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Motivation

»Huge amounts of data
contributed by users (user
enerated content, user
ehavioral data, sensory data, sachdbe 2D You Tuke Flickr

""" ) Coog DR®J

» Crowdsourced data contains
valuable information and
knowledge

» |Inevitable error, noise and
conflicts in the data

» Objective: obtain reliable
information from
crowdsourced data




Passive Crowdsourcing

HealthBoards gsMedHelp

@) “My girlfriend always gets a bad
w dry skin, rash on her upper arm,
cheeks, and shoulders when she

ison [Depo]....”

“I have had no side effects
from [Depo] (except ... ), but
otherwise no rashes...”

utwil:l:erl

“Made it through some pretty
bad traffic! ( John F. Kennedy

International Airport (JFK) in
New York, NY)”

3.  “Good news....no traffic on
George Washington bridge
approach from Jersey”

4 [ Gy

U

DEPO USER1 Bad dry t

skin

DEPO USER1 Rash ‘
DEPO USER2 No DEPO Rash

rashes

JFK airport  Bad
Traffic

JFK airport  Good JFK  Bad
. Traffic
Traffic ceccee




Passive Crowdsourcing

*Description
* Users/Data sources are sharing information on their
own.
*Goal

* To extract and integrate relevant information
regarding a specific task
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Active Crowdsourcing

amazonnechancalul’ & CrowdFlower

Are the two images of the same person?

Definitely Same O |Maybe Same | | Not Sure @ Maybe Different | | Definitely Different

522

Definitely Same Not Sure

Maybe Same

@

Annotation Results

m Definitely Same ‘
= Maybe Same \/\
m Not Sure

= Maybe Different

m Definitely Different

Same

Final Answer:

bera St

0.4 miles
Golden Gate Bridge

18th Ave ' 12th Ave

\) Ludlow
Sloat Blvd® Sap-Leandro fVay

Traffic jam

Traffic jam

Hazard



Active Crowdsourcing

*Description
* Users/Data sources generate information based on
requests.
*Goal

* To actively design and collect data for a specific
task. And then integrate the information.



User 1
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User 1

User 3

User 4
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A Straightforward Fusion Solution

*\Voting/Averaging
* Take the value that is claimed by majority of the sources
* Or compute the mean of all the claims

* Limitation
* Ignore source reliability

* Source reliability
* Is crucial for finding the true fact but unknown
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Truth Discovery & Crowdsourced Data
Aggregation

*Problem

* Input: Multiple conflicting information about the
same set of objects provided by various information
sources

* Goal: Discover trustworthy information (i.e., the
truths) from conflicting data on the same object

14



Truth Discovery & Crowdsourced Data
Aggregation
*Principle
*Infer both truth and source reliability from
the data

* A source is reliable if it provides many pieces of true
information

* A piece of information is likely to be true if it is
provided by many reliable sources

15



Truth Discovery & Crowdsourced Data
Aggregation

* A common goal
 to improve the quality of the aggregation/fusion results

*Via a common method
* To aggregate by estimating source reliabilities

e Similar principles
* Data from reliable sources are more likely to be accurate
* A source is reliable if it provides accurate information

* Mutual challenge
* Prior knowledge and labels are rarely available

16



Data Collection and Generation

Crowdsourced data

Truth discovery aggregation

* We can’t control * We can control
generation step. data generation to
a certain degree
* What to ask
* How to ask

* How m o|s
pe%&a@%g@w

* We only collect.

17



Data Format of Claims

Crowdsourced data

Truth discovery aggregation

* Data is collected * Data generation is
from open domain. controlled
e Can’t define data * For easier validation
space of answers,
* type of data requesters usuaIIy
* range of data choose
. Mult estlon
n a range

@\@
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Model Categories

e Statistical model (STA)
* Generative model (GM)

* Optimization model (OPT)



Statistical Model (STA)

*General goal:
» To find the (conditional) probability of a claim being true

*Source reliability:
> Probability(ies) of a source/worker making a true claim

20



STA - TruthFinder

Different websites often provide conflicting information
on a subject, e.g., Authors of “Rapid Contextual Design”

