Techniques**

- Nearest Neighbor
- Decision Tree
- Naïve Bayes
- Rule-based Classification
- Logistic Regression
- Support Vector Machines
- Ensemble methods
- •

## **Nearest Neighbor Classifiers**

Set of Stored Cases

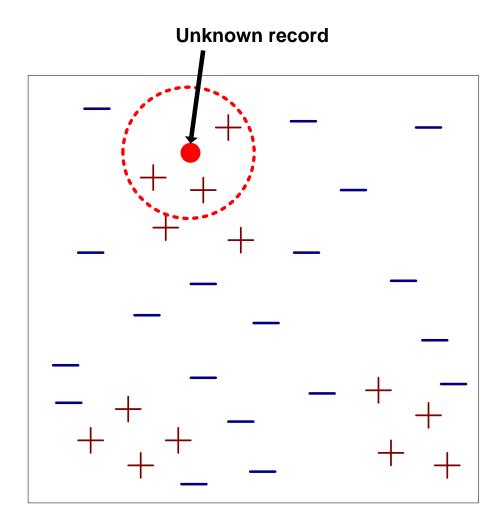
| Atr1 | <br>AtrN | Class |
|------|----------|-------|
|      |          | A     |
|      |          | В     |
|      |          | В     |
|      |          | С     |
|      |          | A     |
|      |          | С     |
|      |          | В     |

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

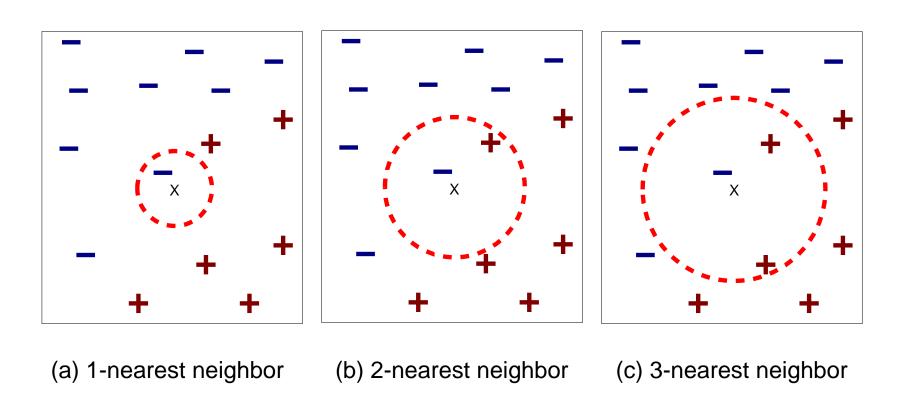
| Atr1 |  | AtrN |
|------|--|------|
|      |  |      |

### **Nearest-Neighbor Classifiers**



- Requires three things
  - The set of stored records
  - Distance Metric to compute distance between records
  - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
  - Compute distance to other training records
  - Identify k nearest neighbors
  - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

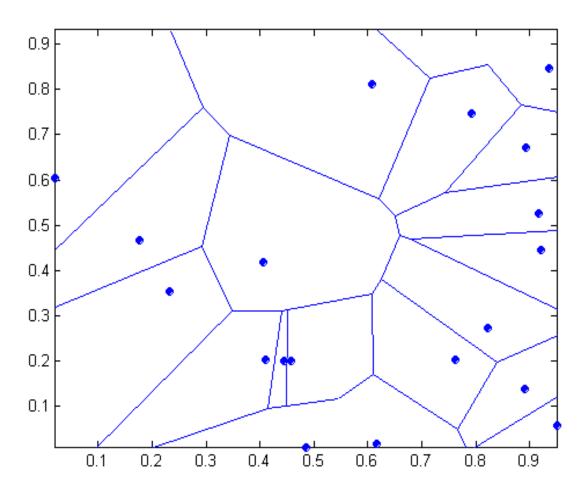
# **Definition of Nearest Neighbor**



K-nearest neighbors of a record x are data points that have the k smallest distance to x

# 1 nearest-neighbor

#### Voronoi Diagram



### **Nearest Neighbor Classification**

- Compute distance between two points:
  - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
  - take the majority vote of class labels among the knearest neighbors
  - Weigh the vote according to distance
    - weight factor, w = 1/d²

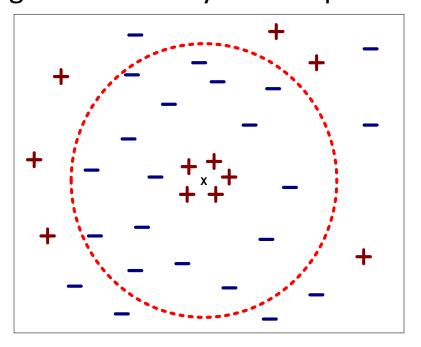
### **Nearest Neighbor Classification**

#### Choosing the value of k:

If k is too small, sensitive to noise points

If k is too large, neighborhood may include points from

other classes



# **Nearest Neighbor Classification**

### Scaling issues

 Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

#### – Example:

- height of a person may vary from 1.5m to 1.8m
- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

