Clustering Lecture 6: Spectral Methods

Jing Gao SUNY Buffalo

Outline

Basics

- Motivation, definition, evaluation

Methods

- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

Motivation

Complex cluster shapes

- K-means performs poorly because it can only find spherical clusters
- Density-based approaches are sensitive to parameters

Spectral approach

- Use similarity graphs to encode local neighborhood information
- Data points are vertices of the graph
- Connect points which are "close"

Similarity Graph

- Represent dataset as a weighted graph G(V,E)
- All vertices which can be reached from each other by a path form a connected component
- Only one connected component in the graph—The graph is fully connected
 - $V = \{x_i\}$ Set of *n* vertices representing data points
 - E={W_{ij}} Set of weighted edges indicating pair-wise similarity
 between points

Graph Construction

ε-neighborhood graph

- Identify a threshold value, ε , and include edges if the affinity between two points is greater than ε

• k-nearest neighbors

- Insert edges between a node and its k-nearest neighbors
- Each node will be connected to (at least) k nodes

Fully connected

- Insert an edge between every pair of nodes
- Weight of the edge represents similarity
- Gaussian kernel:

$$w_{ij} = \exp(-\|x_i - x_j\|^2 / \sigma^2)$$

ɛ-neighborhood Graph

• *ε*-neighborhood

- Compute pairwise distance between any two objects
- Connect each point to all other points which have distance smaller than a threshold ε

• Weighted or unweighted

- Unweighted—There is an edge if one point belongs to the ε -neighborhood of another point
- Weighted—Transform distance to similarity and use similarity as edge weights

*k***NN Graph**

• Directed graph

Connect each point to its k nearest neighbors

• kNN graph

- Undirected graph
- An edge between x_i and x_j: There's an edge from x_i to x_j OR from x_j to x_i in the directed graph
- Mutual kNN graph
 - Undirected graph
 - Edge set is a subset of that in the kNN graph
 - An edge between x_i and x_j: There's an edge from x_i to x_j AND from x_j to x_i in the directed graph

Clustering Objective

Traditional definition of a "good" clustering

- Points assigned to same cluster should be highly similar
- Points assigned to different clusters should be highly dissimilar

Apply this objective to our graph representation

Minimize weight of between-group connections

Graph Cuts

- Express clustering objective as a function of the *edge cut* of the partition
- Cut: Sum of weights of edges with only one vertex in each group
- We wants to find the *minimal cut* between groups

Bi-partitional Cuts

• Minimum (bi-partitional) cut

$$\min Cut(C_1, C_2) = \sum_{i \in C_1} \sum_{j \in C_2} w_{ij}$$

Example

• Minimum Cut

Cut(BCDE, A) = 0.17

Normalized Cuts

• Minimal (bipartitional) normalized cut

$$\min \frac{Cut(C_1, C_2)}{Vol(C_1)} + \frac{Cut(C_1, C_2)}{Vol(C_2)} = \min \left(\frac{1}{Vol(C_1)} + \frac{1}{Vol(C_2)}\right) Cut(C_1, C_2)$$

 $i \in C, j \in V$

Example

Example

Problem

- Identifying a minimum cut is NP-hard
- There are efficient approximations using linear algebra
- Based on the Laplacian Matrix, or graph
 Laplacian

Matrix Representations

Similarity matrix (W)

-n x n matrix

 $-W = [w_{ij}]$: edge weight between vertex x_i and x_j

	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
X ₁	0	0.8	0.6	0	0.1	0
X ₂	0.8	0	0.8	0	0	0
X ₃	0.6	0.8	0	0.2	0	0
X ₄	0	0	0.2	0	0.8	0.7
<i>X</i> ₅	0.1	0	0	0.8	0	0.8
X ₆	0	0	0	0.7	0.8	0

• Important properties

- Symmetric matrix

Matrix Representations

• Degree matrix (D)

- -n x n diagonal matrix
- $D(i,i) = \sum_{j} w_{ij}$: total weight of edges incident to vertex x_i

	<i>X</i> ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	0	0	0	0	0
<i>X</i> ₂	0	1.6	0	0	0	0
X ₃	0	0	1.6	0	0	0
X ₄	0	0	0	1.7	0	0
<i>X</i> ₅	0	0	0	0	1.7	0
X ₆	0	0	0	0	0	1.5

• Used to

Normalize adjacency matrix

Matrix Representations

• Laplacian matrix (L)

L = D - W

Important properties

- Eigenvalues are non-negative real numbers
- Eigenvectors are real and orthogonal
- Eigenvalues and eigenvectors provide an insight into the connectivity of the graph...

