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Outline

Basics
— Motivation, definition, evaluation

Methods

— Partitional

— Hierarchical

— Density-based

— Mixture model

— Spectral methods
Advanced topics

— Clustering ensemble

— Clustering in MapReduce

— Semi-supervised clustering, subspace clustering, co-clustering,
etc.



Partitional Methods

K-means algorithms
Optimization of SSE
Improvement on K-Means
K-means variants
Limitation of K-means



Partitional Methods

e Center-based

— Acluster is a set of objects such that an objectin a
cluster is closer (more similar) to the “center” of a
cluster, than to the center of any other cluster

— The center of a cluster is called centroid

— Each point is assigned to the cluster with the closest
centroid

— The number of clusters usually should be specified

4 center-based clusters



K-means

* Partition {x,,...,x,} into K clusters

— K is predefined
 Initialization

— Specify the initial cluster centers (centroids)
 |teration until no change

— For each object x;
* Calculate the distances between x; and the K centroids

* (Re)assign x; to the cluster whose centroid is the
closest to x;

— Update the cluster centroids based on current
assignment



K-means: Initialization

Initialization: Determine the three cluster centers
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K-means Clustering: Cluster Assighment

Assign each object to the cluster which has the closet distance from the centroid
to the object
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K-means Clustering: Update Cluster Centroid

Compute cluster centroid as the center of the points in the cluster
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K-means Clustering: Update Cluster Centroid

Compute cluster centroid as the center of the points in the cluster
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K-means Clustering: Cluster Assighment

Assign each object to the cluster which has the closet distance from the centroid
to the object
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K-means Clustering: Update Cluster Centroid

Compute cluster centroid as the center of the points in the cluster
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K-means Clustering: Update Cluster Centroid

Compute cluster centroid as the center of the points in the cluster
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Partitional Methods

K-means algorithms
Optimization of SSE
Improvement on K-Means
K-means variants
Limitation of K-means



Sum of Squared Error (SSE)

Suppose the centroid of cluster C; is m;

For each object x in C, compute the squared error between x and the
centroid m;

Sum up the error of all the objects

SSE=> > (x—m,)”

j XECJ'

1.5 4.5

SSE=(1-1.5)2 +(2-1.5)% + (4—4.5)% + (5—4.5)° =1
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How to Minimize SSE

min > > (x—m;)?

] xeC;
e Two sets of variables to minimize

— Each object x belongs to which cluster? X€C;
— What’s the cluster centroid? m;

* |terative update

— Fix the cluster centroid—find cluster assignment that
minimizes the current error

— Fix the cluster assignment—compute the cluster centroids
that minimize the current error
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Cluster Assignment Step
min > > (x—m;)?
] xeC;
* Cluster centroids (m;) are known
* For each object

— Choose C; among all the clusters for x such that
the distance between x and m;is the minimum

— Choose another cluster will incur a bigger error

* Minimize error on each object will minimize
the SSE
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Example—Cluster Assignment

Given m,, m,, which
cluster each of the five
points belongs to?

Assign points to the
closet centroid—
5 minimize SSE
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Cluster Centroid Computation Step
min > > (x—m;)?
] xeC;
* For each cluster

— Choose cluster centroid m; as the center of the

points Z "

xeC;
mj =
1C; |

e Minimize error on each cluster will
minimize the SSE
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Example—Cluster Centroid Computation
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Given the cluster
assignment, compute
the centers of the two
clusters
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Comments on the K-Means Method

e Strength

— Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations.
Normally, k, t << n

— Easy to implement

* |ssues

— Need to specify K, the number of clusters
— Local minimum-— Initialization matters

— Empty clusters may appear
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Partitional Methods

K-means algorithms
Optimization of SSE
Improvement on K-Means
K-means variants
Limitation of K-means



Problems with Selecting Initial Points

 |If there are K ‘real’ clusters then the chance of
selecting one centroid from each cluster is small

— Chance is relatively small when K'is large
— If clusters are the same size, n, then

number of ways to select one centroid from each cluster KInf K!

number of ways to select K centroids B (Kn)K KK

P:

—  For example, if K =10, then probability = 10!/101° =
0.00036

— Sometimes the initial centroids will readjust
themselves in ‘right” way, and sometimes they don’t
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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10 Clusters Example

lteration 4

r r r [

0 5 10 15 20
X

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Iteration 1
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0 5 10 15 20

Itera\fion 3

r r r L

0 5 10 15 20
X

Iteration 2
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

lteration 4

r r r [

0 5 10 15 20
X

Starting with some pairs of clusters having three initial centroids, while other have
only one.
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10 Clusters Example