# **Nearest neighbor Classification**

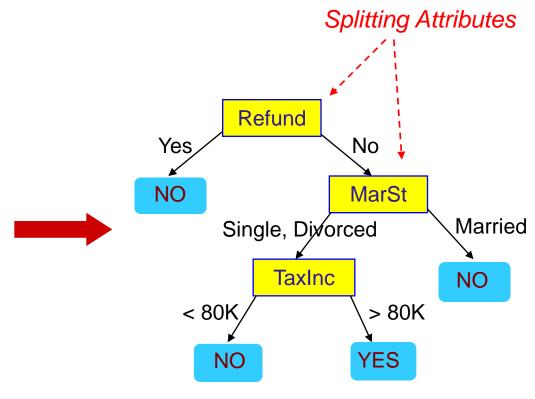
### k-NN classifiers are lazy learners

- It does not build models explicitly
- Different from eager learners such as decision tree induction
- Classifying unknown records are relatively expensive

### **Example of a Decision Tree**

categorical continuous

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |



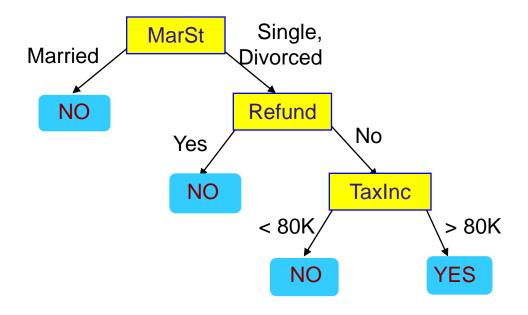
**Training Data** 

Model: Decision Tree

### **Another Example of Decision Tree**

categorical continuous

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |



There could be more than one tree that fits the same data!

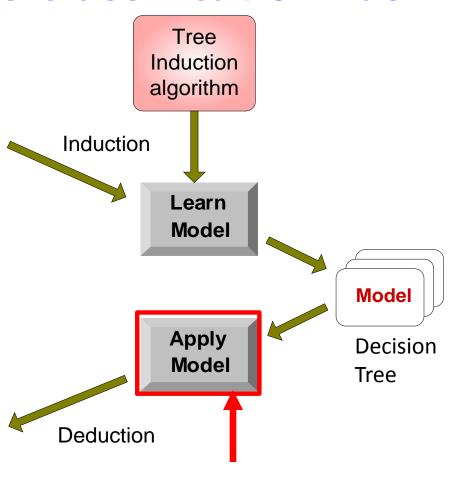
### **Decision Tree Classification Task**



