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Abstract One possible approach is to consider only the common

Incorporating background knowledge into unsupervisé@ftures between the labeled and unlabeled data, and then
clustering algorithms has been the subject of extensive #Ply existing semi-supervised learning techniques to guide
search in recent years. Nevertheless, existing algorithms hf2 clustering process on the reduced feature sets. However,
plicitly assume that the background information, typicallgWe clustering results for such an approach tend to be poor
specified in the form of labeled examples or pairwise copecause the approach does not fully utilize all the informa-
straints, has the same feature space as the unlabeled tigavailable in the labeled and unlabeled data. As will be
to be clustered. In this paper, we are concerned witrshown in Section 4, when the number of shared features is
new problem of incorporating partial background knowledd@0 few, the clustering results might be worse than applying
into clustering, where the labeled examples have moderdisupervised clustering on the unlabeled data.

overlapping features with the unlabeled data. We formulate The key challenge of semi-supervised clustering with
this as a constrained optimization problem, and propose thRytial background knowledge is to determine how to utilize
learning algorithms to solve the problem, based on hard §§h the shared and non-shared features while performing
fuzzy clustering methods. An empirical study performed &#stering on the full feature set of the unlabeled data. The
avariety of real data sets shows that our proposed algoritH#figi-supervised algorithm also has to recognize the possi-
improve the quality of clustering results with limited labelefility that the shared features might be useful for identifying

examples. certain clusters but not for others.
To overcome these challenges, we propose a novel
1 Introduction approach for incorporating partial background knowledge

. . . . into the clustering algorithm. The idea is to first assign a
The topic of semi-supervised clustering has attracted con- .. .
. . ) .~ _~tonfidence-rated label to each unlabeled example by using a
siderable interests among researchers in the data mining gnd . .
: ) . classifier built from the shared feature set of the data. A con-
machine learning community [2, 3, 4, 8]. The goal of semi; . : . ; .
: S ! S trained clustering algorithm is then applied to the unlabeled
supervised clustering is to obtain a better partitioning of the . .
. . ata, where the constraints are given by the unlabeled ex-
data by incorporating background knowledge. Although cur- . . .
.amples whose classes are predicted with confidence greater

rent sem|—superV|sed.algonthms .have shown significant I n a user specified threshasd The algorithm also assigns
provements over their unsupervised counterparts, they as-

A weight factor to each class, in proportion to the ability of
sume that the background knowledge are specified in the C
Ihé shared feature set to discriminate between examples that
same feature space as the unlabeled data. These algori s .
. . elong to the class from other classes in the labeled data. We
are therefore inapplicable when the background knowledgé : :
. . . . velop hard and soft (fuzzy) solutions to the constrained
is provided by another source with a different feature space. : . )
. . cdjsterlng problem and perform a variety of experiments us-
There are many examples in which the backgroun .
ing. real data sets to demonstrate the effectiveness of our al-
knowledge does not share the same feature space as the orF ms
to be mined. For example, in computational biology, analysts '
are often interested in the clustering of genes or proteins. EX-
tensive background knowledge is available in the biomedical
literature that might be useful to aid the clustering task. k¢t U be a set ofn unlabeled examples drawn fromda
these examples, the background knowledge and the datdifaensional feature space, whilebe a set of labeled ex-
be mined may share some common features, but their ove?glPles drawn from &'-dimensional feature space. Without
feature sets are not exactly identical. We termed this task@gs of generality, we assume that the firdeatures for the

semi-supervised clustering with partial background informé@pPeled and unlabeled data are identical—together, they form

Incorporating Background Information

tion. the shared feature set betwdgmndL . Each labeled exam-
plel; € L has a corresponding labg} € {1,2,---,q},
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clusters. We use the notatioh= {cy, ¢, - - , ¢, } to repre- Once we have computed the nearest-neighbor distances,

sent thek cluster centroids, whetd : ¢; € 9. the class membership functiofi; is determined in the
Our proposed framework for incorporating partial backellowing way. For hard clustering, each example € U

ground knowledge into the clustering task consists of the fd-labeled as follows:

lowing steps:

{ 1 Ifj = minlglgk NN(?,Z)

Step 1: Build a classifierC using the shared feature set of2-2) fii =9 0 otherwise

the labeled examplek,.

