
Converting Output Scores from Outlier Detection Algorithms into Probability
Estimates

Jing Gao

Dept. of Computer Science and Engineering
Michigan State University
East Lansing,MI 48824

gaojing2@msu.edu

Pang-Ning Tan

Dept. of Computer Science and Engineering
Michigan State University
East Lansing,MI 48824

ptan@cse.msu.edu

Abstract

Current outlier detection schemes typically output a nu-
meric score representing the degree to which a given obser-
vation is an outlier. We argue that converting the scores into
well-calibrated probability estimates is more favorable for
several reasons. First, the probability estimates allow us to
select the appropriate threshold for declaring outliers using
a Bayesian risk model. Second, the probability estimates
obtained from individual models can be aggregated to build
an ensemble outlier detection framework. In this paper, we
present two methods for transforming outlier scores into
probabilities. The first approach assumes that the posterior
probabilities follow a logistic sigmoid function and learns
the parameters of the function from the distribution of out-
lier scores. The second approach models the score distri-
butions as a mixture of exponential and Gaussian probabil-
ity functions and calculates the posterior probabilites via
the Bayes’ rule. We evaluated the efficacy of both methods
in the context of threshold selection and ensemble outlier
detection. We also show that the calibration accuracy im-
proves with the aid of some labeled examples.

1 Introduction

Outlier detection has been extensively studied for many
years, resulting in the development of numerous algorithms
[7, 3, 6]. These algorithms often produce a numeric-valued
output score to represent the degree to which a given ob-
servation is unusual. In this paper, we argue that it is in-
sufficient to obtain only the magnitude or rank of outlier
score for any given observation. There are many advan-
tages to transforming the output scores into well-calibrated
probability estimates. First, the probability estimates pro-
vide a more systematic approach for selecting the appro-

priate threshold for declaring outliers. Instead of requiring
the user to choose the threshold in an ad-hoc manner, the
Bayesian risk model can be employed, which takes into ac-
count the relative cost of misclassifying normal examples as
outliers, and vice-versa. Second, the probability estimates
also provide a more robust approach for developing an en-
semble outlier detection framework than methods based on
aggregating the relative rankings of outlier scores [9]. Fi-
nally, the probability estimates are useful to determine the
uncertainties in outlier prediction.

Obtaining calibrated probability estimates from super-
vised classifiers such as support vector machine (SVM),
Naı̈ve Bayes, and decision trees has been the subject of ex-
tensive research in recent years [12, 11, 1, 13]. The calibra-
tion methods generally fall under two categories: paramet-
ric and non-parametric. Parametric methods assume that
the probabilities follow certain well-known distributions,
whose parameters are to be estimated from the training data.
The typical methods used for calibrating classifier’s out-
puts include logistic regression, asymmetric Laplace distri-
bution, and piecewise logistic regression. Non-parametric
methods, on the other hand, employ smoothing, binning,
and bagging methods to infer probability estimates from the
classifier’s output scores.

Each of the preceding methods require labeled examples
to learn the appropriate calibration function. They are in-
applicable to calibrating outlier scores because outlier de-
tection is an unsupervised learning task. Therefore a key
challenge in this work is handling the missing label prob-
lem. Our solution is to treat the missing labels as hidden
variables and apply the Expectation-Maximization (EM) al-
gorithm [4] to maximize the expected likelihood of the data.
We consider two approaches for modeling the data. The first
approach models the posterior probability for outlier scores
using a sigmoid function while the second approach models
the likelihoods for the normal and outlier classes separately.
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Our previous work on semi-supervised outlier detection
[5] suggests that adding a small number of labeled examples
helps to improve the detection rate and false alarm rate of
an outlier detection algorithm. In this paper, we further in-
vestigate the benefits of semi-supervised outlier detection in
the context of improving the probability estimation of out-
lier scores by modifying our proposed methods to maximize
the joint likelihoods of the labeled and unlabeled data.

In short, our main contributions are summarized below:

1. We develop two calibration methods for transforming
outlier scores into probabilities. Unlike existing ap-
proaches which are developed for supervised classi-
fiers, our proposed methods do not require labeled ex-
amples. Instead, the labels are treated as hidden vari-
ables to be learnt together with the model parameters.

