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Abstract

Incorporating background knowledge into unsupervised
clustering algorithms has been the subject of extensive re-
search in recent years. Nevertheless, existing algorithms im-
plicitly assume that the background information, typically
specified in the form of labeled examples or pairwise con-
straints, has the same feature space as the unlabeled data
to be clustered. In this paper, we are concerned with a
new problem of incorporating partial background knowledge
into clustering, where the labeled examples have moderate
overlapping features with the unlabeled data. We formulate
this as a constrained optimization problem, and propose two
learning algorithms to solve the problem, based on hard and
fuzzy clustering methods. An empirical study performed on
a variety of real data sets shows that our proposed algorithms
improve the quality of clustering results with limited labeled
examples.

1 Introduction

The topic of semi-supervised clustering has attracted con-
siderable interests among researchers in the data mining and
machine learning community [2, 3, 4, 8]. The goal of semi-
supervised clustering is to obtain a better partitioning of the
data by incorporating background knowledge. Although cur-
rent semi-supervised algorithms have shown significant im-
provements over their unsupervised counterparts, they as-
sume that the background knowledge are specified in the
same feature space as the unlabeled data. These algorithms
are therefore inapplicable when the background knowledge
is provided by another source with a different feature space.

There are many examples in which the background
knowledge does not share the same feature space as the data
to be mined. For example, in computational biology, analysts
are often interested in the clustering of genes or proteins. Ex-
tensive background knowledge is available in the biomedical
literature that might be useful to aid the clustering task. In
these examples, the background knowledge and the data to
be mined may share some common features, but their overall
feature sets are not exactly identical. We termed this task as
semi-supervised clustering with partial background informa-
tion.
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One possible approach is to consider only the common
features between the labeled and unlabeled data, and then
apply existing semi-supervised learning techniques to guide
the clustering process on the reduced feature sets. However,
the clustering results for such an approach tend to be poor
because the approach does not fully utilize all the informa-
tion available in the labeled and unlabeled data. As will be
shown in Section 4, when the number of shared features is
too few, the clustering results might be worse than applying
unsupervised clustering on the unlabeled data.

The key challenge of semi-supervised clustering with
partial background knowledge is to determine how to utilize
both the shared and non-shared features while performing
clustering on the full feature set of the unlabeled data. The
semi-supervised algorithm also has to recognize the possi-
bility that the shared features might be useful for identifying
certain clusters but not for others.

To overcome these challenges, we propose a novel
approach for incorporating partial background knowledge
into the clustering algorithm. The idea is to first assign a
confidence-rated label to each unlabeled example by using a
classifier built from the shared feature set of the data. A con-
strained clustering algorithm is then applied to the unlabeled
data, where the constraints are given by the unlabeled ex-
amples whose classes are predicted with confidence greater
than a user specified threshold,δ. The algorithm also assigns
a weight factor to each class, in proportion to the ability of
the shared feature set to discriminate between examples that
belong to the class from other classes in the labeled data. We
develop hard and soft (fuzzy) solutions to the constrained
clustering problem and perform a variety of experiments us-
ing real data sets to demonstrate the effectiveness of our al-
gorithms.

2 Incorporating Background Information

Let U be a set ofn unlabeled examples drawn from ad-
dimensional feature space, whileL be a set ofs labeled ex-
amples drawn from ad′-dimensional feature space. Without
loss of generality, we assume that the firstp features for the
labeled and unlabeled data are identical—together, they form
the shared feature set betweenU andL . Each labeled exam-
ple lj ∈ L has a corresponding labelyj ∈ {1, 2, · · · , q},
whereq is the number of classes. The objective of clustering
is to assign the unlabeled examples into their corresponding



clusters. We use the notationC = {c1, c2,· · · , ck} to repre-
sent thek cluster centroids, where∀i : ci ∈ <d.

Our proposed framework for incorporating partial back-
ground knowledge into the clustering task consists of the fol-
lowing steps:

Step 1: Build a classifierC using the shared feature set of
the labeled examples,L .

Step 2: Apply the classifierC to predict the labels of the
examples inU.

Step 3: Cluster the examples inU subjected to the con-
straints given by the predicted labels in Step 2.

The details of these steps are explained in the next three
subsections. To better understand the overall process, we
shall explain the constrained clustering step first before
discussing the classification steps.