Online Store Authors

Powell’s books Holtzblatt, Karen

Barnes & Noble Karen Holtzblatt, Jessamyn Wendell, Shelley Wood

Al Books Karen Holtzblatt, Jessamyn Burns Wendell, Shelley Wood

Cornwall books Holtzblatt-Karen, Wendell-Jessamyn Burns, Wood
Mellon’s books Wendell, Jessamyn

Lakeside books WENDELL, JESSAMYNHOLTZBLATT, KARENWOOD, SHELLEY
Blackwell online Wendell, Jessamyn, Holtzblatt, Karen, Wood, Shelley

[Yin et al., TKDE’08]



STA - TruthFinder

- Each object has a set of conflictive facts
- E.g., different author lists for a book

- And each web site provides some facts
- How to find the true fact for each object?

Web sites Facts Objects

_______
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2.

3.

STA - TruthFinder

There is usually only one true fact for a property of

an object

This true fact appears to be the same or similar on

different web sites

* E.g., “Jennifer Widom” vs. “J. Widom”

The false facts on different web sites are less likely

to be the same or similar

 False facts are often introduced by random factors
A web site that provides mostly true facts for
many objects will likely provide true facts for
other objects

23



STA - TruthFinder

* Confidence of facts <> Trustworthiness of web sites

* A fact has high confidence if it is provided by (many)
trustworthy web sites

* A web site is trustworthy if it provides many facts with high
confidence

* |terative steps

* Initially, each web site is equally trustworthy

* Based on the four heuristics, infer fact confidence from web
site trustworthiness, and then backwards

* Repeat until achieving stable state

24



STA - TruthFinder

Web sites Facts Objects

. ~~o
N “s
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STA - TruthFinder

Web sites Facts Objects

N ~
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N ~~o
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STA - TruthFinder

Web sites\‘; Facts

__________________

Objects

27
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STA - TruthFinder

Web sites Facts Objects

28
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STA - TruthFinder

* The trustworthiness of a web site w: t(w)
* Average confidence of facts it provides

f —Sum of fact confidence
B ZfeF(W)S( ) t(w,)

t(w)=
‘F(WX\Set of facts provided by w @ \
S(f
* The confidence of a fact f: s(f) %{)
* One minus the probability that all web sites

providing f are wrong t(ws)
/Probability that w is wrong @

s(f)=1- H()l_t(W))

weWw ( f

Set of websites providing f

29



STA - TruthFinder

Type of error TruthFinder | Barnes&Noble

Correct
Miss author(s) 12 2
Incomplete names 18 5 6
Wrongngl;;te/smlddle 1 1 3
Has redundant names 0 2 23
Add incorrect names 1 5
No information 0 0 2

* Viewing an author list as a fact

30
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Generative Model (GM)

Source reliability

L

»

@ | source |

| observatlon |

| object|
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Generative Model (GM)

*One of the most popular models
» GTM [zhao&Han, QDB’12]
» LTM [zhao et al., VLDB'12]
» MSS [qQi et al., WWW’13]
> LCA [Pasternack&Roth, WWW’13]
» TEM [zhi et al., KDD’15]
» DS [Dawid&Skene, 1979]
» GLAD [Whitehill et al., NIPS'09]
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GM - Maximum Likelihood Estimation

Multiple choice questions For each worker, the reliability

with fixed answer space is a confusion matrix.
LU Worker’s answer
B A |[B |C |D
¢ < & oo l <[ A
W = & (]
r dle S O 2
B ro-ov X C C’(—) P » g B
a oY% S < g
<\ i S 5| C
e o S o
& S 5
o :
; 9 ﬁ(')v‘

nj({{) : the probability that worker k answers [ when j is the

correct answer.
p;j : the probability that a randomly chosen question has

correct answer J. [Dawid&Skene, 1979]



GM - Maximum Likelihood Estimation

)

likelihoodgk) |q is correct = gl

¢ :

likelihood;|q is correct = l ll lﬂc(lll{)
kK 1=1

@ ; K J 1(j=q)
tiketihood; = | [ o, | [] [=

j:]_ k =1

~
Il —~
~ =
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GM - Maximum Likelihood Estimation

] ] 1(ji=q;)

I K
tiketihood = | || [ o] [| [=
[ k

j=1 =1

*This is the likelihood if the correct answers (i.e., g;’s)
are known.

e What if we don’t know the correct answers?