2. We devise a semi-supervised method to further im-
prove the calibration of probability estimates.

3. We illustrate the benefits of converting outlier scores
into probabilities in the context of threshold selection
and ensemble outlier detection. Our results show that
a better performance is achieved using the probability
estimates instead of the raw outlier scores.

The rest of the paper is organized as follows. Section
2 describes our calibration method using sigmoid function
while Section 3 presents an alternative method using a mix-
ture of exponential and Gaussian distributions. Section 4
shows how to extend these methods to incorporate labeled
examples. In Section 5, we describe the advantages of us-
ing calibrated probabilities for threshold selection and en-
semble outlier detection. Experimental results are given in
Section 6 while the conclusions are presented in Section 7.

2 Calibration Using Sigmoid Function

Logistic regression is a widely used method for trans-
forming classification outputs into probability estimates.
Converting outlier scores, on the other hand, is more chal-
lenging because there are no labeled examples available.
This section describes our proposed method for learning the
labels and model parameters simultaneously using an EM-
based algorithm.

2.1 Modeling Sigmoid Posterior Probabil-
ity

Let X = {x1, x2, · · · , xN} denote a set of N observa-
tions drawn from a d-dimensional space, Rd. Suppose the
data is generated from two classes: the outlier class O and
the normal class M . Let F = {f1, f2,· · · , fN} be the corre-
sponding outlier scores assigned to each observation in X .

Without loss of generality, we assume that the higher f i is,
the more likely xi is an outlier.

Our objective is to estimate the probability that xi is an
outlier given its outlier score fi, i.e., pi = P (O|fi). The
probability that xi is normal can be computed accordingly
by P (M |fi) = 1− pi. According to Bayes’ theorem:

P (O|fi) =
p(fi|O)P (O)

p(fi|O)P (O) + p(fi|M)P (M)

=
1

1 + exp(−ai)
(1)

where

ai = log
p(fi|O)P (O)
p(fi|M)P (M)

(2)

As shown in [2], ai can be considered as a discriminant
function that classifies xi into one of the two classes. For
a Gaussian distribution with equal covariance matrices, a i

can be simplified to a linear function:

ai = Afi + B (3)

Replacing Equation 3 into 1 yields:

pi = P (O|fi) =
1

1 + exp(−Afi −B)
(4)

Our task is to learn the parameters of the calibration
function, A and B. Let ti be a binary variable whose value
is 1 if xi belongs to the outlier class and 0 if it is normal.
The probability of observing ti is

p(ti|fi) = pti

i (1− pi)1−ti (5)

which corresponds to a Bernoulli distribution. Let T = [t i]
denote an N -dimensional vector, whose components repre-
sent the class labels assigned to the N observations. As-
suming that the observations are drawn independently, the
likelihood for observing T is then given by

P (T |F ) =
N∏

i=1

pti

i (1− pi)1−ti (6)

Maximizing the likelihood, however, is equivalent to mini-
mizing the following negative log likelihood function:

LL(T |F ) = −
N∑

i=1

[
ti log pi + (1− ti) log(1 − pi)

]
(7)

Substituting Equation 4 into 7, we obtain:

LL(T |F ) =
N∑

i=1

[
(1−ti)(Afi+B)+log(1+exp(−Afi−B))

]
(8)
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In supervised classification, since labeled examples
{xi, ti} are available, we may create a training set (fi, ti)
and learn the parameters of the sigmoid function directly by
minimizing the objective function in Equation 8 (see [11]
and [13]). Unfortunately, because outlier detection is an
unsupervised learning task, we do not know the actual val-
ues for ti. To overcome this problem, we propose to treat
the ti’s as hidden variables and employ the EM algorithm
to simultaneously estimate the missing labels and parame-
ters of the calibration function. The learning algorithm is
presented in the next section.

