Clustering Lecture 3: Hierarchical Methods

Jing Gao SUNY Buffalo

Outline

Basics

- Motivation, definition, evaluation

Methods

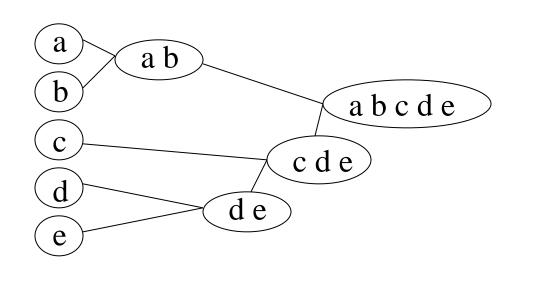
- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

Hierarchical Clustering

Agglomerative approach



Step 1

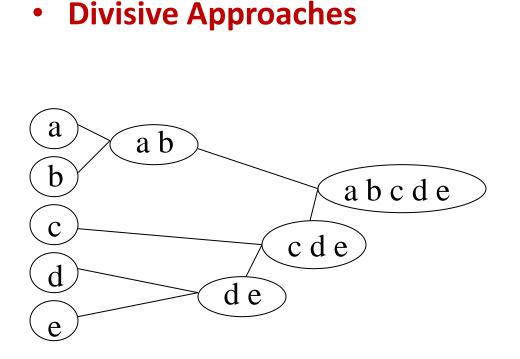
Step 0

Step 2 Step 3 Step 4

Initialization: Each object is a cluster Iteration: Merge two clusters which are most similar to each other; Until all objects are merged into a single cluster

bottom-up

Hierarchical Clustering



Initialization:

All objects stay in one cluster Iteration: Select a cluster and split it into

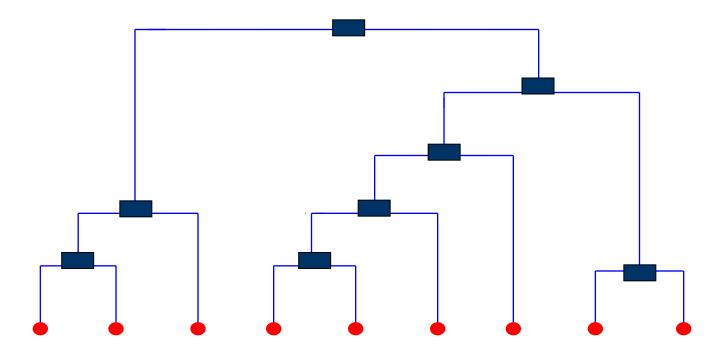
two sub clusters

Until each leaf cluster contains

only one object

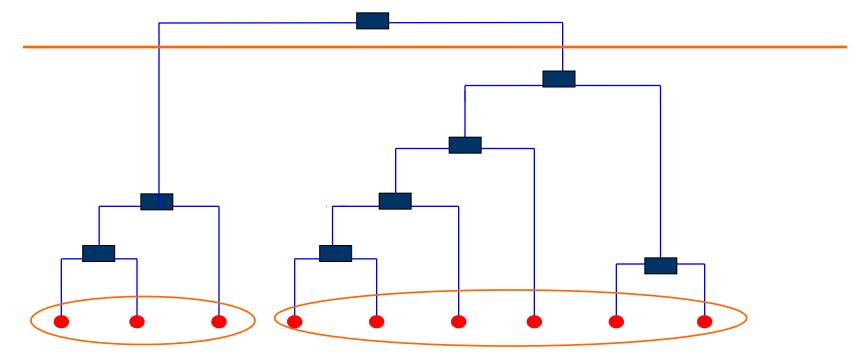
Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster



Dendrogram

 A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

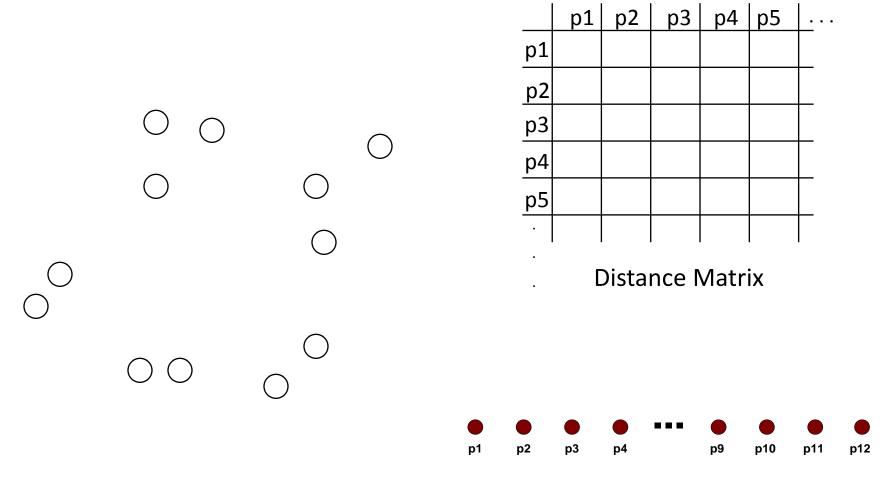


Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the distance matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a distance matrix