Find An Optimal Min-Cut (Hall'70, Fiedler'73)

• Express a bi-partition (C_1, C_2) as a vector

$$f_i = \begin{cases} 1 & \text{if } x_i \in C_1 \\ -1 & \text{if } x_i \in C_2 \end{cases}$$

 We can minimise the cut of the partition by finding a non-trivial vector *f* that minimizes the function

$$g(f) = \sum_{i,j \in V} w_{ij} (f_i - f_j)^2 = 2f^T L f$$
Laplacian
matrix

Why does this work?

$$\begin{split} L &= D - W \\ f^{T}Lf &= f^{T}Df - f^{T}Wf \\ &= \sum_{i} d_{i}f_{i}^{2} - \sum_{ij} f_{i}f_{j}w_{ij} \\ &= \frac{1}{2} \left(\sum_{i} \left(\sum_{j} w_{ij} \right) f_{i}^{2} - 2 \sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} \left(\sum_{i} w_{ij} \right) f_{j}^{2} \right) \\ &= \frac{1}{2} \sum_{ij} w_{ij}(f_{i} - f_{j})^{2} \quad \text{-Clustering objective function} \end{split}$$

•
$$Lf = \lambda f f^T Lf = f^T \lambda f = \lambda f^T f = \lambda$$

• If we let *f* be eigen vectors of *L*, then the corresponding eigen value is the value of the clustering objective function

Optimal Min-Cut

- The Laplacian matrix *L* is semi positive definite
- The Rayleigh Theorem shows:
 - The minimum value for g(f) is given by the 2nd smallest eigenvalue of the Laplacian L
 - The optimal solution for f is given by the corresponding eigenvector λ_2 , referred as the Fiedler Vector

Spectral Bi-partitioning Algorithm

- 1. Pre-processing
 - Build Laplacian
 matrix L of the
 graph

	<i>X</i> ₁	<i>X</i> ₂	X ₃	X ₄	<i>X</i> ₅	X ₆
<i>X</i> ₁	1.5	-0.8	-0.6	0	-0.1	0
<i>X</i> ₂	-0.8	1.6	-0,8	0	0	0
X ₃	-0.6	-0.8	1.6	-0.2	0	0
X ₄	0	0	-0.2	1.7	-0.8	-0.7
<i>X</i> ₅	-0.1	0	0	-0.8	1.7	-0.8
X ₆	0	0	0	-0.7	-0.8	1.5

- 2. Decomposition
 - Find eigenvectors X and eigenvalues A of the matrix L
 - Map vertices to corresponding components of λ_2

Spectral Bi-partitioning Algorithm

The matrix which represents the eigenvector of the Laplacian (the eigenvector matched to the corresponded eigenvalues with increasing order)

0.41	-0.41	0.65-	0.31-	0.38-	0.11
0.41	-0.44	0.01	0.30	0.71	0.22
0.41	-0.37	0.64	0.04	0.39-	0.37-
0.41	0.37	0.34	0.45-	0.00	0.61
0.41	0.41	0.17-	0.30-	0.35	0.65-
0.41	0.45	0.18-	0.72	0.29-	0.09

Spectral Bi-partitioning

- Grouping
 - Sort components of reduced 1-dimensional vector
 - Identify clusters by splitting the sorted vector in two (above zero, below zero)

- Cluster *C*₁: Positive points
- Cluster C_2 : Negative points

x ₁	0.2	
x ₂	0.2	
X ₃	0.2	

	_
x ₄	-0.4
X ₅	-0.7
x ₆	-0.7

Normalized Laplacian

• Laplacian matrix (L)

 $L = D^{-1}(D - W)$ $L = D^{-0.5}(D - W)D^{-0.5}$

K-Way Spectral Clustering

- How do we partition a graph into k clusters?
 - **1. Recursive bi-partitioning** (Hagen et al.,'91)
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner.
 - Disadvantages: Inefficient, unstable
 - 2. Cluster multiple eigenvectors (Shi & Malik,'00)
 - Build a reduced space from multiple eigenvectors.
 - Commonly used in recent papers
 - A preferable approach

Eigenvectors & Eigenvalues

K-way Spectral Clustering Algorithm

Pre-processing

– Compute Laplacian matrix L

Decomposition

- Find the eigenvalues and eigenvectors of L
- Build embedded space from the eigenvectors corresponding to the k smallest eigenvalues

Clustering

 Apply k-means to the reduced n x k space to produce k clusters

How to select *k*?

- *Eigengap*: the difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximizes the expression $\Delta_k = |\lambda_k \lambda_{k-1}|$

Take-away Message

- Clustering formulated as graph cut problem
- How min-cut can be solved by eigen decomposition of Laplacian matrix
- Bipartition and multi-partition spectral clustering procedure