2.2 Learning Parameters of Sigmoid Func-
tion

The EM algorithm is a widely used method for finding
maximum likelihood estimates in the presence of missing
data. It utilizes an iterative procedure to produce a sequence
of estimated parameter values: {θs|s = 1, 2, ...}. The pro-
cedure is divided into two steps. First, the missing label ti is
replaced by its expected value under the current parameter
estimate, θs. A new parameter estimate is then computed by
minimizing the objective function given the current values
of T s = [tsi ]. Table 1 shows a pseudocode of the algorithm.

EM algorithm:
Input: The set of outlier scores, F = {f1, · · · , fN}
Output: Model parameters, θ = (A, B)
Method:
1. s← 0.
2. Initialize the parameters to θ0

3. Loop until algorithm converges
3.1 E-step: Set ts+1

ij = E(tij |F, θs)).
3.2 M-step: Compute θs+1 = argminθLL(T |F ).
3.3 set s← s + 1

Table 1. EM algorithm framework

LL(T |F ) is the negative log likelihood function to be
minimized. During the E-step, the model parameters are
fixed while LL(T |F ) is minimized with respect to ti. Since
LL(T |F ) is a linear function of ti, it is minimized by set-
ting:

ti =
{

1 if Afi + B > 0
0 if Afi + B ≤ 0 (9)

During the M step, since T s = [tsi ] is fixed, minimizing
LL(T |F ) with respect to A and B is a two-parameter op-
timization problem, which can be solved using the model-
trust algorithm described in [11].
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Figure 1. Outlier Score Distributions

3 Calibration Using Mixture Modeling of
Outlier Scores

Although fitting posterior probabilities into a sigmoid
function is simple, the method makes a strong assumption
that the outliers and normal examples have similar forms
of outlier score distributions. In this section, we present an
alternative method for modeling the outlier scores using a
mixture of exponential and Gaussian distributions.

3.1 Using Mixture Models to Describe
Outlier Score Distributions

Consider a data set containing outliers that are uniformly
distributed and normal observations drawn from a Gaus-
sian distribution. We are interested in modeling the dis-
tribution of their outlier scores. Suppose the outlier score
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is computed based on the distance between a data point to
its k-th nearest neighbor. Figure 1 shows the typical out-
lier score distributions for the outlier and normal classes1.
Observe that the outlier scores for the normal class tend to
have an exponential distribution whereas that of the outlier
class seems to follow a Gaussian distribution. This result
suggests that a mixture model consisting of an exponential
and a Gaussian component may fit well to the outlier score
distributions.

At first glance, it may seem quite surprising to observe
that the scores for the outlier class follow a Gaussian dis-
tribution. In the following, we give a theoretical justifica-
tion as to why the outliers may indeed have a Gaussian dis-
tributed outlier scores.

Theorem 1 Suppose X and Y are 1-dimensional random
variables. If X ∼ U(−δ, δ) and Y ∼ N(0, 1), then the
distances between examples drawn from X and Y follow a
Gaussian distribution.

Proof. Let Z be the random variable for the distance be-
tween X and Y , i.e., Z = |X − Y |. Then we need to prove
that Z follows a Gaussian distribution. We begin with the
cumulative distribution function (c.d.f.) for Z:

FZ(z) = P (Z ≤ z) = P (|X − Y | ≤ z)

=
∫∫

R

f(x, y) dxdy

where R is the region defined by |X − Y | ≤ z. If X and Y
are independent, their joint probability density function in
R is:

f(x, y) = f(x)f(y) =
1

2δ
√

2π
exp(−y2)

and zero elsewhere. Therefore

FZ(z) =
∫∫

R

1
2δ
√

2π
exp(−y2) dxdy

=
∫ δ

−δ

1
2δ
√

2π

∫ δ+z

−δ−z

exp(−y2) dxdy

The c.d.f. for standard normal is often denoted as Φ(x),
where

Φ(x) =
1√
2π

∫ x

−∞
exp(−u2) du

So

FZ(z) =
∫ δ

−δ

1
2δ

[
Φ(δ + z)− Φ(−δ − z)

]
dx

= Φ(δ + z)− Φ(−δ − z)

1The shapes of these histograms are consistently observed when the
experiment is repeated several times.