2.1 Constrained Clustering with Partial Background
Knowledge The objective function for the clustering task
has the following form:

(2.1) Q =
n∑

i=1

k∑

j=1

(tij)md2
ij + R

n′∑

i=1

k∑

j=1

wj |tij − fij |m

The first term is equivalent to the objective function for
standard k-means algorithm. The second term penalizes any
violations of constraints on the predicted labels of examples
in U. dij is the square distance between data pointui and
the cluster centroidcj . R is a regularization parameter that
determines the tradeoff between the distance to centroids and
the amount of constraint violations.wj is a weight factor that
represents how informative is the shared feature set in terms
of discriminating clusterj from other clusters. Finally,tij
is the cluster membership function, which indicates whether
the unlabeled exampleui should be assigned to clusterj.

For hard clustering,m = 1 andfij is a discrete variable
in {0, 1} that satisfies the constraint

∑k
j=1 fij = 1. For

fuzzy clustering,m = 2 and fij is a continuous variable
in the range[0, 1] that satisfies

∑k
j=1 fij = 1. The next

subsection explains how the confidence-rated labels (fij) are
obtained.

2.2 Classification of Unlabeled ExamplesWe employ
the nearest-neighbor classifier for labeling the examples in
U. For each exampleui ∈ U, we computeNN(i, j),
which is the distance betweenui to its nearest neighbor
in L from classj. Note that the distance is computed
based on the shared feature set betweenU and L . If
minj NN(i, j) ≥ δ, then the example is ignored from the
second term of the objective function.δ is the threshold for
filtering unnecessary constraints due to examples that have
low confidence values.

Once we have computed the nearest-neighbor distances,
the class membership functionfij is determined in the
following way. For hard clustering, each exampleui ∈ U
is labeled as follows:

(2.2) fij =
{

1 if j = min1≤l≤k NN(i, l)
0 otherwise

For fuzzy clustering,fij measures the confidence thatui

belongs to the classcj . In [5], several confidence measures
are introduced for nearest neighbor classification algorithms.
We adopt the following confidence measure for classification
output:

M(i, j) =
1

α + NN(i, j)
,

whereα is a smoothing parameter. The value offij is then
computed as follows:

(2.3) fij =
M(i, j)

Z

whereZ is a normalization factor so that
∑k

j=1 fij = 1.
To incorporatefij into the objective functionQ, we

need to identify the class label associated with each clusterj.
If k = q, the one-to-one correspondence between the classes
and clusters is established during cluster initialization. The
cluster centroids are initialized in the following way: after
classifying the unlabeled examples, we choose examples that
have confidence greater thanδ and use them to compute the
centroid for each class. Because there is a high penalty for
assigning an example to a cluster that is different than its
predicted class, we expect the class labels for the clusters to
remain unchanged even though the centroid locations may
change and some of their examples are re-assigned to other
clusters in later rounds.

If the number of clusters exceeds the number of classes,
the initial centroids for the remaining clusters that do not
have a corresponding class label are chosen randomly. Fur-
thermore, the unlabeled examples that are assigned to these
clusters do not contribute to the second term of the objective
function. Finally, if the number of clusters is less than the
number of classes, we may either ask the domain experts to
determine thek labels inq that are contained in the unla-
beled data set or to assign each cluster to the majority class
of examples within the cluster.

2.3 Cluster Weighting The proposed objective function
should also take into account how informative is the shared
feature set. We use the weightwj to reflect the importance
of the shared feature set in terms of discriminating clusterj
from other clusters. The concept of feature weighting has
been used in clustering by Frigui et. al. [7].

Let D(d, j) denote the discriminating ability of the



feature set<d for clusterj:

(2.4) D(d, j) =

∑
ui∈cj

l 6=j
d(xi, cl,<d)

∑
ui∈cj

d(xi, cj ,<d)

whered(ui, cj ,<d) is the distance betweenui and centroid
cj based on the feature set<d. Intuitively, D(d, j) is the
ratio of the between-cluster distance and the within-cluster
distance. The higher the ratio, the more informative is the
feature set in terms of discriminating clusterj from other
clusters.

The weight of clusterj is then determined as follows:

(2.5) wj = D(p, j)/D(d, j)

wherep is the number of shared features andd is the total
number of features inU.