(k)
* Unknown parameters are Pj, 4,

EM algorithm




GM - Extension and Theoretical Analysis

* Extensions
* Naive Bayesian [snow et al., EMNLP’08]
* Finding a good initial point [zhang et al,, NIPS'14]

* Adding instances’ feature vectors [Raykar et al., 2010]
[Lakkaraju et al. 2015]

* Using prior over worker confusion matrices [raykar et
al., 2010][Liu et al., NIPS’12] [Lakkaraju et al. SDM’15]

* Clustering workers/instances [Lakkaraju et al. SDM’15]

* Theoretical analysis
* Error bound [Liet al., 2013] [Zhang et al., NIPS'14]
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GM - GLAD Model

Image difficulties Each image

belongs to one of

g B True labels tWO pOSSible

e @ @ categories of

A N interest, i.e.,
é\@ J,'/ @ Observed labels binary Iabeling.

\ \ / Known variables:

Labeler accuracies
observed labels.

[Whitehill et al., NIPS’09]




GM - GLAD Model

Log odds for the
obtained labels
being correct

Observed label True label

p(Ly =7zl b)) = 7

Worker’s accuracy. Difficulty of image.
Always correct - a; = +o | | Very ambiguous — 1/f; = +
Always wrong — a; = —© Very easy — 1/'B]- = (




GM - Latent Truth Model (LTM)

e Multiple facts can be true for each entity (object)
* One book may have 2+ authors

* A source can make multiple claims per entity, where
more than one of them can be true
* A source may claim a book w. 3 authors

* Sources and objects are independent respectively
* Assume book websites and books are independent

* The majority of data coming from many sources are
not erroneous
* Trust the majority of the claims

[Zhao et al., VLDB’12]

9



GM - Latent Truth Model (LTM)
_H_m

Source Observation  Truth
1 Barnes&Noble True
1  Brett’s Books True True
1 Ecampus.com True
2 Barnes&Noble True
2  Brett’s Books False True
2  Ecampus.com False
3

Brett’s Books True True

m Entity (book) Attribute (Author)

1 Data Mining: Concepts and Techniques Jiawei Han
2 Data Mining: Concepts and Techniques Micheline Kamber

3 Introduction to Algorithms Thomas H. Cormen



GM - Latent Truth Model (LTM)

False positive rate sensitivityl

Truth of FactsI




GM - Latent Truth Model (LTM)

* For each source k

* Generate false positive rate (with strong regularization, believing
most sources have low FPR): ¢ ~ Beta(agq, @o0)

* Generate its sensitivity (1-FNR) with uniform prior, indicating low
FNR is more likely: ¢ ~ Beta(ay, a4 )

*For each fact f
* Generate its prior truth prob, uniform prior: 8¢ ~ Beta(fS, Bo)
* Generate its truth label: tr ~ Bernoulli(ef)

* For each claim c¢ of fact f, generate observation of c.
* If f is false, use false positive rate of source:o, ~ Bernoulli(qbgc)
* If f is true, use sensitivity of source: o, ~ Bernoulli(qbslc)

42



GM - Latent Truth Model (LTM)

Results on book data

—mmm Accuracy | F1__

1.000 0.995 0.000 0.995 0.997
TruthFinder  0.880 1.000 1.000 0.880 0.936
Voting 1.000 0.863 0.000 0.880 0.927

43

43



Optimization Model (OPT)

* General model

arg min 2 2 g(ws, v;)
{WS}{ 0}

0€0 s

s.t. 61 (wg) = 52(770) =1
 What does the model mean?

* The optimal solution can minimize the objective function

* Joint estimate true claims v, and source reliability w, under
some constraints 8¢, 95, ... .

* Objective function g(:,-) can be distance, entropy, etc.

44



Optimization Model (OPT)

* General model

arg min 2 2 g(ws, v;)
{WS}{ 0}

0€0 s

s.t. 61 (wg) = 52(770) =1
* How to solve the problem?
e Convert the primal problem to its (Lagrangian) dual form

* Block coordinate descent to update parameters

* If each sub-problem is convex and smooth, then
convergence is guaranteed

45



OPT - CRH Framework

=1 m=1

K N M
- * (*) (k)
x%})mw fx®,w 2 RZ Z dm( Vim ¥ )
’ =1
t. 6(W w >

S.