The probability density function for Z is obtained by tak-
ing the derivative of its c.d.f with respect to z. Because the
derivative of Φ(x) is a Gaussian distribution and a linear
combination of two Gaussian distributions is also a Gaus-
sian, therefore, Z must follow a Gaussian distribution. �

If the outliers are uniformly distributed and the propor-
tion of outliers is considerably smaller than the proportion
of normal observations, it is reasonable to assume that the
k-th nearest neighbor of an outlier corresponds to a normal
observation. Theorem 1 suggests that the distance between
a randomly chosen point from a uniform distribution to an-
other randomly chosen point from a Gaussian distribution
should follow a Gaussian distribution. While such analysis
does not conclusively show that the outlier scores must fol-
low a Gaussian distribution, it does suggest that modeling
the scores of outliers using a Gaussian distribution may be
quite a reasonable assumption. Furthermore, our empirical
results also seem to support this assumption.

Therefore we will use a mixture of Gaussian and expo-
nential distributions for modeling the outlier scores:

pi = p(fi|O) =
1√
2πσ

exp(− (fi − μ)2

2σ2
) (10)

qi = p(fi|M) = λ exp(−λfi) (11)

where μ, σ, and λ are the parameters of the Gaussian and
exponential distributions. The probability of observing t i

can be written as:

p(ti, fi) = [αpi]ti [(1 − α)qi]1−ti (12)

where α is the prior probability of the outlier component
Using Bayes’ rule:

p(ti|fi) =
[αpi]ti [(1 − α)qi]1−ti

p(fi)
(13)

The model parameters θ = (α, μ, σ, λ) are estimated by
minimizing the negative log likelihood function:

LL(T |F ) = −
N∑

i=1

ti log(αpi) + (1− ti) log((1 − α)qi)

(14)
Given the estimate of the model parameters, the posterior

probability of xi being an outlier can be computed using
Bayes’ rule:

P (O|fi, θ̂) =
αp(fi|O, θ̂)

αp(fi|O, θ̂) + (1− α)p(fi|M, θ̂)
(15)

3.2 Learning Parameters of Mixture
Model

Similar to the previous method, we use the EM algorithm
to minimize the negative log likelihood function given in
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Equation 14. During the E-step, the expected value for t i is:

ts+1
i = E(ti|F, θs))

= 1 · P (ti = 1|F, θs) + 0 · P (ti = 0|F, θs)
= P (O|fi, θ

s)

where the posterior is calculated from Equation 15.
During the M step, the model parameters are re-

computed by solving the following partial derivatives:

∂LL(T |F )
∂θ

= 0 (16)

After some manipulation, this leads to the following update
equations for the model parameters:

μs+1 =
∑N

i=1 ts+1
i fi∑N

i=1 ts+1
i

(17)

σs+1 =
∑N

i=1 ts+1
i (fi − μ)2∑N
i=1 ts+1

i

(18)

λs+1 =
∑N

i=1 ts+1
i∑N

i=1 ts+1
i fi

(19)

αs+1 =
∑N

i=1 ts+1
i

N
(20)

4 Incorporating Labeled Examples

This section presents a framework for incorporating la-
beled examples to improve the calibration accuracy of prob-
ability estimates. Let F u and F l be the corresponding sets
of outlier scores assigned to the unlabeled data X u and la-
beled data X l, respectively. Furthermore, suppose L = l i

denote the set of labels associated with the labeled data,
where li = 1 if xi is an outlier, and 0 otherwise.

In Sections 2 and 3, we have shown that the model pa-
rameters are calculated by minimizing the negative log like-
lihood. For semi-supervised learning[8], we may decom-
pose the negative log likelihood into two parts, each corre-
sponding to the labeled and unlabeled data:

θ̂ = min
θ

LL(Fu|θ) + LL(F l, L|θ) (21)

Although the EM algorithm is still applicable to learn
the model parameters under this framework, some modi-
fications are needed. During the E-step, we only need to
estimate the values of ti for the unlabeled data using Equa-
tion 9. The ti values for the labeled data are fixed, i.e.,
ti = li(∀xi ∈ X l).