3 Algorithms

This section presents the SemiHard and SemiFuzzy clus-
tering algorithms for solving the constrained optimization
problem posed in the previous section. The EM algorithm
[1] provides an iterative method for solving the optimiza-
tion problem. The basic idea of the algorithm is as follows:
first, an initial set of centroids is chosen. During the E-step,
the cluster centroids are fixed while the configuration matrix
T = [tij ] is varied until the objective function is minimized.
During the M step, the configuration matrix is fixed while
the centroids are recomputed to minimize the objective func-
tion. The procedure is repeated until the objective function
converges.

3.1 SemiHard Clustering In SemiHard clustering,[tij ]
takes the value from{0,1}. The objective function for hard
clustering can be re-written as follows:

Q =
n∑

i=1

At
iTi + bi

wherebi is a constant,Ti is thei-th row of the configuration
matrix,Ai = {aij}k

j=1 is the coefficient matrix with

(3.6) aij =
{

d2
ij −Rwj if fij = 1

d2
ij + Rwj otherwise

During the E-step, we should minimize the contribution of
each point to the objective functionQ. Clearly, minimizing
Q subject to the constraints is a linear programming problem.
From [6], the minimum can be achieved by settingtij as
follows:

(3.7) tij =
{

1 if j = minl ail

0 otherwise

During the M-step, since the configuration matrix is
fixed, the second term of the objective function is unchanged.
Minimizing Q is therefore equivalent to minimizing the first
term. The centroid update formula is :

(3.8) cj =
∑n

i=1 tijui∑n
i=1 tij

3.2 SemiFuzzy ClusteringIn fuzzy clustering,[tij ] are
continuous variables. During the E-step, we should mini-
mizeQ with respect toT subject to the constraints. We may
use the Lagrange multiplier method and obtain:

Q =
n∑

i=1

k∑

j=1

(tij)2d2
ij+

n∑

i=1

k∑

j=1

wj(tij−fij)2−
n∑

i=1

λi(
k∑

j=1

tij−1)

DifferentiatingQ yields the following:

(3.9) tij =
λi + 2Rwjfij

2(d2
ij + Rwj)

The solution forλi is:

λi = (1−
k∑

j=1

Rwjfij

d2
ij + Rwj

)/
k∑

j=1

1
2(d2

ij + Rwj)

During the M-step, the objective function once again
depends only on the first term. Therefore,

(3.10) cj =

∑n
i=1 t2ijui∑n
i=1 t2ij

4 Experiments

The following data sets are used to evaluate the performances
of our algorithms:

Table 1: Data set descriptions.
# of instances # of attributes # of classes

Waveform 5000 21 3
Shuttle 4916 9 2
Web 8500 26 2
Physio- 13239 10 3
logical

Among these data sets, Waveform and Shuttle are ob-
tained from the UCI machine learning repository. Web is
a data set used for categorizing Web sessions into accesses
by human users and Web crawlers. The physiological data
set was taken from the Physiological Data Modeling contest
at ICML 2004, which corresponds to sensor measurements
collected using an armband device.

We compared the performance of SemiHard and Semi-
Fuzzy algorithms against the unsupervised clustering algo-
rithm K-meansas well as the supervised learning algorithm



Nearest Neighbor (NN). The evaluation metrics we use is
an external cluster validation measure, i.e., the error rate of
each algorithm.

4.1 Comparison with Baseline MethodsTable 2 summa-
rizes the results of our experiments when comparing Semi-
Hard and SemiFuzzy to K-means and NN algorithms. In all
of these experiments, 1% of the data set is labeled while the
remaining 99% is unlabeled. Furthermore, 10% of the fea-
tures are randomly selected as shared features. Clearly, both
SemiHard and SemiFuzzy algorithms outperform their un-
supervised and supervised learning counterparts even at 1%
labeled examples.

Table 2: Performance comparison for various algorithms.
SemiHard SemiFuzzy K-means NN

Waveform 0.4534 0.4186 0.4700 0.4706
Shuttle 0.2054 0.1617 0.2168 0.2316
Web 0.4766 0.4317 0.4994 0.4597
Physio- 0.4930 0.4719 0.5828 0.5009
logical

4.2 Variation in the Amount of Labeled Examples In
this experiment, we vary the amount of labeled examples
from 1% up to 20% and compare the performances of the
four algorithms. We use the Waveform data set for this
experiment. The percentage of shared features is set to be
10%. Figure 1 shows the results of our experiment. The error
rate for SemiFuzzy is lowest, followed by the SemiHard
algorithm.