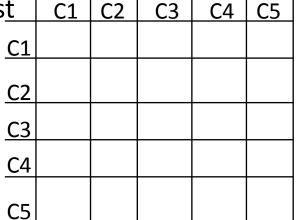


Intermediate Situation

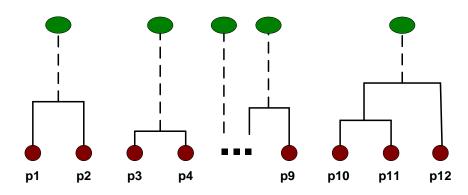
- After some merging steps, we have some clusters
- Choose two clusters that has the smallest <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u> distance (largest similarity) to merge <u>C1</u> <u>C1</u> <u>C2</u> <u>C3</u> <u>C4</u> <u>C5</u>

C2

C5



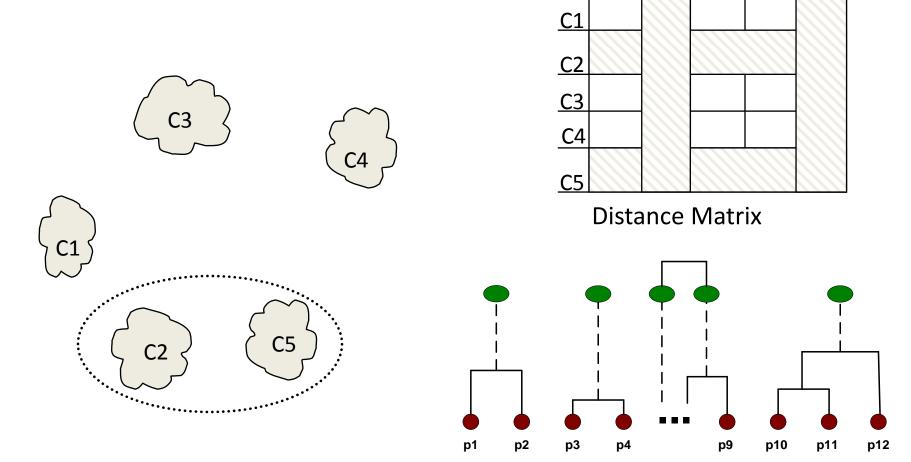
Distance Matrix



Intermediate Situation

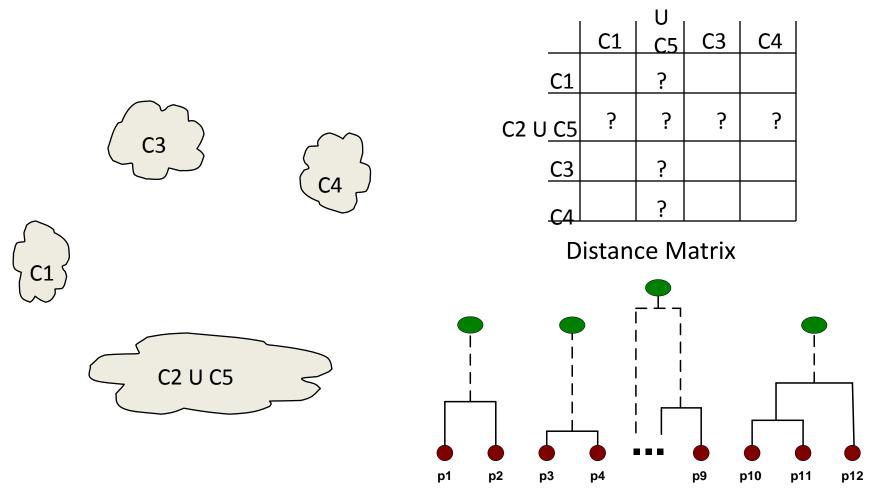
We want to merge the two closest clusters (C2 and C5) and update the distance matrix.

