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Outline

Basics
— Motivation, definition, evaluation

Methods

— Partitional

— Hierarchical

— Density-based

— Mixture model

— Spectral methods
Advanced topics

— Clustering ensemble

— Clustering in MapReduce

— Semi-supervised clustering, subspace clustering, co-clustering,
etc.



Using Probabilistic Models for Clustering

* Hard vs. soft clustering
— Hard clustering: Every point belongs to exactly one cluster

— Soft clustering: Every point belongs to several clusters with
certain degrees

* Probabilistic clustering

— Each cluster is mathematically represented by a
parametric distribution

— The entire data set is modeled by a mixture of these
distributions



Gaussian Distribution

f(x) Changing u shifts the
distribution left or right

Changing o increases or
decreases the spread

M X

Probability density function f(x) is a function of x
given U and o




Likelihood

Which Gaussian distribution is
f(x) more likely to generate the data?

Define likelihood as a function of yuand o

given X, X,, ..., X n
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Gaussian Distribution

e Multivariate Gaussian

N(alp,5) = s exp (G- T - )}
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mean covariance

* Log likelihood
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Maximum Likelihood Estimate

* MLE

— Find model parameters 1,2 that maximize log

likelihood
L (e, %)

e MLE for Gaussian
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Gaussian Mixture

 Linear combination of Gaussians
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Gaussian Mixture

* To generate a data point:
— first pick one of the clusters with probability 7Tk

— then draw a sample &; from that cluster distribution
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Gaussian Mixture

Maximize log likelihood

n K
Inp(z|m, pw, ) = Y In{ > mpN(z;|pp i)}
i=1 k=1

Each data point is generated by one of K clusters, a latent
variable z; = (21, - .., 2;K) is associated with each x;

Zszl zi = 1 and p(z; = 1) = mg

Regard the values of latent variables as missing



Expectation-Maximization (EM) Algorithm

* E-step: for given parameter values we can compute
the expected values of the latent variables

rie = E(zi) = p(zi = Lo, 0, 2)
p(zir = 1)p(x;|lzi = 1,7, 1, X)

SE p(zi = Dp(zilzie = 1,7, 1, X)
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— Notethat T7Tik € [07 1] instead of {0,1} butwe
K .
still have Zk:l r;. = 1 for all ¢



Expectation-Maximization (EM) Algorithm

* |VI-step: maximize the expected complete log
likelihood

n K
[Inp(:r: Z|7T IJ’:'Z) — Z Z Tik {lnﬂ-k + |nN(£C@|‘LLk,Zk)}
1=1k=1

 Parameter update:
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EM Algorithm

* |terate E-step and M-step until the log likelihood
of data does not increase any more.

— Converge to local optimal

— Need to restart algorithm with different initial
guess of parameters (as in K-means)

e Relation to K-means
— Consider GMM with common covariance
> =671

—As §2 — 0,7;, — 0 or 1, two methods coincide
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K-means vs GMM

Objective function
— Minimize sum of squared error
Can be optimized by an EM
algorithm
— E-step: assign points to clusters
— M-step: optimize cluster centers
— Performs hard assignment
during E-step

Assumes spherical clusters with
equal probability of a cluster

Objective function
— Maximize log-likelihood

EM algorithm
— E-step: Compute posterior
probability of membership
— M-step: Optimize parameters
— Perform soft assignment during
E-step
Can be used for non-spherical
clusters

Can generate clusters with
different probabilities



Mixture Model

e Strengths
— Give probabilistic cluster assignments

— Have probabilistic interpretation

— Can handle clusters with varying sizes, variance etc.

 Weakness
— Initialization matters
— Choose appropriate distributions
— Overfitting issues
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Take-away Message

Probabilistic clustering
Maximum likelihood estimate
Gaussian mixture model for clustering

EM algorithm that assigns points to clusters and
estimates model parameters alternatively

Strengths and weakness