)

Basic idea

Truths should be close to the observations from reliable
sources

Minimize the overall weighted distance to the truths in
which reliable sources have high weights

[Li et al., SIGMOD’14]



OPT - CRH Framework

* Loss function
* d,,: loss on the data type of the m-th property

* Qutput a high score when the observation deviates from the
truth

* Output a low score when the observation is close to the
truth

* Constraint function
* The objective function may go to —oo without constraints
* Regularize the weight distribution

47



OPT - CRH Framework

* Run the following until convergence
* Truth computation

* Minimize the weighted distance between the truth and the
sources’ observations

v® C arg mmz Wy - dyn (v,059)

* Source reliability estimation

 Assign a weight to each source based on the difference
between the truths and the observations made by the source

W « arg mni7n £, W)

48



OPT - Minimax Entropy

Workers:i =1,2,...,m
*ltems:j =1,2,...,n
e Categories:k =1,2,...,cC

Input: response tensor Z,,,«nxc

* zj, =1, if worker i labels item j as category k

* 2, = 0, if worker i labels item j as others (not k)
*  Z;jx = unknown , if worker i does not label item j

Goal: Estimate the ground truth y;;

[Zhou et al., NIPS'12]
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OPT - Minimax Entropy

item1l item2 .. itemn
worker 1 Z11 Z17 e Z1n
worker 2 Z91 Z99 v Zon

workerm  Z,.q Z12 o Zmn



OPT - Minimax Entropy

iteml item2 .. itemn

worker 1 11 1 e Tqq
worker 2 o1 oo v Tlon
workerm T, q 1o o TTmn

1T;; is a vector that presents the underline

distribution of the observation.
i.e., z;; is drawn from m;;.



OPT - Minimax Entropy

item1l item2 .. itemn
worker 1 11 1> e Tqq
worker 2 Mo 5o v Tlon
workerm T, q 17 o TTmn

Column constraint: the number of votes per
class per item ).; z; j, should match }.; 7;



OPT - Minimax Entropy

iteml item2 .. itemn

worker 1 T11 1 v Tqq

workerm T, q 1o o TTmn

Row constraint : the empirical confusion matrix
per worker 2. V1 Z; i should match Y. ; v, ji
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OPT - Minimax Entropy

* If we know the true label y;;
* Maximum entropy of 7;;; under constraints

m T

C
max — S ; S Tk 10705k
T ) o )

i=1 j=1 k=1

m m mn

n
S.t. E Tijk = E Zijks \V/j, k, E YTk = 5 YjlZijk, \V/@, ka la
i=1 i=1 j=1 j=1

Z?Tijk = 1, \V/’i,j, Tijk 2 0, Vi,j, k
k=1

54



OPT - Minimax Entropy

* To estimate the true label Vil
* Minimizing the maximum entropy of 7;

m T C
minjmax — y: y: y: Tijk I T4 5
T i=1 j=1 k=1
m m n n
S.L. Z Tijk — z Rijk s \V/J k Z YilTijk — Z Yjleijk, \V/Z k Z
i—1 i=1 =1 =1

D Mgk =1 Vi j me = 0, Vi gk Yy =10, g > 0, V4L
k=1 =1

55



OPT - Minimax Entropy

* To estimate the true label Vil
* Minimizing the maximum entropy of 7;

minjmax — y: y: y: Tk N5 50
L7 i=1 j=1k=1
S.T. Z?T;’,’ | . . \
! Minimize entropy
> is equivalent to 0, Vi, 1.
k=1 « e . .
minimizing the KL divergence

\ J
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Aggregation of Passively Crowdsourced Data

* More challenges

Current Temperatures

10

® Game Dataset
== Power Law Function Fit|]

Long-tail
henomenon

—
(=
T

—
(=
T

raine

—
o
(5]
T

Number of Sources

—
=]

10’ 10 10

Number of Clalms
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Source Correlations

* Many truth discovery methods consider independent
sources
* Sources provide information independently
* Source correlation can be hard to model
* However, this assumption may be violated in real life

e Copy relationships between sources

 Sources can copy information from one or more other
sources

* General correlations of sources

* Sources may provide data from complementary domains
(negative correlation)

* Sources may apply common rules in extraction (positive
correlation)