Iteration 1 Iteration 2
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Starting with some pairs of clusters having three initial centroids, while other have

only one. a



Solutions to Initial Centroids Problem

Multiple runs

— Average the results or choose the one that has the
smallest SSE

Sample and use hierarchical clustering to determine initial
centroids

Select more than K initial centroids and then select among
these initial centroids

— Select most widely separated

Postprocessing—Use K-means’ results as other algorithms’
initialization

Bisecting K-means

— Not as susceptible to initialization issues



Bisecting K-means

. Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a hierarchical
clustering

. Initialize the list of clusters to contain the cluster containing all points.
repeat
Select a cluster from the list of clusters
for i = 1 to number_of _iterations do
Bisect the selected cluster using basic K-means
end for
Add the two clusters from the bisection with the lowest SSE to the list of clusters.

until Until the list of clusters contains K clusters




Handling Empty Clusters

e Basic K-means algorithm can yield empty
clusters

e Several strategies
— Choose the point that contributes most to SSE

— Choose a point from the cluster with the highest
SSE

— If there are several empty clusters, the above can
be repeated several times



Updating Centers Incrementally

* |In the basic K-means algorithm, centroids are
updated after all points are assigned to a centroid

* An alternative is to update the centroids after
each assignment (incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact



Pre-processing and Post-processing

* Pre-processing
— Normalize the data
— Eliminate outliers

* Post-processing
— Eliminate small clusters that may represent outliers

— Split ‘loose’ clusters, i.e., clusters with relatively high
SSE

— Merge clusters that are ‘close’” and that have relatively
low SSE
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Partitional Methods

K-means algorithms
Optimization of SSE
Improvement on K-Means
K-means variants
Limitation of K-means



Variations of the K-Means Method

* Most of the variants of the K-means which differ in
— Dissimilarity calculations

— Strategies to calculate cluster means

 Two important issues of K-means

— Sensitive to noisy data and outliers
* K-medoids algorithm

— Applicable only to objects in a continuous multi-dimensional
space

* Using the K-modes method for categorical data
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Sensitive to Outliers

K-means is sensitive to outliers
— Qutlier: objects with extremely large (or small) values
* May substantially distort the distribution of the data

outlier

36



K-Medoids Clustering Method

e Difference between K-means and K-medoids

— K-means: Computer cluster centers (may not be the original data
point)

— K-medoids: Each cluster’s centroid is represented by a point in the
cluster

— K-medoids is more robust than K-means in the presence of
outliers because a medoid is less influenced by outliers or other
extreme values
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The K-Medoid Clustering Method

* K-Medoids Clustering: Find representative objects (medoids) in clusters
— PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

e Starts from an initial set of medoids and iteratively replaces one of the
medoids by one of the non-medoids if it improves the total distance of the

resulting clustering

* PAM works effectively for small data sets, but does not scale well for large
data sets. Time complexity is O(k(n-k)?) for each iteration where n is # of

data objects, k is # of clusters
* Efficiency improvement on PAM
— CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

— CLARANS (Ng & Han, 1994): Randomized re-sampling



PAM: A Typical K-Medoids Algorithm
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K-modes Algorithm

* Handling categorical data:
K-modes (Huang’98)

— Replacing means of clusters
with modes

e Given n records in cluster,
mode is a record made up of
the most frequent attribute
values

— Using new dissimilarity
measures to deal with
categorical objects

o A mixture of categorical
and numerical data: K-
prototype method

age | Income |student | credit_rating
< =30 high no fair
< =301| high no excellent
31..40 high no fair
> 40 medium no fair
> 40 low yes fair
> 40 low yes excellent
31..40 low yes excellent
< =30 | medium no fair
< =30 low yes fair
> 40 medium yes fair
< =30 | medium yes excellent
31..40 | medium no excellent
31..40 high yes fair

mode = (<=30, medium, yes, fair)




Limitations of K-means

* K-means has problems when clusters are of
differing
— Sizes
— Densities
— Irregular shapes
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Limitations of K-means: Differing Density
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tations of K-means: Irregular Shapes
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Overcoming K-means Limitations

Original Points

One solution is to use many clusters.

m|
oo

K-means Clusters

Find parts of clusters, but need to put together.
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Overcoming K-means Limitations
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Take-away Message

What'’s partitional clustering?

How does K-means work?

How is K-means related to the minimization of SSE?
What are the strengths and weakness of K-means?
What are the variants of K-means?