During the M-step, it can be shown that the parameters
are updated using a combination of the parameter estimates
obtained from the unlabeled data and labeled data:

μs+1 =

∑
fi∈Fu

ts+1
i fi +

∑
fi∈Fl

1{li = 1}fi∑
fi∈Fu

ts+1
i +

∑
fi∈Fl

1{li = 1} (22)

σs+1 =

∑
fi∈Fu

ts+1
i (fi − μ)2 +

∑
fi∈Fl

1{li = 1}(fi − μ)2∑
fi∈Fu

ts+1
i +

∑
fi∈Fl

1{li = 1}
(23)

λs+1 =

∑
fi∈Fu

ts+1
i +

∑
fi∈Fl

1{li = 1}∑
fi∈Fu

ts+1
i fi +

∑
fi∈Fl

1{li = 1}fi

(24)

αs+1 =

∑
fi∈Fu

ts+1
i +

∑
fi∈Fl

1{li = 1}
N

(25)

where

1{li = 1} =
{

1 if li = 1
0 otherwise

5 Applications

This section presents two potential applications that may
benefit from using probability estimates for outlier scores:
threshold selection and ensemble outlier detection.

5.1 Threshold Selection

Most outlier detection algorithms require the user to
specify a threshold so that any observation whose outlier
score exceeds the threshold will be declared as outliers. A
standard approach for determining the threshold is to plot
the sorted values of outlier scores and then choose the knee
point of the curve as the threshold. Such an ad-hoc method
can be imprecise because the location of the knee point is
subject to user interpretation.

This section illustrates a more principled approach for
threshold selection using the Bayesian risk model, which
minimizes the overall risk associated with some cost func-
tion. For a two-class problem, the Bayes decision rule for a
given observation x is to decide w1 if:

(λ21 − λ11)P (w1|x) > (λ12 − λ22)P (w2|x) (26)

where w1 and w2 are the two classes while λij is the cost of
misclassifying wj as wi. Since p(w2|x) = 1− p(w1|x), the
preceding inequality suggests that the appropriate outlier
threshold is automatically determined once the cost func-
tions are known. For example, in the case of a zero-one loss
function, where:

λij =
{

0 if i = j
1 if i �= j

(27)

we declare any observation whose estimated posterior prob-
ability P (O|f) exceeds 0.5 as an outlier.

5.2 Ensemble Outlier Detection

Recently, Lazarevic et al. [9] have proposed a feature
bagging approach for combining outputs from multiple out-
lier detection algorithms. There were two approaches inves-
tigated in this study: breadth first and cumulative sum. In
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both of these approaches, the outputs from each detector in
the ensemble are sorted and ranked according to decreasing
order of their magnitudes. For each observation, the ranks
of its outlier scores in the ensemble are aggregated to obtain
the final outlier score.

Instead of merging the ranks, we propose to combine
their probability estimates. We employ techniques from re-
liability theory to perform the probability aggregation. Each
outlier detector in the ensemble is considered as a compo-
nent in a complex system. The components can be arranged
in series, in parallel, or in any combination of series-parallel
configurations. Detection of outliers by one of the detectors
in the ensemble is analogous to having one of the compo-
nents in the system fails. Using this framework, the overall
probability that a given observation is an outlier is equiva-
lent to the probability that the overall system fails.

Let P (O|x) be the posterior probability that x is an out-
lier according to the ensemble and Pi(O|x) be its posterior
probability estimated by detector i. For the series configu-
ration, at least one of the components must fail in order to
make the entire system fails. Therefore:

P (O|x) = 1−
R∏

i=1

(1− Pi(O|x)) (28)

For the parallel configuration, the system fails only if all
the components break down. Analogously, the probability
that x is an outlier is:

P (O|x) =
R∏

i=1

P (O|xi) (29)

6 Experimental Evaluation

We have conducted our experiments on several real and
synthetic data sets to evaluate the performances of the cal-
ibration methods. We have also demonstrated the effec-
tiveness of using the probability estimates in the context of
threshold selection and ensemble outlier detection.

Table 2. Description of Data Sets
Data sets Total

number of
instances

Number
of features

Number
of outliers

Letter 845 16 79
Opt 623 64 55
SVMguide1 3244 4 155
Cancer 489 10 45
Lpr 2103 183 101
Shuttle 4132 9 132

6.1 Experimental Setup

The data sets used for our experiments are summarized
in Table 2. A description of each data set is given below:

Letter: This corresponds to the letter recognition data
obtained from the UCI machine learning repository. We
choose examples from two classes and designate one of the
classes as normal and the other as outlier.

