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Outline 

• Basics 
– Motivation, definition, evaluation 

• Methods 
– Partitional 
– Hierarchical 
– Density-based 
– Mixture model 
– Spectral methods 

• Advanced topics 
– Clustering in MapReduce 
– Clustering ensemble 
– Semi-supervised clustering, subspace clustering, co-clustering, 

etc.  
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Readings 

• Tan, Steinbach, Kumar, Chapters 8 and 9.  
• Han, Kamber, Pei. Data Mining: Concepts and Techniques. 

Chapters 10 and 11.  
• Additional readings posted on website 
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Clustering Basics 

• Definition and Motivation 
• Data Preprocessing and Similarity Computation 
• Objective of Clustering 
• Clustering Evaluation 
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Clustering 
• Finding groups of objects such that the objects in a group will 

be similar (or related) to one another and different from (or 
unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 
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Application Examples 

• A stand-alone tool: explore data distribution  
• A preprocessing step for other algorithms 
• Pattern recognition, spatial data analysis, image processing, 

market research, WWW, … 
– Cluster documents 
– Cluster web log data to discover groups of similar access 

patterns 



Gene Expression Data Matrix Gene Expression Patterns 

Co-expressed Genes 

    Why looking for co-expressed genes? 
¾  Co-expression indicates co-function; 
¾  Co-expression also indicates co-regulation. 

Clustering Co-expressed Genes 
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Gene-based Clustering 
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Examples of co-expressed genes and coherent 
patterns in gene expression data 

Iyer’s data [2] 

¢  [2]  Iyer, V.R. et al. The transcriptional program in the response of human fibroblasts to serum. Science, 
283:83–87, 1999. 
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Other Applications 

• Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop 
targeted marketing programs 

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location 

• Climate: understanding earth climate, find patterns of 
atmosphere and ocean 



Two Important Aspects 

• Properties of input data 
– Define the similarity or dissimilarity between points 

• Requirement of clustering 
– Define the objective and methodology 
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Clustering Basics 

• Definition and Motivation 
• Data Preprocessing and Distance computation 
• Objective of Clustering 
• Clustering Evaluation 
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Data Representation 

• Data: Collection of data objects 
and their attributes 

 

• An attribute is a property or 
characteristic of an object 
– Examples: eye color of a person, 

temperature, etc. 
– Attribute is also known as 

dimension, variable, field, 
characteristic, or feature 
 

• A collection of attributes describe 
an object 
– Object is also known as record, 

point, case, sample, entity, or 
instance 

 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
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Attributes 

Objects 

                                12 



Data Matrix 

• Represents n objects with p attributes 
– An n by p matrix 
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Gene Expression Data 

condition 1 condition 2 condition 3 condition 4 condition… 
gene 1 0.13 0.72 0.1 0.57 
gene 2 0.34 1.58 1.05 1.15 
gene 3 0.43 1.1 0.97 1 
gene 4 1.22 0.97 1 0.85 
gene 5 -0.89 1.21 1.29 1.08 
gene 6 1.1 1.45 1.44 1.12 
gene 7 0.83 1.15 1.1 1 
gene 8 0.87 1.32 1.35 1.13 
gene 9 -0.33 1.01 1.38 1.21 

gene 10 0.10 0.85 1.03 1 
gene 

… 

•  Clustering genes 

•Genes are objects  

•Experiment conditions are 
attributes 

• Find genes with similar 
behavior 
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Similarity and Dissimilarity 

• Similarity 
– Numerical measure of how alike two data objects are 
– Is higher when objects are more alike 
– Often falls in the range [0,1] 

• Dissimilarity 
– Numerical measure of how different are two data 

objects 
– Lower when objects are more alike 
– Minimum dissimilarity is often 0 
– Upper limit varies 
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• Discrete 
– Has only a finite or countably infinite set of values 
– Examples: zip codes, counts, or the set of words in a collection of 

documents  
– Note: binary attributes are a special case of discrete attributes 

• Ordinal 
– Has only a finite or countably infinite set of values 
– Order of values is important   
– Examples: rankings (e.g., pain level 1-10), grades (A, B, C, D)  

• Continuous 
– Has real numbers as attribute values 
– Examples: temperature, height, or weight  
– Continuous attributes are typically represented as floating-point 

variables 
 

Types of Attributes  
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Similarity/Dissimilarity for Simple Attributes 

p and q are the attribute values for two data objects. 