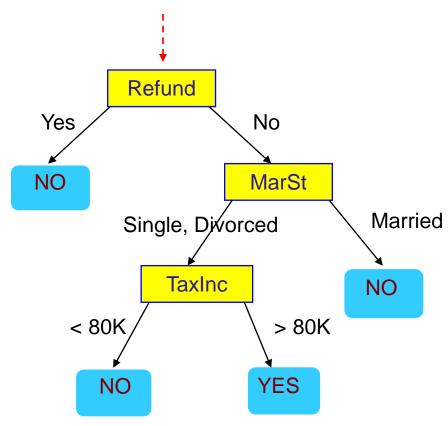
Training Set

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

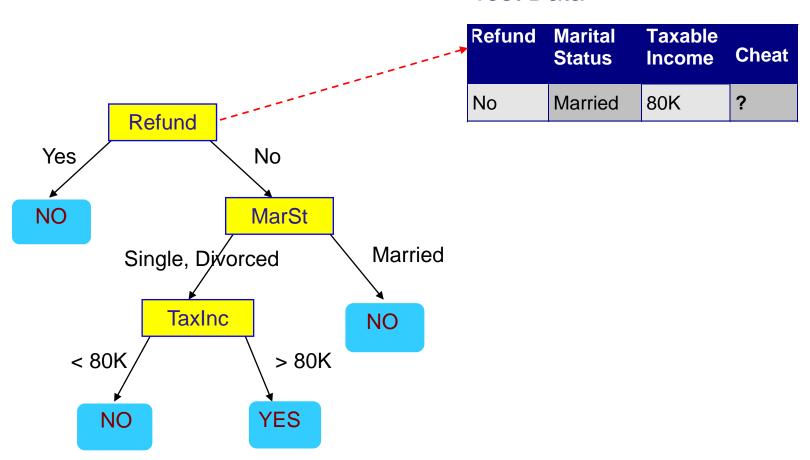
Test Set

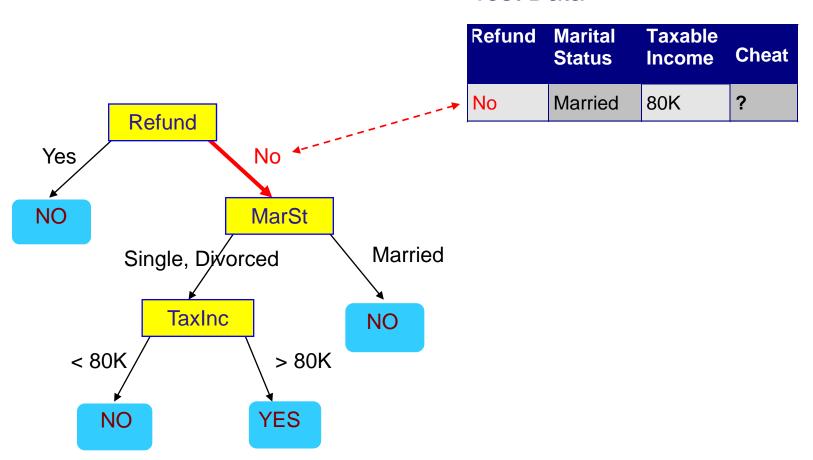


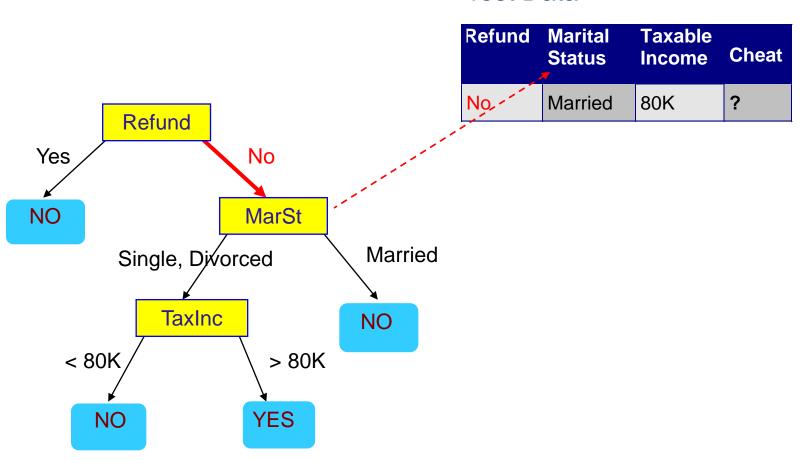
Start from the root of tree.

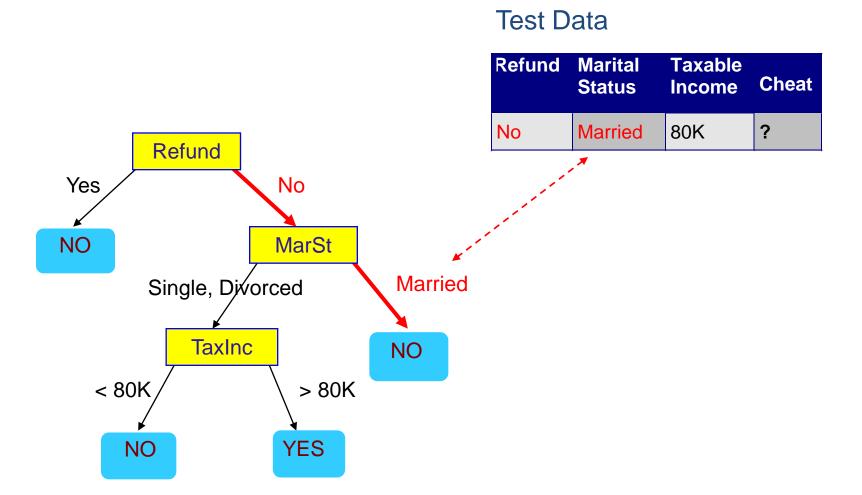


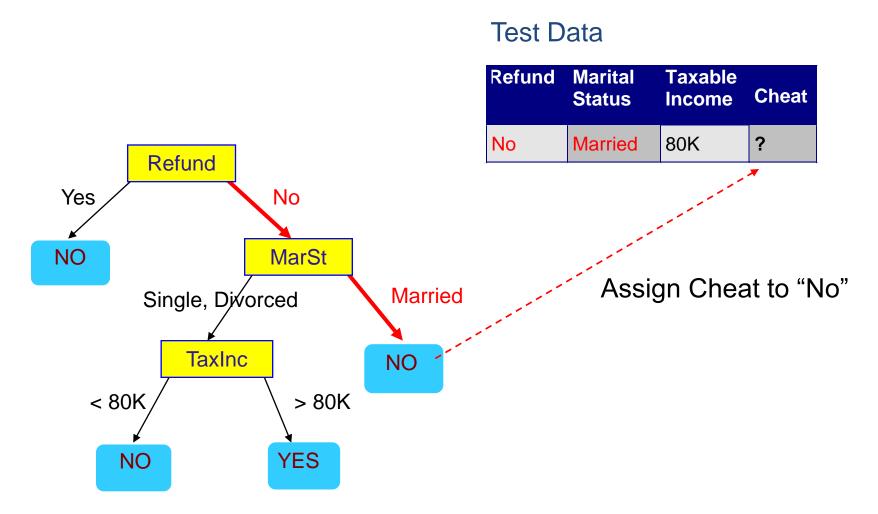
| Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|--------|-------------------|-------------------|-------|
| No     | Married           | 80K               | ?     |



