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Abstract 0

This paper presents a principled approach for incorporat- , |
ing labeled examples into an anomaly detection task. We
demonstrate that, with the addition of labeled examples, the .,
anomaly detection algorithm can be guided to develop better
models of the normal and abnormal behavior of the data, thus |
improving the detection rate and reducing the false alarm rate
of the algorithm. A framework based on the finite mixture ef
model is introduced to model the data as well as the con-

straints imposed by the labeled examples. Empirical studies | ' R a N
conducted on real data sets show that significant improve- s * . et T
ments in detection rate and false alarm rate are achieved us-""| " * P

ing our proposed framework.
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1 Introduction

Anomalies or outliers are aberrant observations whose char-
acteristics deviate significantly from the majority of the data.
Anomaly detection has huge potential benefits in a variety
of applications, including the detection of credit card fraud@ataset shown in Figure 1. The normal points are represented
security breaches, network intrusions, or failures in mecha$-dots, while the outliers are represented as plus signs. The
ical structures. normal points are generated using two Gaussian distribu-
Over the years, many innovative anomaly detection 4Pns, centered at (15,20) and (70,90), respectively. The out-
gorithms have been developed, including statistical-bask&fs are concentrated at the bottom right-hand corner of the
depth-based, distance.based7 and density-based a|g0ritﬁ-ﬁ}ﬁram. Without labeled information, it is difficult to dis-
[6, 2, 3]. While these algorithms prove to be effective iinguish the true outliers from the low density normal points
detecting outliers in many datasets, they may not be abledtghe bottom left-hand corner. As a result, many existing
detect some outliers that are difficult to identify. Let's exanomaly detection algorithms tend to perform poorly on such
amine some scenarios where outliers are quite hard to fifigta sets—some algorithms would consider all the low den-
In some data sets, the data used to create a prof"e of %Hﬁ normal pOintS to be outliers, while others would consider
“normal” behavior may not be representative of the overéfle outliers to be normal. If labeled examples for some of
population. As a consequence, it is not easy to distingui§igse normal and outlying points are available, we may dis-
between true outliers and previously unseen normal obggminate the true outliers from low-density normal points
vations. Furthermore, although anomalies are, by definitiéAore effectively. This is the underlying strategy adopted by
relatively rare, their number of occurrences may not be inff@ur proposed semi-supervised anomaly detection algorithm.
quent in absolute terms. For example, in intrusion detection, In this work, we propose a novel probability-based ap-
the number of network connections associated with an att&@Rach for incorporating labeled examples into the anomaly
such as denial-of-service can be quite large. Such attacksdgection task. A framework based on finite mixture model
usually quite hard to detect. is introduced to model the data as well as the constraints
To further illustrate this problem, consider the synthetigiposed by the labeled examples. Anomalies are found by
solving a constrained optimization problem using the stan-
—Wichigan State University. Email: gaojing2@cse.msu.edu dard Expectation-Maximization (EM) algorithm. Two vari-
tMichigan State University. Email: chenghai@cse.msu.edu ants of the algorithm are considered, namely, hard and soft
Michigan State University. Email: ptan@cse.msu.edu (fuzzy) detection algorithms. Experimental results using real

Figure 1: Example of a 2-D Data Set



data sets show that our proposed algorithm outperform unsonfiguration matrixl” can be expressed as follows:
pervised anomaly detection algorithms (including distang@-2)

based and density-based algorithms). We also show that our k
semi-supervised anomaly detection algorithm works betfet) = ZQXP [*Clo Z (1*2 tij)—Cot Z Ztij]’
than semi-supervised classification algorithm for data sets €M g=1 z; €U j=1

with skewed class distribution. whereCy; andC}, are the respective costs of misclassify-

ing normal points as outliers and outliers as normal points.
Intuitively, Equation 2.2 gives a lower probability to a con-
Let X = {z1,22,---,2n} denote a set ofV data points figuration matrix that misclassifies many labeled examples.
drawn from ad-dimensional spaceR?. Following the Our objective is to maximize the following posterior
approach in [3], we assume each data point has a probabjlitgbability:

7o Of being an outlier and a probabilityy — m) of being

normal. mo is usually chosen to be a small number between 3) P(T|X) = LP(T)p(X|T)

0 and 1. We further assume that the normal points are Z3

generated from a gaussian mixture modekafomponents Taking a logarithm on Equation 2.3 and substituting Equa-
whereas the outliers come from a uniform distribution.  tions 2.1 and 2.2 into the formula lead to the following

Let T" = [t;;] denote anV x k configuration matrix, ghjective function to be minimized by our semi-supervised
wheret;; = 1if z; belong to thej-th mixture component. anomaly detection algorithm:

If Zle t;; = 0, thenz; is considered an outlier. Assum-

ing that the data points are independent and identically djs- Nk N k
tributed, the conditional distribution of the dataset is: 62'4) Q = Z Z tijDij + Z(l - Z tij)
i=1 7

2 Methodology

i=1 j=1 i=1

k k
(2.1) PX|T) = {(1 — o) ™! H PM(I’ZW)} + Cio Z (1 *Ztij) + Co1 Z th’j

rieM z €M j=1 2;€U j=1

U]
X {Wo H PU(%’W)} wherey is a constant and
’ijEU
1 Ts—1
Since the outliers are uniformly distribute@; (z;|t;) = Di; = 3 {(“”i — 1) By (i — ) — log |ZJ|}

1/Z, whereZj, is a constant. Furthermorg\/| = >, . t;
and [U| = N — >, ti;. The conditional distribution 3 Algorithms

Pyr(wilt:) is given by a mixture of normal distributions: This section describes our proposed algorithm based on

F’j tii the EM framework for solving the constrained optimization
P (zilt:) = H [ojp(xil6;)] problem given in Equation 2.4.
j=1
wherean > 0 (h=1,--- k), 22:1 o, = 1. Each mixture 3.1 EM Framework We first randomly initialize the pa-

rameters fop,; andX; (j = 1,2, - - - , k). During the E-step,
we determine the configuration matfixby assigning each
1 fe1 data point either to the outlier component or one of the
p(xil0;) = @m)a|s, 17?2 eXP[_§(33i_/~‘j) 2; (@i—p;)] - Gaussian components in such a way that minimizes the opti-
! mization function given in Equation 2.4. During the M-step,
wherep; andX; are the corresponding mean and covariantiee parameterg; andX; are re-estimated based on the cur-
matrix associated with the parameter vectpr Following rent configuration matrif’.
the approach taken by Mitchell in [7], the model can be There are two strategies for assigning data points to the
further simplified by assuming that each of themixture outlier or Gaussian mixture components. The first approach,
components is equally probable; i.\€j,: o; = 1/k. which we callechard anomaly detection, assigns a data point
Labeled examples impose additional constraints on htmwonly one of thek + 1 components. The second approach,
the configuration matri” should be determined. Followingwhich we calledsoft or fuzzyanomaly detection, assigns
the strategy used by Basu et al. [1], the constraints providediata point either to the outlier component or to every
by labeled examples are modeled using Hidden Markov R&aussian component with varying degrees of membership.
dom fields (HMRF). IfM is the set of known outliers mis-
labeled as normal points arid is the set of known normal3.2 Hard Detection In hard detection, the configuration
points mislabeled as outliers, then the prior probability ofraatrix 7" is a binary 0/1 matrix that satisfies the following

component is normally distributed:



constraints:t;; € {0,1},22?:1 ti; <1(1 <i<mn,1< riaprovides a necessary condition for solving the optimiza-
j < k). In order to minimizeQ, we should minimize the tion problem [9]. Letting\; to be the Lagrange multipliers,
contribution qf every point to t_h(_e qverall obj_'ective fun_ctiorWe obtainQ’ = Q — Eij\il )\i(Z?:1 ti; — 1). Thet,; that