Optical: This is the optical handwritten data set from
the UCI machine learning repository. Again, we randomly
choose two classes and select data from one class as the
normal examples and a small portion of the other class as
outliers.

SVMguide1: This data set is used to test the libsvm soft-
ware. The data originally comes from an astroparticle ap-
plication. One of the two classes is chosen as the outlier
class while the other is the normal class.

Cancer: This data set, which is obtained from UCI
machine learning repository, records the measurements for
breast cancer cases. There are two classes, benign, which
is considered as normal and malignant, which is the outlier
class.

Lpr: This is one of UNM’s benchmark data sets. For
each trace generated by a user, an ordered list of the fre-
quency counts together with their class label showing “in-
trusive” or “normal” is recorded.

Shuttle: We use a subset of the shuttle data set from Stat-
log Project Database. We choose two of the large classes
as normal and select examples from one of the remaining
smaller classes as outliers.

Our calibration methods utilize the outlier scores pro-
duced by a distance based outlier detection algorithm. The
outlier score is computed based on the distance of each ob-
servation to its k-th nearest neighbor [6]. The value of k is
set to be 3 to 5 times the number of true outliers depending
on the data sets. We choose this method as our underly-
ing algorithm because it is easy to implement and is widely
used by many authors for comparison purposes.

6.2 Empirical Results

We have conducted several experiments to demonstrate
that our proposed methods help to generate meaningful
probability outputs as well as improving the effectiveness
of threshold selection and ensemble outlier detection.

6.2.1 Probability Estimation

The posterior probabilities not only help us to determine the
outlierness of an observation, they also provide estimates of
confidence in outlier prediction. This experiment aims to
demonstrate that the probability estimates are pushed closer
towards 0.5, which indicates a low confidence in prediction,

6



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Outlier Scores

P
ro

b
ab

ili
ty

 E
st

im
at

es

(a) Mixture model approach

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Outlier Scores

P
ro

b
ab

ili
ty

 E
st

im
at

es

(b) Sigmoid approach

Figure 2. Plots of probability estimation for
synthetic data set with variance = 40

when the outliers are difficult to be distinguished from nor-
mal observations.

For this experiment, we use two synthetic data sets gen-
erated from a mixture of two distributions. The normal ob-
servations are generated from a Gaussian distribution while
the outliers are assumed to be uniformly distributed. The
Gaussian distributions for both synthetic data sets have the
same mean but different variance (40 versus 150). Because
of its higher variance, it is harder to distinguish the outliers
from normal observations in the second data set compared
to the first data set.

Figures 2 and 3 show the calibrated probability estimates
for the two data sets. For the first data set, because outliers
are well-separated from the normal examples, most of the
calibrated values are close to either 0 or 1. For the second
data set, because it is harder to distinguish outliers from nor-
mal observations, there are more observations with proba-
bility estimates around 0.5. Without converting the outlier
scores into probabilities, we may not be able to obtain an es-
timate of the confidence in outlier detection. The calibration
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(a) Mixture model approach

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Outlier Scores

P
ro

b
ab

ili
ty

 E
st

im
at

es
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Figure 3. Plots of probability estimation for
synthetic data set with variance = 150

plots for both sigmoid and mixture models look quite simi-
lar. However, note that the mixture model approach does not
always yield a sigmoid-like curve. The shape of the curve
depends on the parameters of the exponential and Gaussian
distributions.

6.2.2 Threshold Selection

The purpose of this experiment is to compare the effective-
ness of using probability estimates for threshold selection.
The baseline method for threshold selection is obtained in
the following way. For each data set, we first plot the out-
lier scores in increasing order of their magnitudes. Figure 4
shows an example of such plot for the SVMguide1 data set.
The knee of the curve, which is located somewhere between
0.05 and 0.1, is then chosen as the threshold for declaring
outliers. We refer to this method as “knee” in the remainder
of this section.