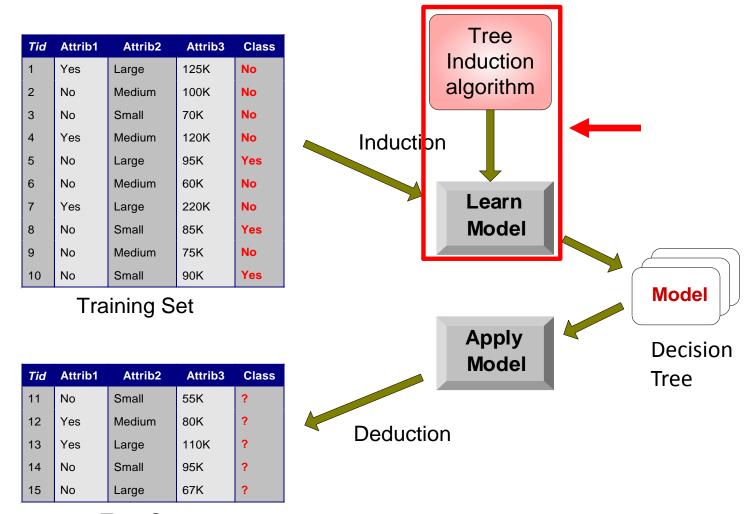








#### **Decision Tree Classification Task**



**Test Set** 

#### **Decision Tree Induction**

#### Many Algorithms:

- Hunt's Algorithm (one of the earliest)
- CART
- ID3, C4.5
- SLIQ, SPRINT

**—** .....

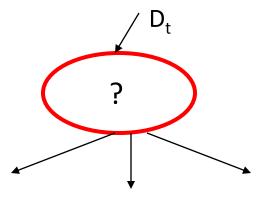
### **General Structure of Hunt's Algorithm**

 Let D<sub>t</sub> be the set of training records that reach a node t

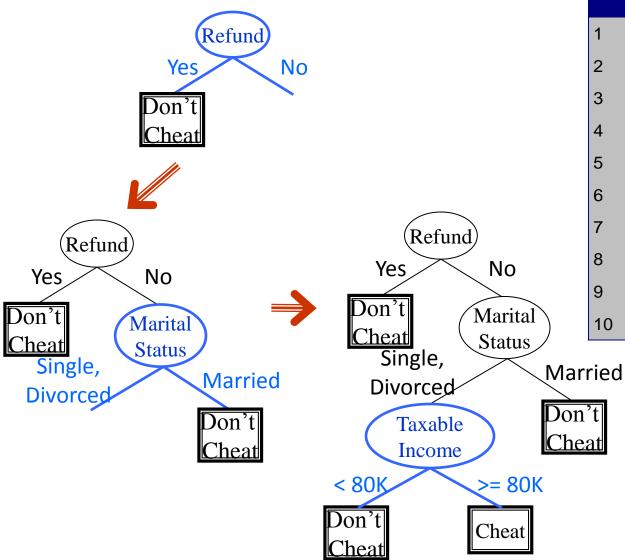
#### General Procedure:

- If D<sub>t</sub> contains records that belong the same class y<sub>t</sub>, then t is a leaf node labeled as y<sub>t</sub>
- If D<sub>t</sub> contains records that belong to more than one class, use an attribute to split the data into smaller subsets. Recursively apply the procedure to each subset

| Tid | Refund | Marital<br>Status | Taxable Income | Cheat |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | No     | Single            | 90K            | Yes   |



### **Hunt's Algorithm**



| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |

#### **Tree Induction**

### Greedy strategy

Split the records based on an attribute test that optimizes certain criterion

#### Issues

- Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

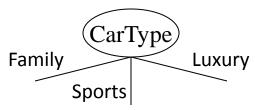
### **How to Specify Test Condition?**

- Depends on attribute types
  - Nominal
  - Ordinal
  - Continuous

- Depends on number of ways to split
  - 2-way split
  - Multi-way split

# **Splitting Based on Nominal Attributes**

Multi-way split: Use as many partitions as distinct values

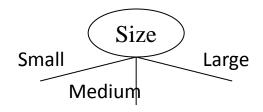


Binary split: Divides values into two subsets
 Need to find optimal partitioning



# **Splitting Based on Ordinal Attributes**

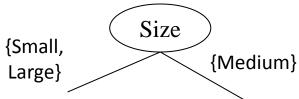
Multi-way split: Use as many partitions as distinct values.