Discrete 

Ordinal 

Continuous 

Dissimilarity and similarity between p and q 
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Distance Matrix 

• Represents pairwise distance in n objects 
– An n by n matrix 
– d(i,j): distance or dissimilarity between objects i and j 
– Nonnegative 
– Close to 0: similar 
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Data Matrix -> Distance Matrix 

  s 1 s 2 s 3 s 4 … 
g 1 0.13 0.72 0.1 0.57 
g 2 0.34 1.58 1.05 1.15 
g 3 0.43 1.1 0.97 1 
g 4 1.22 0.97 1 0.85 
g 5 -0.89 1.21 1.29 1.08 
g 6 1.1 1.45 1.44 1.12 
g 7 0.83 1.15 1.1 1 
g 8 0.87 1.32 1.35 1.13 
g 9 -0.33 1.01 1.38 1.21 

g 10 0.10 0.85 1.03 1 
… 

g 1 g 2 g 3 g 4  … 

g 1 0 d(1,2) d(1,3) d(1,4) 

g 2 0 d(2,3) d(2,4) 

g 3 0 d(3,4) 

g 4 0 

 … 

Original Data Matrix 

Distance Matrix 
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Minkowski Distance—Continuous Attribute 

• Minkowski distance: a generalization 
 
 

• If q = 2, d is Euclidean distance 
• If q = 1, d is Manhattan distance 
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Standardization 

• Calculate the mean absolute deviation 

                                                   
 
 

• Calculate the standardized measurement (z-score) 
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Mahalanobis Distance 
Tqpqpqpd )()(),( 1 -å-= -

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6. 

S is the covariance matrix of the 
input data X 
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Mahalanobis Distance 
Covariance Matrix: 
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A: (0.5, 0.5) 

B: (0, 1) 

C: (1.5, 1.5) 

 

Mahal(A,B) = 5 

Mahal(A,C) = 4  
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Common Properties of a Distance 

• Distances, such as the Euclidean distance, have 
some well known properties 
 

1. d(p, q) ³ 0   for all p and q and d(p, q) = 0 only if  
p = q. (Positive definiteness) 

2. d(p, q) = d(q, p)   for all p and q. (Symmetry) 
3. d(p, r) £ d(p, q) + d(q, r)   for all points p, q, and r.   

(Triangle Inequality) 
 where d(p, q) is the distance (dissimilarity) between points 

(data objects), p and q. 
 

• A distance that satisfies these properties is a 
metric 
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Similarity for Binary Attributes 

• Common situation is that objects, p and q, have only 
binary attributes 

 

• Compute similarities using the following quantities 
 M01 = the number of attributes where p was 0 and q was 1 
 M10 = the number of attributes where p was 1 and q was 0 
 M00 = the number of attributes where p was 0 and q was 0 
 M11 = the number of attributes where p was 1 and q was 1 
 

• Simple Matching and Jaccard Coefficients  
  
             SMC =  number of matches / total number of attributes 
            =  (M11 + M00) / (M01 + M10 + M11 + M00) 
 
 J = number of matches / number of not-both-zero attributes values 
       = (M11) / (M01 + M10 + M11)  
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SMC versus Jaccard: Example 

p =  1 0 0 0 0 0 0 0 0 0       
q =  0 0 0 0 0 0 1 0 0 1  
 
M01 = 2   (the number of attributes where p was 0 and q was 1) 
M10 = 1   (the number of attributes where p was 1 and q was 0) 
M00 = 7   (the number of attributes where p was 0 and q was 0) 
M11 = 0   (the number of attributes where p was 1 and q was 1) 
  
SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7  
 

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0  
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Document Data 
• Each document becomes a `term' vector,  

– each term is a component (attribute) of the vector, 
– the value of each component is the number of times the 

corresponding term occurs in the document.  

 
 

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play

coach

team

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0
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Cosine Similarity 

• If d1 and d2 are two document vectors, then 
             cos( d1, d2 ) =  (d1 · d2) / ||d1|| ||d2|| ,  
   where · indicates vector dot product and || d || is  the   length of vector d.   

 

• Example:  
 

   d1 =  3 2 0 5 0 0 0 2 0 0   
    d2 =  1 0 0 0 0 0 0 1 0 2  
 
    d1 · d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 
   ||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481 
    ||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.245 
 
     cos( d1, d2 ) = .3150 
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Correlation 

• Correlation measures the linear relationship between objects 
• To compute correlation, we standardize data objects, p and q, 

and then take their dot product (continuous attributes) 

)(/))(( pstdpmeanpp kk -=¢

)(/))(( qstdqmeanqq kk -=¢

qpqps ¢·¢=),(
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Common Properties of a Similarity 

• Similarities, also have some well known 
properties. 
 

1. s(p, q) = 1 (or maximum similarity) only if p = q.  
 