59



Source Dependency

* Known relationships

* Apollo-Social [Wang et al., IPSN’14]

* For a claim, a source may copy from a related source with a certain
probability

* Used MLE to estimate a claim being correct
* Unknown relationships
* Accu-Copy [Dong et al., VLDB’09a] [Dong et al., VLDB’09b]

* MSS [Qj et al., WWW’13]
* Modeled as a PGM

* Related sources are grouped together and assigned with a group
weight

60



Copy Relationships between Sources

* High-level intuitions for copying detection

* Common error implies copying relation

* e.g., many same errors in S N s, imply source 1 and 2 are
related

* Source reliability inconsistency implies copy direction

*e.g., S;1 Ns, and s; — syhas similar accuracy, but s; N's, and

s, — Sq has different accuracy, so source 2 may be a copier.

Objects covered
by source 2 but
not by source 1

Objects covered / common
by source 1 but

objects
not by source 2

s1Ns,

[Dong et al., VLDB’09a] [Dong et al., VLDB’09b] [Pochampally et al., SIGMOD’14]
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Copy Relationships between Sources

* Incorporate copying detection in truth discovery

Step 2

Truth
Discovery

Source-accuracy
Computation

Copying
Detection

Step 3

Step 1




Spatial-Temporal Data

* Challenges of dynamic data
* Efficiency

* Correlation among entities
* Data smoothness

63



t+

Real Time Truth Discovery
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Real Time Truth Discovery - DynaTD

* Challenges of dynamic data

* Efficiency: When data comes sequentially, the iterative
procedure is time costly

* Temporal relations exist among entities

* Source reliability changes: Observed source reliability
fluctuates around a certain value.

[Li et al., KDD’15]
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Real Time Truth Discovery - DynaTD

*Loss functlon 5|m|lar to [L| et al., SIGMOD’ 14])

Lr = z Lt Z Z Ws Z(Vo t — Vo t) z c; log(ws)

'Solutlon

* Equivalence between the optimization problem and the
maximization of error likelihood

* Derive the incremental truth discovery algorithm which can
dynamically update source weights and compute truths
upon the arrival of new data

66



Real Time Truth Discovery - DynaTD

Source reliability evolves over time

Update source reliability based on continuously
arriving data:

p(wglei.r) < plerlws)p(wslei.r—1)



Correlation

*Example

* Temporal correlation
* Spatial correlation

* Etc.

17)jjri0geneia
QD i Park gl ;Fort Lee, it
§ y

//)/‘Ilsland City*
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ond i Village.
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= Ozone

Traffic Condition
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00:15 GMT / 11 Feb

Weather Condition
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ONTARIO

Monteric
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Gusdalajsra
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<
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Mobile Sensing

69



PM2.5 value?




71

275




Correlation Among Entities

° It is observed only by one sensor!
G — c _ Insufficient information for estimation.

72



Correlation Among Entities

Correlation information can help
Improve the estimation accuracy!

73



Correlated Entities — TD-corr

* |nput:

* Observations for N

entities by K sensors
0
l

 Correlation information
among entities
* Qutput:

+ Truth of each entity x

 Reliability of each
SEeNsor wy, Q
|

[Meng et al., SenSys’15] 7



Correlated Entities — TD-corr

Variable 1: Sensor Weight Variable 2: Truth
Reliability degree of the information True value of an entity

provided by the sensor
2
i, 1060 = Y S [ oY st (R

i’eN(i)
s.t. Z exp(—wy) =1
k=1

Similarity Function

Constraint Function Similarity between correlated entities
(e.g., Gaussian Kernel)

Regularization
with correlation information

75



Correlated Entities — TD-corr

min f(x<*> W) = x$)

Z Z N )

i"eN(i)

Partition entities into disjoint independent sets
{11, Iz,..., I]}

(there are no correlations within the same set)
K

Xmlrvlv (X(*) W) = y 7 W ‘ xi(*) —xi(k)Hz +a z

Ijclielj|\ k=1 i’eN(i)
w

(*)

2
e

76




Experiments on Air Quality Sensing System

* Air Quality Sensing System
* Monitor particulate matter with diameter less than 2.5 micron
(PM2.5)
* 14 participants equipped with mini-AQM
* Ground truth is collected with Thermo

e Conduct PM2.5 sensing in 4 areas in Tsinghua University
Smartphone App V_ B R «”ir" ‘j

........