For fuzzy clustering,f;; measures the confidence that
belongs to the class;. In [5], several confidence measures
are introduced for nearest neighbor classification algorithms.
Step 3: Cluster the examples i) subjected to the con-We adopt the following confidence measure for classification

Step 2: Apply the classifierC to predict the labels of the
examples irJ.

straints given by the predicted labels in Step 2. output:
The details of these steps are explained in the next three M(i,j) = %,
subsections. To better understand the overall process, we o+ NN(i, j)

shall explain the constrained clustering step first befQf® areq is a smoothin

. ) L g parameter. The valuefpf is then
discussing the classification steps.

computed as follows:

2.1 Constrained Clustering with Partial Background M (i, 5)
Knowledge The objective function for the clustering task2-3) fij = 7
has the following form:

0k ok whereZ is a normalization factor so th@;?:l fij =1
21 - )™ d2, wiltii — fii|™ To incorporatef;; into the objective functiort), we
@D Q=3 > (y)"d +R;; sltig = need to identify the class label associated with each clyister
) ] ) o ) If £ = g, the one-to-one correspondence between the classes
The first term is equivalent to the objective function fagnq clusters is established during cluster initialization. The
standard k-means algorithm. The second term penalizes gfier centroids are initialized in the following way: after
yiolations.of constraints on the predicted labels of ?Xamp'ﬁﬁssifying the unlabeled examples, we choose examples that
in U. d;; is the square distance between data pajnand naye confidence greater tharand use them to compute the
the cluster centroid;. R is a regularization parameter thaeniroid for each class. Because there is a high penalty for
determines the tradeoff between the distance to centroids Qgggning an example to a cluster that is different than its
the amount of constraint violations,; is a weight factor that e icted class, we expect the class labels for the clusters to
represents how informative is the shared feature set in tep@$,ain unchanged even though the centroid locations may
of discriminating clustey from other clusters. Finallyt;; change and some of their examples are re-assigned to other
is the cluster membership function, which indicates whethgy,sters in later rounds.
the unlabeled example; should be assigned to cluster If the number of clusters exceeds the number of classes,
For hard clusteringy: = 1 and f;; is a discrete variable yhe initial centroids for the remaining clusters that do not
in {0,1} that satisfies the constraid:_, fi; = 1. For have a corresponding class label are chosen randomly. Fur-
fuzzy clustering,m = 2 and f;; is a continuous variablethermore, the unlabeled examples that are assigned to these
in the rangel0, 1] that satisfiest:1 fij = 1. The next clusters do not contribute to the second term of the objective
subsection explains how the confidence-rated lafgJsdre function. Finally, if the number of clusters is less than the
obtained. number of classes, we may either ask the domain experts to
determine thek labels ing that are contained in the unla-
2.2 Classification of Unlabeled Exampleshe employ beled data set or to assign each cluster to the majority class
the nearest-neighbor classifier for labeling the examplesoinexamples within the cluster.
U. For each example,; € U, we computeNN(z, ),
which is the distance between to its nearest neighbor2.3 Cluster Weighting The proposed objective function
in L from class;j. Note that the distance is computedhould also take into account how informative is the shared
based on the shared feature set betweemnd L. If feature set. We use the weighi to reflect the importance
min; NN(i,5) > 4, then the example is ignored from thef the shared feature set in terms of discriminating clugter
second term of the objective functiofi.is the threshold for from other clusters. The concept of feature weighting has
filtering unnecessary constraints due to examples that hbeen used in clustering by Frigui et. al. [7].
low confidence values. Let D(d,j) denote the discriminating ability of the

i=1 j=1



feature sef? for cluster;: During the M-step, since the configuration matrix is
fixed, the second term of the objective function is unchanged.