2. s(p, q) = s(q, p)   for all p and q. (Symmetry) 
 

 where s(p, q) is the similarity between points (data 
objects), p and q. 
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Characteristics of the Input Data Are Important 

• Sparseness 
• Attribute type 
• Type of Data 
• Dimensionality 
• Noise and Outliers 
• Type of Distribution 
• => Conduct preprocessing and select the appropriate 

dissimilarity or similarity measure 
• => Determine the objective of clustering and choose 

the appropriate method 
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Clustering Basics 

• Definition and Motivation 
• Data Preprocessing and Distance computation 
• Objective of Clustering 
• Clustering Evaluation 
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Considerations for Cluster Analysis 

• Partitioning criteria 
– Single level vs. hierarchical partitioning (often, multi-level hierarchical 

partitioning is desirable) 

• Separation of clusters 
– Exclusive (e.g., one customer belongs to only one region) vs. overlapping 

(e.g., one document may belong to more than one topic)  
 

• Hard versus fuzzy 
 

– In fuzzy clustering, a point belongs to every cluster with some weight 
between 0 and 1 

– Weights must sum to 1 
– Probabilistic clustering has similar characteristics 

 
• Similarity measure and data types 
• Heterogeneous versus homogeneous 

 
– Cluster of widely different sizes, shapes, and densities 
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Requirements of Clustering 

• Scalability 
• Ability to deal with different types of attributes 
• Minimal requirements for domain knowledge to determine 

input parameters 
• Able to deal with noise and outliers 
• Discovery of clusters with arbitrary shape 
• Insensitive to order of input records 
• High dimensionality 
• Incorporation of user-specified constraints 
• Interpretability and usability 

• What clustering results we want to get? 
34 



Notion of a Cluster can be Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  
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Partitional Clustering 

Input Data A Partitional  Clustering 

36 



Hierarchical Clustering 

p4
p1

p3

p2

 

p4 
p1 

p3 

p2 
p4p1 p2 p3

p4p1 p2 p3

    Clustering Solution 1 

Clustering Solution 2 
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Types of Clusters: Center-Based 

• Center-based 
–  A cluster is a set of objects such that an object in a cluster is closer 

(more similar) to the “center” of a cluster, than to the center of any 
other cluster   

– The center of a cluster is often a centroid, the average of all the 
points in the cluster, or a medoid, the most “representative” point 
of a cluster  

 

4 center-based clusters 
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Types of Clusters: Density-Based 

• Density-based 
– A cluster is a dense region of points, which is separated by low-

density regions, from other regions of high density.  
– Used when the clusters are irregular or intertwined, and when noise 

and outliers are present.  

6 density-based clusters 
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Clustering Basics 

• Definition and Motivation 
• Data Preprocessing and Distance computation 
• Objective of Clustering 
• Clustering Evaluation 
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Cluster Validation 

 

• Cluster validation 
– Quality: “goodness” of clusters  
– Assess the quality and reliability of clustering 

results 
 

•  Why validation? 
– To avoid finding clusters formed by chance 
– To compare clustering algorithms 
– To choose clustering parameters 

•  e.g., the number of clusters 
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Aspects of Cluster Validation 

• Comparing the clustering results to ground truth 
(externally known results) 
– External Index 

• Evaluating the quality of clusters without reference 
to external information 
– Use only the data 
– Internal Index 

• Determining the reliability of clusters 
– To what confidence level, the clusters are not formed 

by chance 
– Statistical framework 

42 



Comparing to Ground Truth 

•  Notation 
–  N: number of objects in the data set 
–  P={P1,…,Ps}: the set of “ground truth” clusters 
–  C={C1,…,Ct}: the set of clusters reported by a clustering 

algorithm 

•  The “incidence matrix” 
–  N ´ N (both rows and columns correspond to objects) 
–  Pij = 1 if Oi and Oj belong to the same “ground truth” cluster 

in P; Pij=0 otherwise 
–  Cij = 1 if Oi and Oj belong to the same cluster in C; Cij=0 

otherwise 
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Rand Index and Jaccard Coefficient 

•  A pair of data object (Oi,Oj) falls into one of the 
following categories  
–  SS:  Cij=1 and Pij=1;  (agree) 
–  DD: Cij=0 and Pij=0;  (agree) 
–  SD:  Cij=1 and Pij=0;  (disagree) 
–  DS:  Cij=0 and Pij=1;  (disagree) 

 

•  Rand index  
 

– may be dominated by DD 
• Jaccard Coefficient 
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Same 