Binary split: Divides values into two subsets
 Need to find optimal partitioning



What about this split?

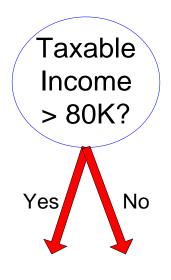


# **Splitting Based on Continuous Attributes**

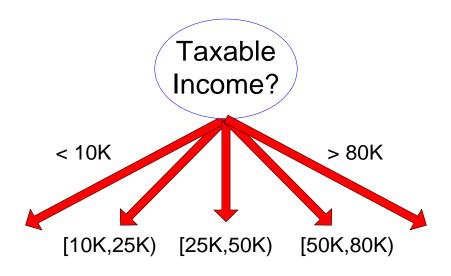
- Different ways of handling
  - Discretization to form an ordinal categorical attribute

- **Binary Decision:** (A < v) or (A ≥ v)
  - consider all possible splits and finds the best cut
  - can be more computation intensive

# **Splitting Based on Continuous Attributes**



(i) Binary split



(ii) Multi-way split

#### **Tree Induction**

#### Greedy strategy

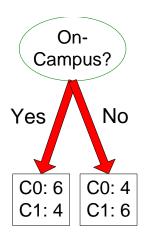
 Split the records based on an attribute test that optimizes certain criterion.

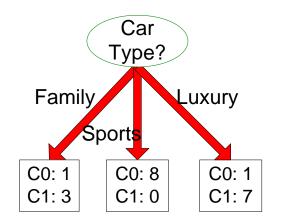
#### Issues

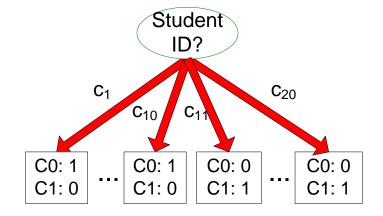
- Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

# **How to determine the Best Split**

Before Splitting: 10 records of class 0, 10 records of class 1







Which test condition is the best?

# **How to determine the Best Split**

#### Greedy approach:

Nodes with homogeneous class distribution are preferred

Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

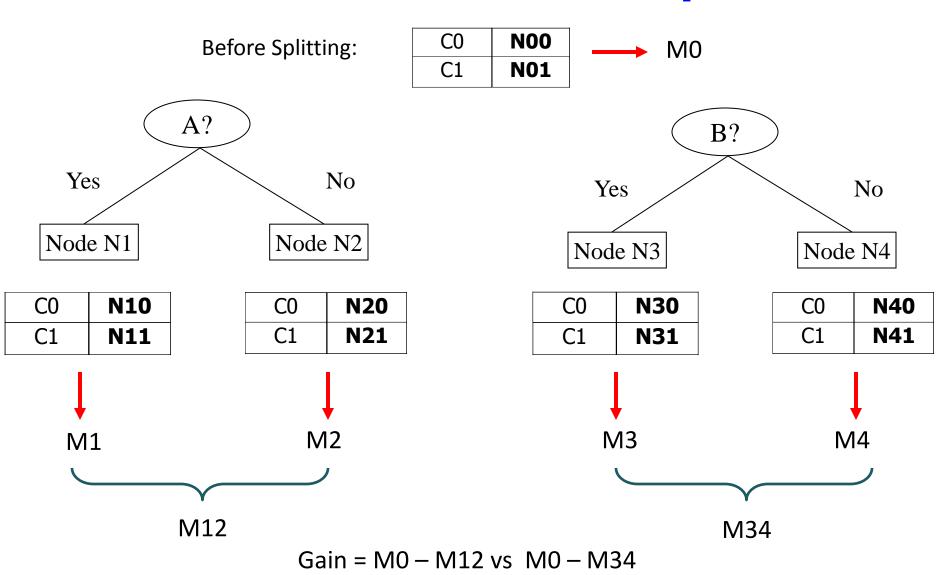
Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

# **How to Find the Best Split**



# **Measures of Node Impurity**

Gini Index

Entropy

Misclassification error

# **Measure of Impurity: GINI**

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE:  $p(j \mid t)$  is the relative frequency of class j at node t).