' * Tsinghua University
mini'AQM Tsinghua University




Correlated Entities — TD-corr

-Ie- TD-corr -‘9- TD-corr
-8~ CRH -8~ CRH
S0r --CATD | SO% -A-CATD ||
GTM GTM
40! O Mean | 40| o Medion |
=
% 30
20¢
10
0 L L I ‘? 0 I I I L
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Coverage Rate of Sources Coverage Rate of Sources
(a) Measured by MAD (b) Measured by RMSE

The proposed method performs better
especially when the coverage rates of sensors are low
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Long-tail Phenomenon

* Challenge when most sources make a few claims

* Sources weights are usually estimated as proportional to the
accuracy of the sources

* If long-tail phenomenon occurs, most source weights are not
properly estimated.

e Challenge when most entities get a few claims

* If an entity get very few claims, the estimation of the truth
may not be accurate

* Confidence-aware approaches
e considers the confidence interval of the estimation

79



Long-tail Phenomenon on Sources Side -
CATD

* Assume that sources are independent and error made
by source s: €, ~ N(0, 02)

__ Lses Ws€s Yses WE0§
*€aggregate = ~N| O

Yises Ws ’ Zses Ws)z

Without loss of generality, we constrain ), .ccw; = 1

* Optimization

. 2 2
min WLl

{ws } sES

S.1. Zws = 1,

seES
Ws ; O,VS < S. [Li et al., VLDB’15]
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Long-tail Phenomenon on Sources Side -
CATD

Sample variance is not accurate with small number of
samples.
Find a range of values that can act as good estimates.
Calculate confidence interval based on

|Nsla?

— ~ Xz(leD

2
Og



Long-tail Phenomenon on Sources Side -
CATD

* Consider the possibly worst scenario of 2

* Use the upper bound of the 95% confidence
interval of g2

2

W2 = ZnENS (x% — x:L(O))Z

2
X(0.05,|Ng|)




Long-tail Phenomenon on Sources Side -
CATD

. 2 2
1min WsUg
{ws}

€S
S.t. Zwszl,ws>O,Vs€S.
seS

e Closed-form solution:

2
1 X
We o — = (0.05,INs)

Us ZnENS (x,i — XZ(O))Z

83



Long-tail Phenomenon on Sources Side -
CATD

Example on calculating confidence interval

A

Source ID #Claims o2 Confidence Interval (95%)

Source A 200 0.1 (0.0830, 0.1229)
Source B 200 3 (2.4890, 3.6871)
Source C 2 0.1 (0.0271, 3.9498)

Source D 2 3 (0.8133, 118.49)




Long-tail Phenomenon on Sources Side -
CATD

Example on calculating source weight

Source Weight  Source Weight

Source ID 52 u? (based on 02)  (based on u2)
Sourcec A 0.1 0.1229 0.4839 0.9385
Source B 3 3.6871 0.0161 0.0313
Source C 0.1  3.9498 0.4839 0.0292

Source D 3 118.49 0.0161 0.0010




Long-tail Phenomenon on Sources Side -
CATD

Game dataset

. Error rate of
Question Error rate of

level

Higher level
indicates
harder
qguestions

f
H © 0o N o0 1 B W N R
\.

Majorit

Vojtingy CAID

0.0297 0.0132
0.0305 0.0271
0.0414 0.0276
0.0507 0.0290
0.0672 0.0435
0.1101 0.0596
0.1016 0.0481
0.3043 0.1304
0.3737 0.1414
0.5227 0.2045
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Long-tail Phenomenon on Claim Side -
ETCIBoot

* Provide estimation of confidence intervals (i.e., Cl) for
each entity’s truth

* Bootstrap

Dataset

Bootstrap
samples

Bootstrap
replications

[Xiao et al., KDD’16]



Long-tail Phenomenon on Claim Side -
ETCIBoot

* Derive confidence intervals from bootstrap samples

Confidence Intervals obtained on

indoor floorplan dataset
20 T . : . :
[ JCI-ETCIBoot

—
Lh
—-‘i
_-_-‘

W i

i LY
' Ww Wor g

100 120

CI’s Endpoints
S

Ln
T

20 40 60 80
Object Index
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Fine-Grained Truth Discovery - FaitCrowd

* To learn fine-grained (topical-level) user expertise and the
truths from conflicting crowd-contributed answers.