Zu;igj d(xs, ¢, R Minimizing @ is therefore equivalent to minimizing the first
2.4 D(d,j) = <l term. The centroid update formulais :
( ) ( a.]) ZU.GCA d(l’i,Cj,?Rd) p
T J n
(3.8) o = izt tigli
whered(u;, ¢;, R?) is the distance between and centroid ‘™ J St

c; based on the feature s@t’. Intuitively, D(d, j) is the
ratio of the between-cluster distance and the within-clus@2 SemiFuzzy ClusteringIn fuzzy clustering,[t;;] are
distance. The higher the ratio, the more informative is tkentinuous variables. During the E-step, we should mini-
feature set in terms of discriminating clustefrom other mize @ with respect tdl” subject to the constraints. We may
clusters. use the Lagrange multiplier method and obtain:

The weight of clustey is then determined as follows:

n k n k n k
25) w; = D(p.j)/D(d.J) Q=Y (ti)?d5+> > wiltiy—fi;)° ;)\ ;tu

i=1 j=1 =1 j=1
wherep is the number of shared features ah the total Differentiating( yields the following:
number of features ib. i+ 2Rw; [
(3.9 tij = M KAV N

3 Algorithms 2(d7; + Rw;)
This section presents the SemiHard and SemiFuzzy clWige solution for); is:

tering algorithms for solving the constrained optimization . .
problem posed in the previous section. The EM algorithm o Z Ruw; f” Z
[1] provides an iterative method for solving the optimiza- d + Rw;

tion problem. The basic idea of the algorithm is as follows:
first, an initial set of centroids is chosen. During the E-step, During the M-step, the objective function once again
the cluster centroids are fixed while the configuration matiiepends only on the first term. Therefore,

T = [t;;] is varied until the objective function is minimized.

+ Rw])

j=1

2
During the M step, the configuration matrix is fixed whilg3.10) ¢ = Zlnlitlg
the centroids are recomputed to minimize the objective func- >ict tij
tion. The procedure is repeated until the objective function
converges. 4 Experiments

The following data sets are used to evaluate the performances
3.1 SemiHard Clustering In SemiHard clustering|t;;] of our algorithms:
takes the value fronf0,1}. The objective function for hard

I i -WIri follows: -
clustering can be re-written as follows Table 1: Data set descriptions.

n # of instanceg # of attributes| # of classes
Q= Z AT 4+ b, Waveform 5000 21 3
i=1 Shuttle 4916 9 2
. . ! . Web 8500 26 2
whereb; is a constant]; is thei-th row of the configuration Phvsi 13939 10 3
matrix, A; = {a;;}%_, is the coefficient matrix with ysIo-
e RENEE logical
d? — Rw; if fi; =1
U 1] J () -
(3.6) a;; = { dfj + Rw, otherwise Among these data sets, Waveform and Shuttle are ob

tained from the UCI machine learning repository. Web is
data set used for categorizing Web sessions into accesses
y human users and Web crawlers. The physiological data
ﬁ?t was taken from the Physiological Data Modeling contest
at ICML 2004, which corresponds to sensor measurements
collected using an armband device.
We compared the performance of SemiHard and Semi-
(3.7) N { 1 if j = min; ag F_uzzy algorithms against the unsupervised c!ustering.algo—
: tj 0 otherwise rithm K-meansas well as the supervised learning algorithm

During the E-step, we should minimize the contribution
each point to the objective functiap. Clearly, minimizing
() subject to the constraints is a linear programming proble
From [6], the minimum can be achieved by settihg as
follows:



Nearest Neighbor (NN) The evaluation metrics we use is
an external cluster validation measure, i.e., the error rate of

each algorithm.

4.1 Comparison with Baseline MethodsTable 2 summa-

rizes the results of our experiments when comparing Semi-
Hard and SemiFuzzy to K-means and NN algorithms. In all
of these experiments, 1% of the data set is labeled while the
remaining 99% is unlabeled. Furthermore, 10% of the fea-
tures are randomly selected as shared features. Clearly, both
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SemiHard and SemiFuzzy algorithms outperform their un- .
supervised and supervised learning counterparts even at 1% 0
labeled examples.
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Figure 1: Error rate for various percentage of labeled exam-

. . . ples
Table 2: Performance comparison for various algorithms.