- Maximum  $(1 1/n_c)$  when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most useful information

| C1         | 0 |
|------------|---|
| C2         | 6 |
| Gini=0.000 |   |

| C1         | 1 |
|------------|---|
| C2         | 5 |
| Gini=0.278 |   |

| C1         | 2 |
|------------|---|
| C2         | 4 |
| Gini=0.444 |   |

| C1         | 3 |
|------------|---|
| C2         | 3 |
| Gini=0.500 |   |

## **Examples for computing GINI**

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$ 

Gini = 
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
  $P(C2) = 5/6$ 

Gini = 
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
  $P(C2) = 4/6$ 

Gini = 
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

# **Splitting Based on GINI**

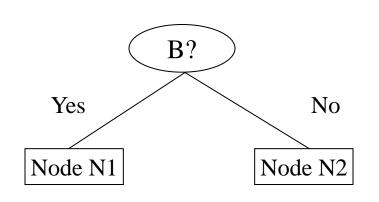
- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,  $n_i$  = number of records at child i,  $n_i$  = number of records at node p.

#### **Binary Attributes: Computing GINI Index**

- Splits into two partitions
- Effect of Weighing partitions:
  - Larger and Purer Partitions are sought for



|              | Parent |
|--------------|--------|
| C1           | 6      |
| C2           | 6      |
| Gini = 0.500 |        |

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.408

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.32

|            | N1 | N2 |
|------------|----|----|
| C1         | 5  | 1  |
| C2         | 2  | 4  |
| Gini=0.333 |    |    |

Gini(Children)

= 0.371

#### **Entropy**

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j|t) \log p(j|t)$$

(NOTE:  $p(j \mid t)$  is the relative frequency of class j at node t).

- Measures purity of a node
  - Maximum (log n<sub>c</sub>) when records are equally distributed among all classes implying least information
  - Minimum (0.0) when all records belong to one class, implying most information

#### **Examples for computing Entropy**

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$ 

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$   
 $Entropy = -0 log 0 - 1 log 1 = -0 - 0 = 0$ 

$$P(C1) = 1/6$$
  $P(C2) = 5/6$ 

Entropy = 
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
  $P(C2) = 4/6$ 

Entropy = 
$$-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$$

#### **Splitting Based on Information Gain**

#### Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n<sub>i</sub> is number of records in partition i

- Measures reduction in entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5

#### **Splitting Criteria based on Classification Error**

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
  - Maximum (1  $1/n_c$ ) when records are equally distributed among all classes, implying least interesting information
  - Minimum (0.0) when all records belong to one class, implying most interesting information

#### **Examples for Computing Error**

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$ 

Error = 
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
  $P(C2) = 5/6$ 

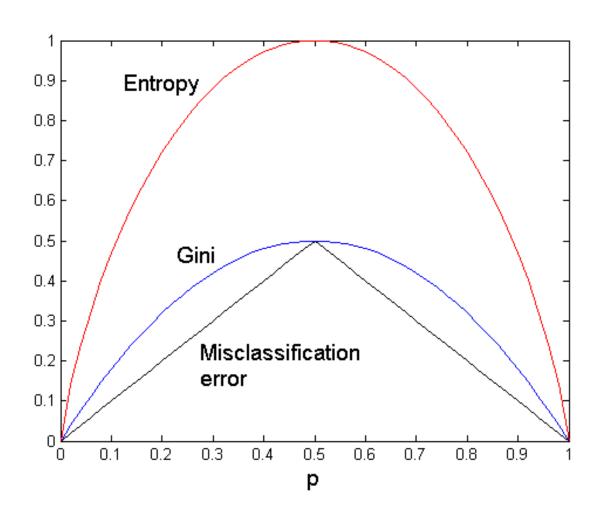
Error = 
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
  $P(C2) = 4/6$ 

Error = 
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

# **Comparison among Splitting Criteria**

#### For a 2-class problem:



#### **Tree Induction**

#### Greedy strategy

 Split the records based on an attribute test that optimizes certain criterion.

#### Issues

- Determine how to split the records
  - How to specify the attribute test condition?
  - How to determine the best split?
- Determine when to stop splitting

# **Stopping Criteria for Tree Induction**

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

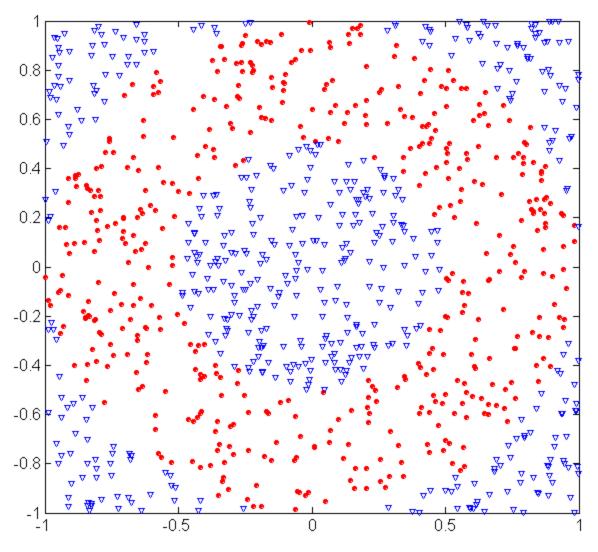
Early termination (to be discussed later)

#### **Decision Tree Based Classification**

#### Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

### **Underfitting and Overfitting (Example)**



500 circular and 500 triangular data points.