* Topic is learned from question&answer texts

-
‘II
L
Y
S
2
&
w

[Ma et al., KDD’15]
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Fine-Grained Truth Discovery - FaitCrowd

User
Question Word
® Input ul u2 u3
ql 1 2 1 a b
* Question Set a2 5 1 5 b c
e User Set B | 1 2 2 | a  c
g4 1 2 2 d e
* Answer Set a5 5 . . ¢
e Question Content a6 ! 2 2 d i
Topic Question
o
Output @ o » o
* Questions’ Topic K2 | a4 o5 a6
* Topical-Level Users’ User ul u2 u3
, . K1 (238) 27064 1.00
t
Expertise APETE K2 1.30E-4 2.34 2.35
* Truths Question ql q2 I"_t_:]é_—\: q4 a5
Truth 1 2 1 2 1
Question ql q2 E g3 E q4 g5
Ground Truth 1 2 '\ 1 ,: 2 1

~_——— - -




Fine-Grained Truth Discovery - FaitCrowd

e Overview

\
Intermediate
Input Output Hyperparameter Variable

= Jointly modeling question content and users’ answers by introducing
latent topics.

= Modeling question content can help estimate reasonable user

reliability, and in turn, modeling answers leads to the discovery of
meaningful topics.

= Learning topics, topic-level user expertise and truths simultaneously.

1



Fine-Grained Truth Discovery - FaitCrowd

* Answer Generation

* The correctness of a user’s answer
may be affected by the question’s
topic, user’s expertise on the topic
and the question’s bias.

e Draw user’s expertise
2
€zqu ™ N(/JH a )

P

n

> Yom tq<—7q
2 ¢= &
| »
R €
Vi3 foaiu &

_________
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Fine-Grained Truth Discovery - FaitCrowd

* Answer Generation

e The correctness of a user’s answer
may be affected by the question’s

topic, user’s expertise on the topic p——

and the question’s bias. @ kiyq;m : a7
e Draw user’s expertise Zy, — *
77 Mq ﬁq A Nq @ Q

€zqu ™ N(Ma 02)

|
* Draw the truth K ;K U &
tg ~ U(vq) g
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Fine-Grained Truth Discovery - FaitCrowd

* Answer Generation

* The correctness of a user’s answer
may be affected by the question’s
topic, user’s expertise on the topic

and the question’s bias. @ > Yam L, < 7

* Draw user’s expertise n Zg — ﬂ{ @

y L\ 1

€ u ~ N(u,02) . a

’ |

* Draw the truth @ ;K ’ .
tq ~ Ulvg) | |

B P a M

* Draw the bias
b, ~ N(0,0%)
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Fine-Grained Truth Discovery - FaitCrowd

* Answer Generation

* The correctness of a user’s answer
may be affected by the question’s
topic, user’s expertise on the topic

- ——

and the question’s bias. @ g i O
* Draw user’s expertise n ﬁq — : N 1

€zqu ™ N(Ma 02)

< |
1 P
* Draw the truth K ;K ’ o
tq ~ Ulvg) i i .

* Draw the bias
b, ~ N(0,0%)

° 4 \
Draw a user’s answer ( ez T and by |— plagy = tolty) 1 |
aqulty ~ logistic(e,, v, by)



Question | Majority CATD FaitCrowd
level Voting

O 00 N oo U1 b W N

[ERY
o

Game dataset

0.0297
0.0305
0.0414
0.0507
0.0672
0.1101
0.1016
0.3043
0.3737
0.5227

0.0132
0.0271
0.0276
0.0290
0.0435
0.0596
0.0481
0.1304
0.1414
0.2045

Fine-Grained Truth Discovery - FaitCrowd

0.0132
0.0271
0.0241
0.0254
0.0395
0.0550
0.0481
0.0870
0.1010
0.1136
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Overview

Active Crowdsourcing Scenarios

Applications and Open Questions

Resources

References

€E€CCCEL
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Active Crowdsourcing

amazonmechanlcal turk

Artificial Artificial Intelligence

Get Results
from Mechanical Turk Workers

Ack workers to complete HITs - Human Intelligence Tasks - and
get results using Mechanical Turk. Get Started.