Tables 3 to 8 show the results of applying different meth-
ods for threshold selection. “sigmoid” and “mix” corre-
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Table 3. Letter
knee mix sigmoid Smix Ssigmoid

R 0.9937 0.6582 0.7759 0.7165 0.7848
P 0.4642 1.0000 0.9903 1.0000 0.9810
F 0.6328 0.7939 0.8701 0.8348 0.8720

FA 0.0007 0.0340 0.0226 0.0284 0.0217

Table 4. Opt
knee mix sigmoid Smix Ssigmoid

R 0.4912 0.7018 0.9123 0.7193 0.9474
P 0.9655 0.9756 0.9123 0.9535 0.9000
F 0.6512 0.8163 0.9123 0.8200 0.9231

FA 0.0483 0.0289 0.0087 0.0273 0.0053

Table 5. SVMguide1
knee mix sigmoid Smix Ssigmoid

R 0.4903 0.7419 0.7548 0.7419 0.6968
P 0.8636 0.7516 0.7500 0.7516 0.7941
F 0.6255 0.7468 0.7524 0.7468 0.7423

FA 0.0250 0.0129 0.0123 0.0129 0.0151

sponds to the sigmoid and mixture model approaches de-
scribed in Section 2.1 and Section 3, respectively. “Ssig-
moid” and “Smix” are the semi-supervised versions of these
algorithms, which utilize some labeled examples to aid the
calibration. The labeled examples count for 10% in the data
set. We conduct our experiments using the 0-1 loss func-
tion, which means that the probability threshold for identi-
fying outliers is 0.5.

The following evaluation metrics are used to compare
the effectiveness of the threshold selection methods: Pre-
cision(P), Recall(R), F-measure(F) and False Alarm rate
(FA). All of these metrics are computed from the confusion
matrix shown in Table 9. The formula for calculating these
metrics are listed in Equation 30.

Table 6. Cancer
knee mix sigmoid Smix Ssigmoid

R 0.4667 0.9778 0.8222 0.9778 0.8222
P 0.9130 0.6667 0.8222 0.6769 0.8222
F 0.6176 0.7928 0.8222 0.8000 0.8222

FA 0.0515 0.0024 0.0180 0.0024 0.0180

Table 7. Lpr
knee mix sigmoid Smix Ssigmoid

R 0.3564 1.0000 0.4554 1.0000 0.6139
P 1.0000 0.5372 1.0000 0.5372 1.0000
F 0.5255 0.6990 0.6259 0.6990 0.7607

FA 0.0314 0 0.0267 0 0.0191

Table 8. Shuttle
knee mix sigmoid Smix Ssigmoid

R 0.4242 0.5152 0.6894 0.5455 0.7045
P 0.7568 0.7010 0.6894 0.7129 0.6889
F 0.5437 0.5939 0.6894 0.6180 0.6966

FA 0.0187 0.0159 0.0103 0.0149 0.0098

Table 9. Confusion Matrix
True outlier True normal

Predicted outlier TP FP
Predicted normal FN TN

P =
TP

TP + FP

R =
TP

TP + FN

F =
2TP

2TP + FP + FN

FA =
FN

FN + TN
(30)

A good threshold must balance both precision and re-
call, therefore a higher F-measure value is favored. Our
results clearly show that the F-measure for all the data
sets improved after probability calibration. Thus, convert-
ing the outlier scores into probabilities improves thresh-
old selection in terms of balancing its precision and recall.
The results also show that the addition of labeled examples
tends to produce better calibration. More specifically, both
”Smix” and ”Ssigmoid” approaches outperform their unsu-
pervised counterparts in five out of six data sets in terms of
their F-measure.