SemiHard| SemiFuzzy| K-means| NN

Waveform| 0.4534 0.4186 0.4700 | 0.4706 05

Shuttle 0.2054 0.1617 0.2168 | 0.2316 ]

Web 0.4766 0.4317 0.4994 | 0.4597 RN

Physio- 0.4930 0.4719 0.5828 | 0.5009 0 SemiFuzzy

Iog|ca| == Kmeans
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4.2 Variation in the Amount of Labeled Examples In R

- : LS N vt
this experiment, we vary the amount of labeled examples 03 N .
from 1% up to 20% and compare the performances ofthe | TTTee S 4
four algorithms. We use the Waveform data set for this 0.25

experiment. The percentage of shared features is set to be o 02
10%. Figure 1 shows the results of our experiment. The error
rate for SemiFuzzy is lowest, followed by the SemiHargigure 2: Error rate for various percentage of shared features.
algorithm.
For K-means, the error rate is almost unchanged (the
slight variability is due to different choices of initial cen-
troids). For nearest neighbor classification, adding more a4 Limited Labeled Information This section analyzes
beled data helps to decrease the error rate. But when ttie performances of our algorithms when not all classes
amount of labeled examples continues to increase, the em@ present in the labeled data. As in the previous two
rate reaches a steady state. This result suggests that bBageriments, we report the results for the Waveform data set
ing 10% of the labeled examples is sufficient to discriménd assume 1% of the examples are labeled. Furthermore,
nate records from different classes in the Waveform data 4k labeled data set contains only examples from two of the
adding more labeled data does not always help. three classes. We then add examples from the third class
to the unlabeled data set incrementally from 10% to 40%.
4.3 Variation in the Amount of Common Features Fig- Figure 3 shows how the error rate varies as the percentage
ure 2 shows the effect of varying the percentage of shafdexamples from the third class is increased. Notice that
features from 10% to 60%. We use the Waveform data SgmiHard and SemiFuzzy outperform K-means when there
for our experiment. We fix the percentage of labeled exaare few examples from the omitted class. However, when
ples at 1%. It can be seen that adding more shared featunese examples from the omitted class are added to the
improves the error rates of SemiHard, SemiFuzzy, and NiNlabeled data set, the performances of our algorithms may
algorithms. This is because the more features shared bylieeome worse than K-means.
labeled and unlabeled data, the more informative it is to aid
the clustering task. In all of these experiments, SemiFuzyp Real-Life Applications We demonstrate the applica-
gives the lowest error rates, followed by SemiHard and then of semi-supervised clustering with partial background
NN algorithm. knowledge in the context of document clustering. For this

ratio of common features



0.44 ‘ ‘ ‘ ‘ ‘ NB have better performances than K-means. However, when
o2t | o SemEe ; the amount of labeled examples is limited (1%), their error
04f L= Kmeans e rates are worse than K-means since the information conveyed
' by the labeled examples might not be accurate enough.
Finally, SemiHard always outperforms NB because it utilizes

information from both the shared and non-shared features.

error rate

5 Conclusion

In this paper, we present a principled approach for incorpo-
rating partial background information into a clustering algo-
028 : ; ‘ ‘ ‘ rithm. The novelty of this approach is that the background
.1 0.15 0.2 0.25 0.3 0.35 0.4 e . .
ratio of added examples knowledge can be specified in a different feature space than
the unlabeled data. We illustrate how the objective function
Figure 3: Error rate while varying the percentage of addést K-means clustering can be modified to incorporate the
examples constraints due to partially labeled information. In principle,
our methodology is applicable to any base classifiers. We
present both hard and fuzzy clustering solutions to the con-

experiment, we use the Usenet Newsgroups data set, wﬁé'i%'ned optimization problem. psmg a variety of real data
ts, we demonstrate the effectiveness of our approach over
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Table 3: Error rates on the Newsgroups Data.
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The results suggest that the error rates for SemiHard and
NB improve as the percentage of labeled examples increases.
The performance of K-means degrades slightly because there
are less unlabeled examples available for clustering. When
there are sufficient labeled examples, both SemiHard and