Circular points:

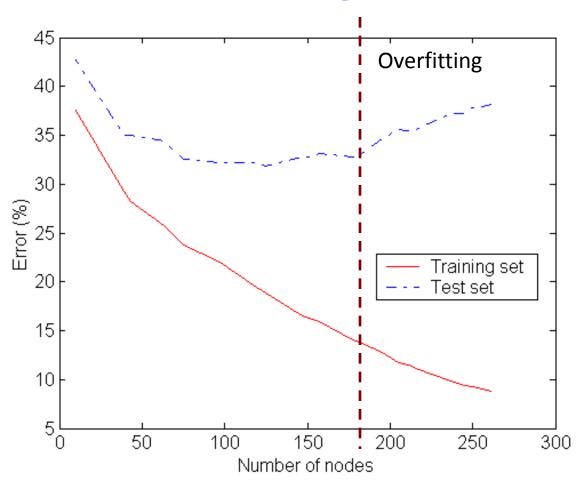
$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) > 0.5 or$$

$$sqrt(x_1^2+x_2^2) < 1$$

### **Underfitting and Overfitting**



#### **Occam's Razor**

 Given two models of similar errors, one should prefer the simpler model over the more complex model

 For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

## **How to Address Overfitting**

#### Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
  - Stop if all instances belong to the same class
  - Stop if all the attribute values are the same
- More restrictive conditions:
  - Stop if number of instances is less than some user-specified threshold
  - Stop if class distribution of instances are independent of the available features
  - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

## **How to Address Overfitting**

#### Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

## **Handling Missing Attribute Values**

- Missing values affect decision tree construction in three different ways:
  - Affects how impurity measures are computed
  - Affects how to distribute instance with missing value to child nodes
  - Affects how a test instance with missing value is classified

## **Computing Impurity Measure**

| Tid | Refund | Marital<br>Status | Taxable Income | Class |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |
| 10  | ?      | Single            | 90K            | Yes   |

Missing value

#### Before Splitting:

Entropy(Parent)

$$= -0.3 \log(0.3) - (0.7) \log(0.7) = 0.8813$$

|            | Class |      |
|------------|-------|------|
|            | = Yes | = No |
| Refund=Yes | 0     | 3    |
| Refund=No  | 2     | 4    |
| Refund=?   | 1     | 0    |

#### Split on Refund:

Entropy(Refund=Yes) = 0

Entropy(Refund=No)

$$= -(2/6)\log(2/6) - (4/6)\log(4/6) = 0.9183$$

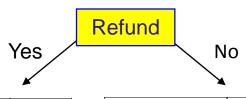
Entropy(Children)

$$= 0.3(0) + 0.6(0.9183) = 0.551$$

Gain = 
$$0.9 \times (0.8813 - 0.551) = 0.3303$$

#### **Distribute Instances**

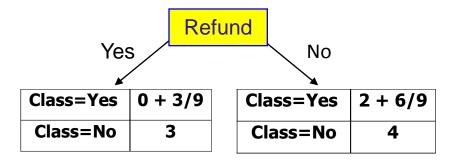
| Tid | Refund | Marital<br>Status | Taxable Income | Class |
|-----|--------|-------------------|----------------|-------|
| 1   | Yes    | Single            | 125K           | No    |
| 2   | No     | Married           | 100K           | No    |
| 3   | No     | Single            | 70K            | No    |
| 4   | Yes    | Married           | 120K           | No    |
| 5   | No     | Divorced          | 95K            | Yes   |
| 6   | No     | Married           | 60K            | No    |
| 7   | Yes    | Divorced          | 220K           | No    |
| 8   | No     | Single            | 85K            | Yes   |
| 9   | No     | Married           | 75K            | No    |



| Class=Yes | 0 |
|-----------|---|
| Class=No  | 3 |

| Cheat=Yes | 2 |
|-----------|---|
| Cheat=No  | 4 |

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Class |
|-----|--------|-------------------|-------------------|-------|
| 10  | ?      | Single            | 90K               | Yes   |

