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Outline 

• Basics 
– Motivation, definition, evaluation 

• Methods 
– Partitional 

– Hierarchical 

– Density-based 

– Mixture model 

– Spectral methods 

• Advanced topics 
– Clustering ensemble 

– Clustering in MapReduce 

– Semi-supervised clustering, subspace clustering, co-clustering, 
etc.  
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Motivation 

• Complex cluster shapes 
– K-means performs poorly because it can only find spherical 

clusters 

– Density-based approaches are sensitive to parameters 

• Spectral approach 
– Use similarity graphs to encode local neighborhood information 

– Data points are vertices of the graph 

– Connect points which are “close” 
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E={Wij}   Set of weighted edges indicating pair-wise similarity 
between points 

Similarity Graph 

• Represent dataset as a weighted graph G(V,E) 

• All vertices which can be reached from each other by a path 
form a connected component 

• Only one connected component in the graph—The graph is 
fully connected  
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V={xi}  Set of n vertices representing data points 
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Graph Construction 

• ε-neighborhood graph 
– Identify a threshold value, ε, and include edges if the 

affinity between two points is greater than ε 
• k-nearest neighbors 

– Insert edges between a node and its k-nearest 
neighbors 

– Each node will be connected to (at least) k nodes 
• Fully connected 

– Insert an edge between every pair of nodes 
– Weight of the edge represents similarity 
– Gaussian kernel:  
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ε-neighborhood Graph 

• ε-neighborhood 

– Compute pairwise distance between any two 
objects 

– Connect each point to all other points which have 
distance smaller than a threshold ε 

•  Weighted or unweighted 

– Unweighted—There is an edge if one point 
belongs to the ε–neighborhood of another point 

– Weighted—Transform distance to similarity and 
use similarity as edge weights 
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kNN Graph 

• Directed graph 

– Connect each point to its k nearest neighbors 

•  kNN graph 

– Undirected graph 

– An edge between xi and xj : There’s an edge from xi to 
xj OR from xj to xi in the directed graph 

• Mutual kNN graph 

– Undirected graph 

– Edge set is a subset of that in the kNN graph 

– An edge between xi and xj : There’s an edge from xi to 
xj AND from xj to xi in the directed graph 
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Clustering Objective 

Traditional definition of a “good” clustering 
• Points assigned to same cluster should be highly similar 

• Points assigned to different clusters should be highly dissimilar 

Minimize weight of between-group connections 
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Apply this objective to our graph representation 
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Graph Cuts 

• Express clustering objective as a function of the edge 
cut of the partition 

• Cut: Sum of weights of edges with only one vertex in 
each group 

• We wants to find the minimal cut between groups 
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Bi-partitional Cuts 

• Minimum (bi-partitional) cut 
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Example 

• Minimum Cut 
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Normalized Cuts 

• Minimal (bipartitional) normalized cut 
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Example 

• Normalized Minimum Cut 
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• Normalized Minimum Cut 
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Problem  

• Identifying a minimum cut is NP-hard 

• There are efficient approximations using linear 
algebra 

• Based on the Laplacian Matrix, or graph 
Laplacian 
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Matrix Representations 

• Similarity matrix (W) 
– n x n matrix 

–                 : edge weight between vertex xi and xj 

x1 x2 x3 x4 x5 x6 

x1 0 0.8 0.6 0 0.1 0 

x2 0.8 0 0.8 0 0 0 

x3 0.6 0.8 0 0.2 0 0 

x4 0 0 0.2 0 0.8 0.7 

x5 0.1 0 0 0.8 0 0.8 

x6 0 0 0 0.7 0.8 0 

• Important properties 

– Symmetric matrix 
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Matrix Representations 

• Degree matrix (D) 
– n x n  diagonal matrix 

–                           : total weight of edges incident to vertex xi 

x1 x2 x3 x4 x5 x6 

x1 1.5 0 0 0 0 0 

x2 0 1.6 0 0 0 0 

x3 0 0 1.6 0 0 0 

x4 0 0 0 1.7 0 0 

x5 0 0 0 0 1.7 0 

x6 0 0 0 0 0 1.5 
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• Used to 
– Normalize adjacency matrix 
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Matrix Representations 

• Laplacian matrix (L) 

– n x n symmetric matrix 

• Important properties 

– Eigenvalues are non-negative real numbers 

– Eigenvectors are real and orthogonal 

– Eigenvalues and eigenvectors provide an insight into the 
connectivity of the graph… 

L = D - W 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 0 0 -0.2 1.7 -0.8 -0.7 

x5 -0.1 0 0 0.8- 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 
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Find An Optimal Min-Cut (Hall’70, 
Fiedler’73) 

• Express a bi-partition (C1,C2) as a vector 
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• We can minimise the cut of the partition by 
finding a non-trivial vector f that minimizes the 
function 
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Why does this work? 