As a Mechanical Turk Requester you:

+ Have access to a global, on-demand, 24 x 7 workforce
« Get thousands of HITs completed in minutes
« Pay only when you're satisfied with the results

Fund your Load your Get
account tasks results

®© 0600

requester

& CrowdFlower **°

Make Money
by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that
you work on. Find HITs now.

As a Mechanical Turk Worker you:

« Can work from home
« Choose your own work hours
« Get paid for deoing good work

Find an Earn
interesting task Work money

©®0

or learn more about being a Worker

worker
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Active Crowdsourcing Scenarios

*Challenges

llocation

D

. !
I WANT YOUR
Ta.sk 1 Task?2 INFORMATION!

Priv tlon
BID
ch 5’-"-')

Bu

BiD

BID BID

ncen



Budget Allocation

* Since active crowdsourcing costs money, we need
to use the budget wisely.

* Budget allocation
* Which instance should we query for labels?
* Which worker should we choose for a certain task?

* Goal
* To maximize utility (eg. overall accuracy)



Maximize Accuracy — Opt-KG

* Need to estimate the labeling ambiguity for each
instance on the fly

* |ntuition:
* avoid spending much budget on fairly easy instances

e avoid spending much budget on few highly ambiguous
instances

*|deally

* put those few highly ambiguous instances aside to save
budget

 estimate the reliability of each worker on the fly

* allocate as many labeling tasks to reliable workers as
possible
[Chen et al., ICML'13]



Problem Settings

* N independent binary instances
*True label Z; € {+1,—1}
* Instance difficulty: 8; = P(Z; = +1)

* relative frequency of +1 appears when the number of
workers approaches infinity
* P(Z; = +1) = 0.5 means the instance is hard

* Workers are noiseless (for basic model)

. P(yl-j = +1) = 0;, where y;; is worker j’s label for
instance i
* Labels for instance i are i.i.d. from Bernoulli(8;)



Bayesian setting

°0; is drawn from a known Beta prior distribution
Beta(a )

* It means we have a; positive and b? negative
pseudo-labels for the i-th instance at the initial
stage

e Posterior:

t ty _
-Beta(a”l bt“ {Beta(a +1,b;),ify;, =1

Beta(a , bt +1),ify;, = -1



Maximize Accuracy — Opt-KG

* Formally, maximizes the expected accuracy taken over the
sample paths (io,yio, e iP5 Vig_y ) generated by a policy T

* Stage-wise Rewards:
» Get label +1: R*(a,b) = h(I(a + 1,b)) — h(I(a, b))
* Get label —1: Ri_tl(a, b) = h(I(a,b + 1)) — h(I(a, b))

* Where h(x) = max(x,1 — x),
[(a, b) is the cdf of Beta(a,b) at x = 0.5

* Greedy strategy
R(S%, i) = max(R}', R:)



Maximize Accuracy — Opt-KG

Ql?&&%
v &3&
Q33?




Maximize Accuracy — Opt-KG
Accuracy

P a2a
81%
Acc?rzacy & a a
-1 +4

69%

TP

2 39
Accuracy |

E | 1] |+




Maximize Accuracy — Opt-KG

o 3 23

Rewar

232
Accuracy

. .Reward -1 ¥ ¥
=, 3 ¢
Accuracy |

Rewfrd -1 ¥




Maximize Accuracy — Opt-KG

2, £ 4 23 &

819 Unselected
Rewar
Accu racy & 3 a 2
Reward Unselected
Accu racy 3 ? 2

2 Selected

Reward
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Challenges Under a Tight Budget

Quantity and Quality Trade-off Different Requirements of Quality

| want my results
are not randomly
guessed.

F | will approve a result if
‘ more than 75% of the
T workers agree on that

‘ label.

[Li et al., WSDM’16]
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Maximize Quantity — Requallo

*|nputs
* Requester's requirement

*The budget
* T: the maximum amount of labels can be afforded

°*Goa

* Label as many instances as possible which
achieve the requirement under the budget




Examples of Requirement

* Minimum ratio
* Approve the result on an instance if a;: b; = c or b;: a; =
c
* Equivalent to set a threshold on entropy
* H