Cluster 
Different 
Cluster 

Same 
Cluster 9 4 

Different 
Cluster 4 8 

g 1 g 2 g 3 g 4 g 5 

g 1 1 1 1 0 0 

g 2 1 1 1 0 0 

g 3 1 1 1 0 0 

g 4 0 0 0 1 1 

g 5 0 0 0 1 1 

g 1 g 2 g 3 g 4 g 5 

g 1 1 1 0 0 0 

g 2 1 1 0 0 0 

g 3 0 0 1 1 1 

g 4 0 0 1 1 1 

g 5 0 0 1 1 1 

25
17

||||||||
||||

=
+++

+
=

DDDSSDSS
DDSSRand

17
9

||||||
||

=
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=
DSSDSS

SSJaccard

Clustering 

Groundtruth 

Ground
truth 

Clustering 
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Entropy and Purity 

•  Notation 
–                     the number of objects in both the k-th cluster of 

the clustering solution and j-th cluster of the groundtruth 
–           the number of objects in the k-th cluster of the 

clustering solution 
–           the number of objects in the j-th cluster of the 

groundtruth 
 

•  Purity 
 

• Normalized Mutual Information 
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Example 
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C1 3 5 40 506 96 27 677 

C 2 4 7 280 29 39 2 361 

C 3 1 1 1 7 4 671 685 

C 4 10 162 3 119 73 2 369 

C 5 331 22 5 70 13 23 464 

C 6 5 358 12 212 48 13 648 
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Internal Index 

•  “Ground truth” may be unavailable 
•  Use only the data to measure cluster quality 

– Measure the “cohesion” and “separation” of clusters 
– Calculate the correlation between clustering results 

and distance matrix 
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Cohesion and Separation 

• Cohesion is measured by the within cluster sum of squares  
 
 
 

   

• Separation is measured by the between cluster sum of squares 
 
 

           where |Ci| is the size of cluster i, m is the centroid of the whole data set 
 

• BSS + WSS = constant 
• WSS (Cohesion) measure is called Sum of Squared Error (SSE)—a 

commonly used measure 
• A larger number of clusters tend to result in smaller SSE 
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Example 
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• Silhouette Coefficient combines ideas of both cohesion and separation 
 

• For an individual point, i 
– Calculate a = average distance of i to the points in its cluster 
– Calculate b = min (average distance of i  to points in another cluster) 
– The silhouette coefficient for a point is then given by  

 
s = 1 – a/b   if a < b,   (s = b/a - 1    if a ³ b, not the usual case)  
 

– Typically between 0 and 1  
– The closer to 1 the better 

 
 

• Can calculate the Average Silhouette width for a cluster or a clustering 

Silhouette Coefficient 

a
b
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Correlation with Distance Matrix 

• Distance Matrix 
–  Dij is the similarity between object Oi and Oj 

•  Incidence Matrix 
–  Cij=1 if Oi and Oj belong to the same cluster, Cij=0 

otherwise 

• Compute the correlation between the two 
matrices 
– Only n(n-1)/2 entries needs to be calculated 

• High correlation indicates good clustering 
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• Given Distance Matrix D = {d11,d12, …, dnn } and Incidence 
Matrix C= { c11, c12,…, cnn } .                                                                       

         
•  Correlation r between D and C is given by 
 
  

åå

å

====

==

--

--
=

n

ji
ij

n

ji
ij

n

ji
ijij

ccdd

ccdd
r

1,1

2
_

1,1

2
_

1,1

__

)()(

))((

Correlation with Distance Matrix 

53 



Are There Clusters in the Data? 
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Measuring Cluster Validity Via Correlation 

• Correlation of incidence and distance matrices for the K-
means clusterings of the following two data sets 
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• Order the similarity matrix with respect to cluster 
labels and inspect visually.  
 

Using Similarity Matrix for Cluster Validation 
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• Clusters in random data are not so crisp 
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Reliability of Clusters 

•  Need a framework to interpret any measure  
 
– For example, if our measure of evaluation has the 

value, 10, is that good, fair, or poor? 
 

•  Statistics provide a framework for cluster validity 
  
– The more “atypical” a clustering result is, the more 

likely it represents valid structure in the data 
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• Example 
– Compare SSE of 0.005 against three clusters in random data 
– SSE Histogram of 500 sets of random data points of size 100—

lowest SSE is 0.0173 
 

Statistical Framework for SSE 
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Determine the Number of Clusters Using SSE 

• SSE curve 
 

SSE wrt K 
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Take-away Message 

• What’s clustering? 
• Why clustering is important? 
• How to preprocess data and compute 

dissimilarity/similarity from data? 
• What’s a good clustering solution? 
• How to evaluate the clustering results? 
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