 

 

 

 

 
 

• 𝐿𝑓 = 𝜆𝑓   𝑓𝑇𝐿𝑓 = 𝑓𝑇𝜆𝑓 = 𝜆 𝑓𝑇𝑓 = 𝜆  

• If we let f be eigen vectors of L, then the corresponding eigen 
value is the value of the clustering objective function 

--Clustering objective function 
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Optimal Min-Cut 

• The Laplacian matrix L is semi positive definite 

• The Rayleigh Theorem shows: 

– The minimum value for g(f) is given by  
the 2nd smallest eigenvalue of the Laplacian L 

– The optimal solution for f is given by the 
corresponding eigenvector λ2, referred as the 
Fiedler Vector 

 

22 



Spectral Bi-partitioning Algorithm 
 

1. Pre-processing 
– Build Laplacian  

matrix L of the  
graph 

0.9 0.8 0.5 -0.2 -0.7 0.4 

-0.2 -0.6 -0.8 -0.4 -0.7 0.4 

-0.6 -0.4 0.2 0.9 -0.4 0.4 

0.6 -0.2 0.0 -0.2 0.2 0.4 

0.3 0.4 -0. 0.1 0.2 0.4 

-0.9 -0.2 0.4 0.1 0.2 0.4 
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2. Decomposition 

– Find eigenvectors X  
and eigenvalues Λ  
of the matrix L 
 

-0.7 x6 

-0.7 x5 

-0.4 x4 

0.2 x3 

0.2 x2 

0.2 x1 – Map vertices to 
corresponding 
components of λ2 

 

x1 x2 x3 x4 x5 x6 

x1 1.5 -0.8 -0.6 0 -0.1 0 

x2 -0.8 1.6 -0.8 0 0 0 

x3 -0.6 -0.8 1.6 -0.2 0 0 

x4 0 0 -0.2 1.7 -0.8 -0.7 

x5 -0.1 0 0 -0.8 1.7 -0.8 

x6 0 0 0 -0.7 -0.8 1.5 
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Spectral Bi-partitioning Algorithm 
 

123456

0.11 -0.38  -0.31  -0.65  -0.41 0.41 

0.22 0.71 0.30 0.01 -0.44 0.41 

-0.37  -0.39  0.04 0.64 -0.37 0.41 

0.61 0.00 -0.45  0.34 0.37 0.41 

-0.65  0.35 -0.30  -0.17  0.41 0.41 

0.09 -0.29  0.72 -0.18  0.45 0.41 

The  matrix which represents the eigenvector of the 
Laplacian (the eigenvector matched  to the corresponded 
eigenvalues with increasing order)  
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Spectral Bi-partitioning 

• Grouping 
– Sort components of reduced 1-dimensional vector 

– Identify clusters by splitting the sorted vector in two 
(above zero, below zero) 
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Split at 0 

– Cluster C1: 
Positive points 

– Cluster C2: 
Negative points 
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Normalized Laplacian 

• Laplacian matrix (L)                 𝑳 = 𝑫−𝟏(𝑫 − 𝑾) 
                                                𝑳 = 𝑫−𝟎.𝟓(𝑫 − 𝑾)𝑫−𝟎.𝟓 
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0.00 0.00 0.00 -0.50 1.00 -0.52 

0.00 0.00 -0.12 1.00 -0.50 -0.39 

-0.44  -0.47  1.00 -0.12 0.00 0.00 

-0.50  1.00 0.47-  0.00 0.00 -0.06 

1.00 -0.50  -0.44  0.00 0.00 0.00 
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K-Way Spectral Clustering 

• How do we partition a graph into k clusters? 

1. Recursive bi-partitioning (Hagen et al.,’91) 

• Recursively apply bi-partitioning algorithm in a 
hierarchical divisive manner. 

• Disadvantages: Inefficient, unstable 

2. Cluster multiple eigenvectors (Shi & Malik,’00) 

• Build a reduced space from multiple 
eigenvectors. 

• Commonly used in recent papers 

• A preferable approach 

3( )O n
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Eigenvectors & Eigenvalues 



K-way Spectral Clustering Algorithm 

• Pre-processing 

– Compute Laplacian matrix L 

• Decomposition 

– Find the eigenvalues and eigenvectors of L 

– Build embedded space from the eigenvectors 
corresponding to the k smallest eigenvalues 

• Clustering 

– Apply k-means to the reduced n x k space to 
produce k clusters 
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How to select k? 

• Eigengap: the difference between two consecutive eigenvalues 

• Most stable clustering is generally given by the value k that 
maximizes the expression 

1 kkk 

 Choose k=2 

12max  k
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Take-away Message 

• Clustering formulated as graph cut problem 

• How min-cut can be solved by eigen decomposition 
of Laplacian matrix 

• Bipartition and multi-partition spectral clustering 
procedure 
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