 <u>C1 | C2 | C3 | C4 | C5 |
 </u>

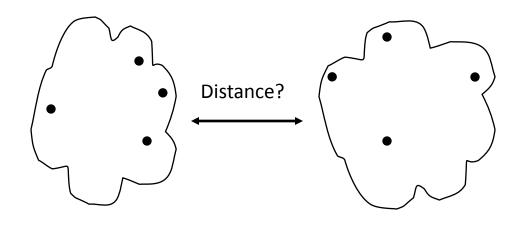


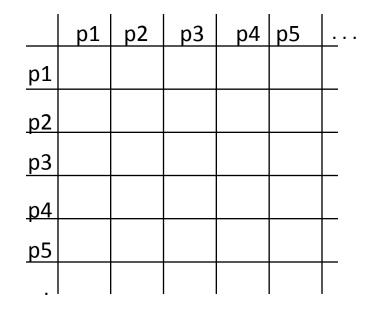
After Merging

• The question is "How do we update the distance matrix?"



How to Define Inter-Cluster Distance





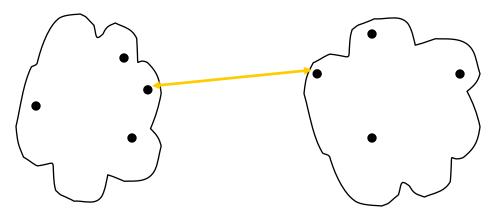
- MIN
- MAX
- Group Average
- Distance Between Centroids
-

• Distance Matrix

MIN or Single Link

Inter-cluster distance

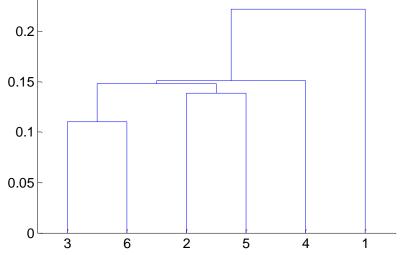
- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph



 $d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$

MIN

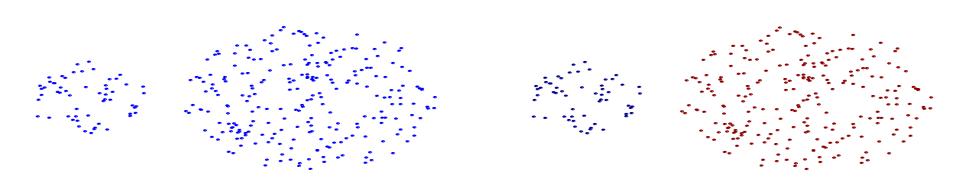




Nested Clusters

Dendrogram

Strength of MIN

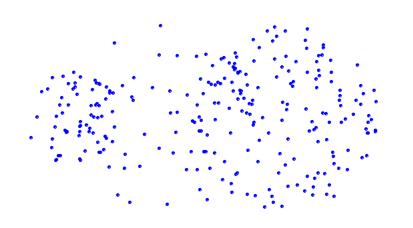


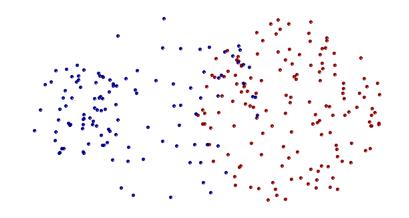
Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of MIN





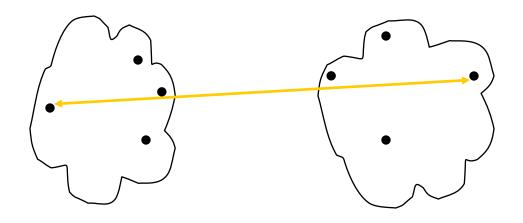
Original Points

Two Clusters

• Sensitive to noise and outliers

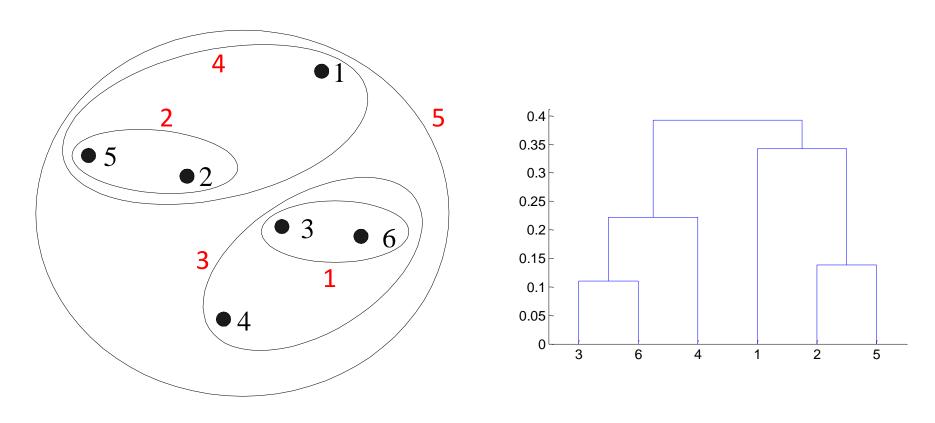
MAX or Complete Link

- Inter-cluster distance
 - The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters



 $d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$

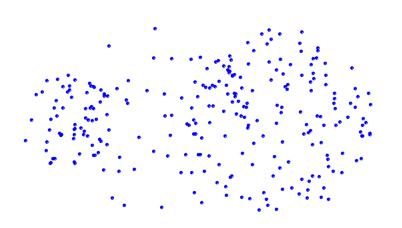
MAX

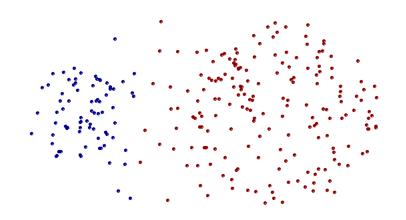


Nested Clusters

Dendrogram

Strength of MAX





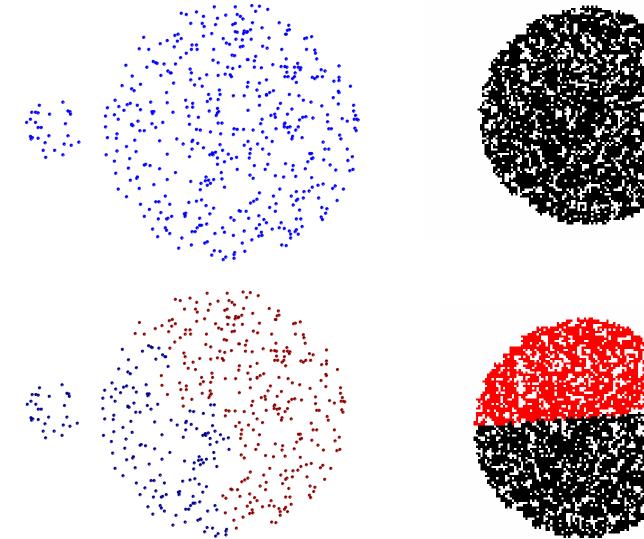
Original Points

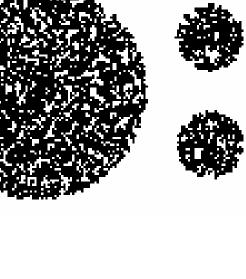
Two Clusters

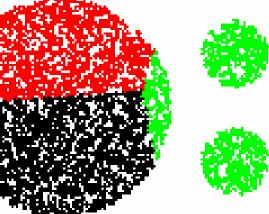
• Less susceptible to noise and outliers