6.2.3 Outlier Detection Ensemble

This experiment compares the effectiveness of using proba-
bility estimates for combining outputs from multiple outlier
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Table 10. AUC values for different approaches to combining outputs from multiple outlier detectors
knee sum breadth mix sigmoid Smix Ssigmoid

Cancer 0.9885 0.9903 0.9883 0.9941 0.9921 0.9940 0.9932
Svmguide1 0.9750 0.9798 0.9694 0.9846 0.9841 0.9846 0.9823

Letter 0.9555 0.9549 0.9412 0.9592 0.8826 0.9657 0.9580
Opt 0.9605 0.9583 0.9503 0.9695 0.9643 0.9719 0.9640
Lpr 0.9999 1.0000 0.9999 0.9965 1.0000 0.9965 1.0000

Shuttle 0.9881 0.9885 0.9885 0.9900 0.9890 0.9900 0.9908

detectors as opposed to the rank aggregation methods (de-
noted as breath and sum) proposed by Lazarevic and Ku-
mar [9]. The number of ensembles used in experiments is
10. The receiver-operating characteristic (ROC) curve is
often used to show the tradeoff between detection rate and
false alarm rate. Alternatively, we may use the area un-
der ROC curve (AUC) as our evaluation metric, where the
better scheme will have an AUC value closer to 1. From
Table 10, it can be observed that combining probability es-
timates from multiple outlier detectors yields higher AUC
values than combining the ranks of their outlier scores. The
semi-supervised approaches (“Ssigmoid” and “Smix”) also
tend to produce higher AUC values that unsupervised ap-
proaches in most of the data sets.

Another interesting observation can be made when com-
paring Tables 3 to 8 against Table 10. For threshold se-
lection, the “sigmoid” approach tends to outperform the
“mix” approach, whereas for ensemble outlier detection, the
“mix” approach tends to produce higher AUC. One possi-
ble explanation is that both applications (threshold selec-
tion and ensemble outlier detection) have different require-
ments concerning the calibration accuracy. Threshold selec-
tion is more concerned with determining whether the poste-
rior probability is greater than or less than 0.5 and places
less emphasis on how far the estimated probabilities de-
viate from their true probabilities. In contrast, the differ-
ence between the estimated probability and true probability
may affect the effectiveness of the ensemble outlier detec-
tion framework. Since the “mix” approach models the out-
lier score distributions separately for the normal and outlier
classes, we expect its probability estimates to be more ac-
curate. We plan to investigate this issue further as part of
our future work.

6.2.4 Reliability Diagram

Reliability diagram [10] is a method for visualizing the cali-
bration accuracy of a classifier. It can also be used in outlier
detection to show the correspondence between outlier score
values and their empirical probabilities. For the raw outlier
scores, we normalize them to fall within the range of [0,1].
We then discretize the scores into equal with bins(0.1) and
compute the fraction of examples in each bin that are true
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Figure 5. Reliability Diagrams
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outliers. The latter corresponds to the empirical probability
estimate for the corresponding bin. Figure 5(a) shows the
reliability diagram for the normalized raw outlier scores. If
the outlier scores are in agreement with the estimated proba-
bilities, the points should be close to diagonal (dashed) line.
This plot shows that the normalized scores obtained directly
from distance-based outlier detection algorithms have little
to do with posterior probabilities.

After calibration, Figure 5(b) shows that the predicted
probabilities are closer to the empirical ones. However the
difference is still quite large since the calibration is done
without using any labeled information. Finally, Figure 5(c)
shows the reliability diagram for semi-supervised calibra-
tion. Note that most of the points have moved closer to the
diagonal line, which means that the labeled examples help
to improve the probability calibration.

7 Conclusions

In this paper, we study the problem of transforming out-
lier scores into probability estimates. Unlike existing cal-
ibration algorithms, our proposed methods do not require
any labeled examples. In the first approach, we treat the la-
bels as hidden variables and fit outlier scores into a sigmoid
function. An efficient EM-based algorithm is developed to
learn the function parameters. To obtain a more accurate
calibration, we propose an alternative approach that mod-
els the score distributions using a mixture of Gaussian and
exponential distributions. The posterior probability is then
calculated using Bayes’ rule. We show that the probabil-
ity estimates from outlier scores have many potential appli-
cations. We discuss about the use of the probability esti-
mates in selecting a more appropriate outlier threshold and
in improving the performance of an outlier detection en-
semble. Our experimental results suggest that our proposed
methods can produce accurate calibration and can be used
effectively for threshold selection and outlier detection en-
semble. We further demonstrate that the calibration perfor-
mance improves with the aid of some labeled examples.
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