For K-means, the error rate is almost unchanged (the
slight variability is due to different choices of initial cen-
troids). For nearest neighbor classification, adding more la-
beled data helps to decrease the error rate. But when the
amount of labeled examples continues to increase, the error
rate reaches a steady state. This result suggests that hav-
ing 10% of the labeled examples is sufficient to discrimi-
nate records from different classes in the Waveform data set;
adding more labeled data does not always help.

4.3 Variation in the Amount of Common Features Fig-
ure 2 shows the effect of varying the percentage of shared
features from 10% to 60%. We use the Waveform data set
for our experiment. We fix the percentage of labeled exam-
ples at 1%. It can be seen that adding more shared features
improves the error rates of SemiHard, SemiFuzzy, and NN
algorithms. This is because the more features shared by the
labeled and unlabeled data, the more informative it is to aid
the clustering task. In all of these experiments, SemiFuzzy
gives the lowest error rates, followed by SemiHard and the
NN algorithm.

0 0.05 0.1 0.15 0.2
0.36

0.38

0.4

0.42

0.44

0.46

0.48

ratio of labeled samples

er
ro

r 
ra

te

SemiHard
SemiFuzzy
NN
Kmeans

Figure 1: Error rate for various percentage of labeled exam-
ples.
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Figure 2: Error rate for various percentage of shared features.

4.4 Limited Labeled Information This section analyzes
the performances of our algorithms when not all classes
are present in the labeled data. As in the previous two
experiments, we report the results for the Waveform data set
and assume 1% of the examples are labeled. Furthermore,
the labeled data set contains only examples from two of the
three classes. We then add examples from the third class
to the unlabeled data set incrementally from 10% to 40%.
Figure 3 shows how the error rate varies as the percentage
of examples from the third class is increased. Notice that
SemiHard and SemiFuzzy outperform K-means when there
are few examples from the omitted class. However, when
more examples from the omitted class are added to the
unlabeled data set, the performances of our algorithms may
become worse than K-means.

4.5 Real-Life Applications We demonstrate the applica-
tion of semi-supervised clustering with partial background
knowledge in the context of document clustering. For this
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Figure 3: Error rate while varying the percentage of added
examples

experiment, we use the Usenet Newsgroups data set, where
we choose articles from 5 newsgroups, each of which con-
tains 1000 articles. After preprocessing, we obtain a vo-
cabulary of 19842 words. A document-term matrix is con-
structed, where the word count vector for each document is
normalized to unit length.

We assume that the labels for some of the older articles
are known and would like to use the information to cluster
newer articles posted on the newsgroups. We first sort the
documents according to their posting dates and create a la-
beled data set based on the first p% of the articles. The re-
maining documents form the unlabeled data set. Although
the vocabulary of words used in the older and newer collec-
tions may not be exactly identical, the feature set constructed
from both collections has some overlapping features. Unlike
the previous experiments, we modify our algorithms slightly
to account for the characteristics of the documents. First, we
use a dissimilarity measure based on the cosine similarity.
Second, we apply naı̈ve Bayes (instead of nearest-neighbor)
as the underlying classifier for Step 1 of our algorithm. Table
3 compares the error rate of SemiHard against K-means and
the näıve Bayes classifier.

Table 3: Error rates on the Newsgroups Data.
Percentage SemiHard NB K-means Common
of Labels Terms #

10% 0.0233 0.0455 0.2344 10452
5% 0.0952 0.1387 0.2244 8572
1% 0.2602 0.3812 0.2040 4915

The results suggest that the error rates for SemiHard and
NB improve as the percentage of labeled examples increases.
The performance of K-means degrades slightly because there
are less unlabeled examples available for clustering. When
there are sufficient labeled examples, both SemiHard and

NB have better performances than K-means. However, when
the amount of labeled examples is limited (1%), their error
rates are worse than K-means since the information conveyed
by the labeled examples might not be accurate enough.
Finally, SemiHard always outperforms NB because it utilizes
information from both the shared and non-shared features.

5 Conclusion

In this paper, we present a principled approach for incorpo-
rating partial background information into a clustering algo-
rithm. The novelty of this approach is that the background
knowledge can be specified in a different feature space than
the unlabeled data. We illustrate how the objective function
for K-means clustering can be modified to incorporate the
constraints due to partially labeled information. In principle,
our methodology is applicable to any base classifiers. We
present both hard and fuzzy clustering solutions to the con-
strained optimization problem. Using a variety of real data
sets, we demonstrate the effectiveness of our approach over
standard K-means and the nearest-neighbor classification al-
gorithms.
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