Limitations of MAX

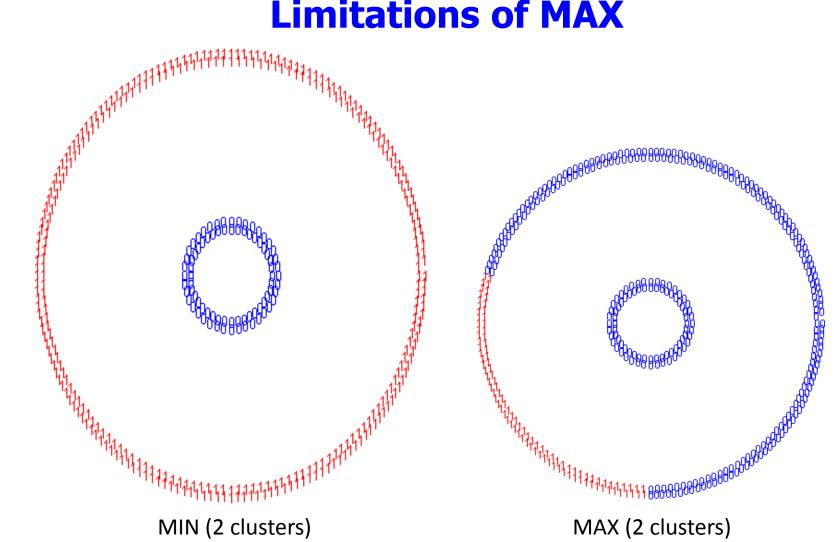
•Tends to break large clusters







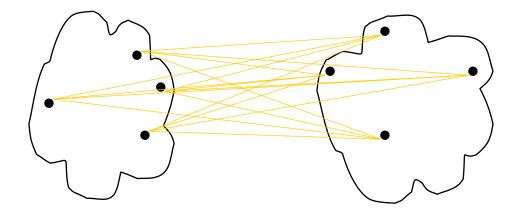
Limitations of MAX



• Biased towards globular clusters

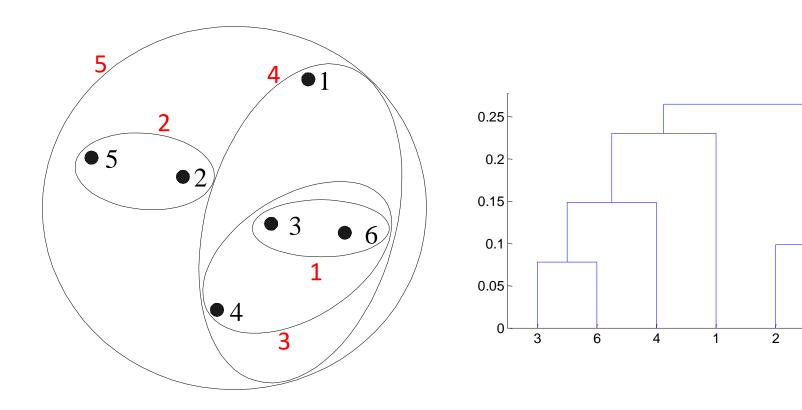
Group Average or Average Link

- Inter-cluster distance
 - The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters
 - Determined by all pairs of points in the two clusters



 $d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$

Group Average



Nested Clusters

Dendrogram

5

Group Average

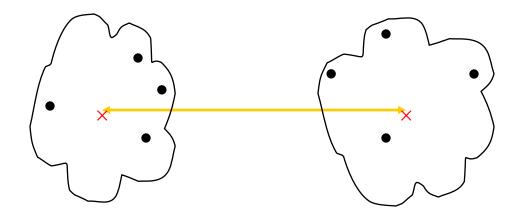
 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Centroid Distance

- Inter-cluster distance
 - The distance between two clusters is represented by the distance between <u>the centers of the clusters</u>
 - Determined by cluster centroids

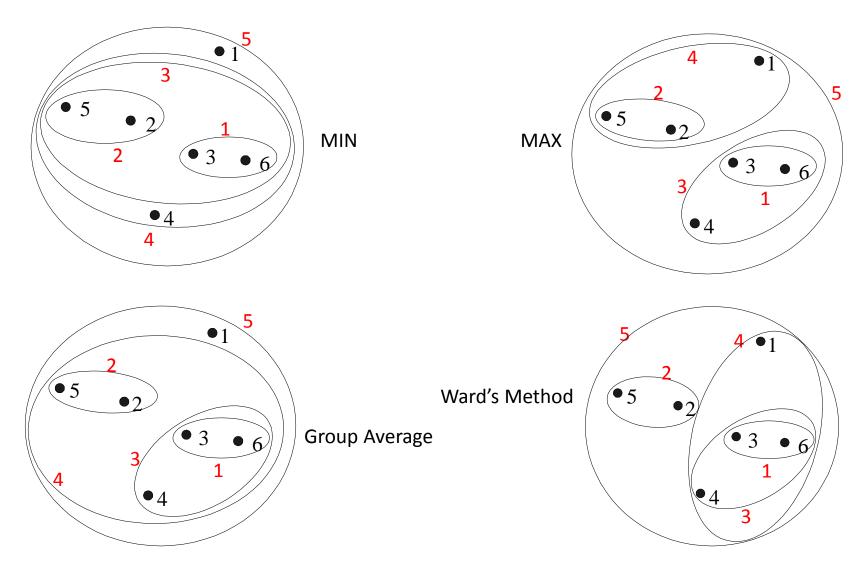


 $d_{mean}(C_i, C_j) = d(m_i, m_j)$

Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is squared distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 Can be used to initialize K-means

Comparison



Time and Space Requirements

- O(N²) space since it uses the distance matrix
 N is the number of points
- $O(N^3)$ time in many cases
 - There are N steps and at each step the size, N^2 , distance matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Strengths

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - e.g., shopping websites—electronics (computer, camera, ..), furniture, groceries

Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and irregular shapes
 - Breaking large clusters

Take-away Message

- Agglomerative and divisive hierarchical clustering
- Several ways of defining inter-cluster distance
- The properties of clusters outputted by different approaches based on different inter-cluster distance definition
- Pros and cons of hierarchical clustering