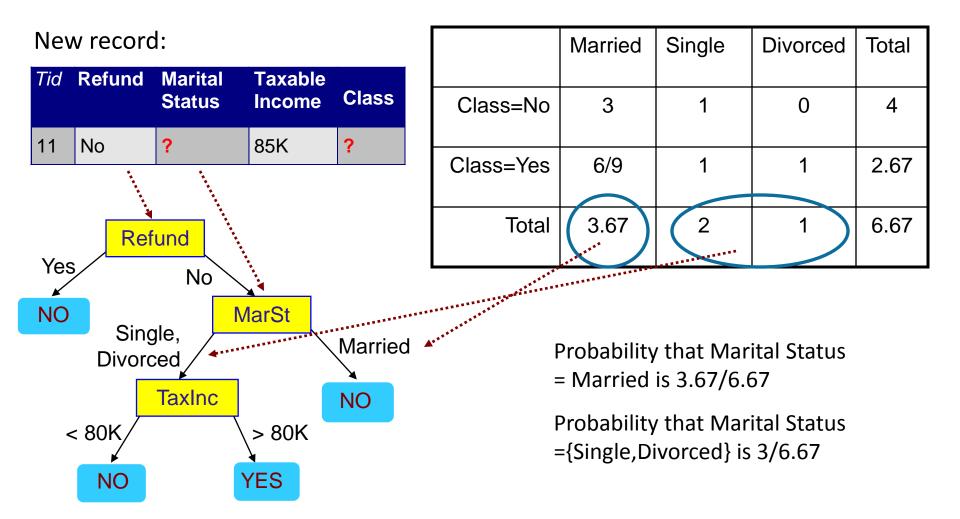


Probability that Refund=Yes is 3/9

Probability that Refund=No is 6/9

Assign record to the left child with weight = 3/9 and to the right child with weight = 6/9

# **Classify Instances**



#### **Other Issues**

- Data Fragmentation
- Search Strategy
- Expressiveness
- Tree Replication

# **Data Fragmentation**

Number of instances gets smaller as you traverse down the tree

 Number of instances at the leaf nodes could be too small to make any statistically significant decision

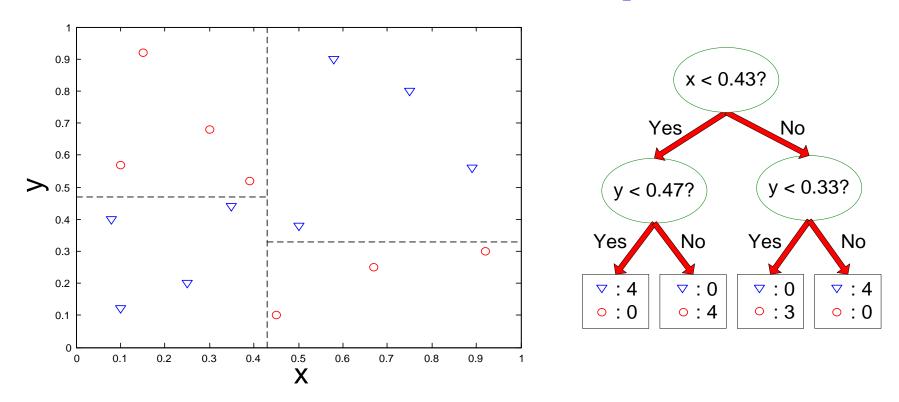
# **Search Strategy**

- Finding an optimal decision tree is NP-hard
- The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
- Other strategies?
  - Bottom-up
  - Bi-directional

## **Expressiveness**

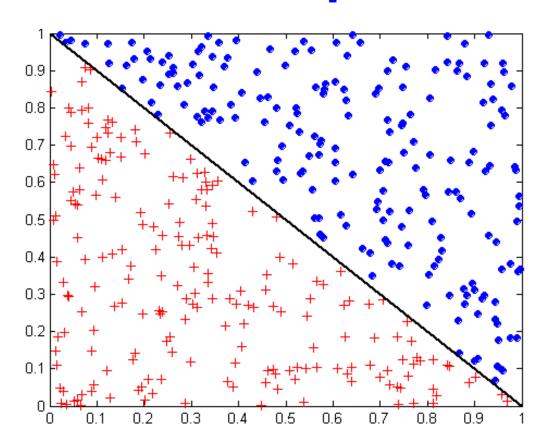
- Decision tree provides expressive representation for learning discrete-valued function
  - But they do not generalize well to certain types of Boolean functions
    - Example: parity function:
      - Class = 1 if there is an even number of Boolean attributes with truth value = True
      - Class = 0 if there is an odd number of Boolean attributes with truth value = True
    - For accurate modeling, must have a complete tree
- Not expressive enough for modeling continuous variables
  - Particularly when test condition involves only a single attribute at-a-time

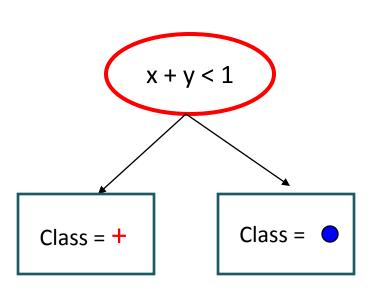
## **Decision Boundary**



- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

### **Oblique Decision Trees**





- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive

# **Take-away Message**

- What's classification?
- How to evaluate classification model?
- How to use decision tree to make predictions?
- How to construct a decision tree from training data?
- How to compute gini index, entropy, misclassification error?
- How to avoid overfitting by pre-pruning or postpruning decision tree?