For each pointz;, we can minimize the first term i) satisfies the following conditions are candidate solutions to

by assigningz; to the j*-th component such that* = the optimization problem:

argmin; D; ;. After the initial assignment, every point is now ) X

considered to be normal, i.&f : 3°5_, t;; = 1. Toimprove (3.6) o _ 1<j<hk), > t;<1
. - . Ot =S ="0 g =

the assignment, we evaluate the possibility of relabeling i j=1

some of the points as outliers, i.e. converttng from one &

to zero. To do this, we first express the change in objectig7) )\i(ztij — 1) =0, N<O0
function as a result of relabeling as a matrix equat@h= =1

ATT +b,where1;v - {tij-}iL, isthe current configuration Equation (3.7) can be satisfied under the following two
matrix, A = {a;};_, is a vector of coefficients expressed 04 ations:
terms ofD;;, v, Cio, andCy1, while b is a constant that does ’

not affect the label assignment. Note that optimizipgis 1. If A; = 0, upon simplifying the results of Equation

equivalent to a linear programming problem. df > 0, (3.6), we obtain:

setting ¢;;- to zero will minimize its contribution to the a0 k
objective function [9]. On the other hand,df < 0, ¢;;- (3.8) == =2t;;D;j — 252% =0
should retain its previous value bfn order to minimizeQ’. Ot =1

During the M-step, upon differentiating with respect
to 4; and £; and equating them to zero, we obtain the
following update formula for the mean vector and covariance 16 Zle tij

wheref = v + C19 — Cp1. Simplifying this yields:

matrix of each component: (3.9) iy = —7p
3
ZN b Summing ug;; over allj leads to the solutioty; = 0.
Hi o = % In this case, the value of the objective function goes to
ZJ\;’=1 bij some constant.
s — )T (s — 1
Y, = 2z b (%N“J) (i = 115) 2. If E?Zl ti;—1 = 0, then the following condition holds:
: Nt
=1 ")
Q' i
3.3 Fuzzy DetectionFuzzy clustering has been exten-  (3.10) at,. ~ 2tuDi — 20 ti;—Ai=0
sively researched over the years [5]. Instead of assigning a 7 j=1

data point to a single cluster, each point belongs to a cluster So we obtain the fuzzy degree of membership for each
with certain degree of membership. For fuzzy detection, the point:

objective function is modified as follows: 1
(3.11) tij= ——————
N k k Zszl(Dij /DiS)

N
"D, + [1_ t,,m:| ] ) . ) ]
;;( )" Dy 7; (; ) Nevertheless, since the objective function is not a convex
function, the KKT conditions are necessary but not suffi-

C 1— £)™ cient. We must verify that the;; obtained minimizes the
G Z [ (Z 2 } overall objective function. To do this, we replatg from

@5

x, €M Jj=1

X . Equation 3.11 intaQ and compare it against the result of
’ usingt;; = 0. If the former value is greater, thep; is
C tij I L o ; J
+ to Z [Z J] re-assigned t0 to minimize the objective functiofy. Oth-
erwise, we retain the value of; given by Equation 3.11.
wherem > 1 is called the fuzzifier. Here, the configuration ~ Similar to hard detection, the following equations are
matrix T' satisfies the constrainte:< t;; < 1, 3.7 t;; < updated in M-step:

;€U -j5=1

1(1 <4< N,1<j<k). Inourexperiments, we choose ZN 2 0

m = 2. The EM algorithm is also modified to deal with pj = %”2’

fuzzy assignment of data points. First, during the E-step, it D=1t

can be shown that minimizin@ with respect tot;; leads SN2 (i — ) (i — )

to a quadratic optimization problem with inequality con- Y, = N g
straints. The Karush-Kuhn-Tucker (KKT) Optimality Crite- 2=t



4 E i t
xperiments Table 2: Shuttlef = 2,y = 20)

FuzzyS HardS| K_dist| LOF | NBEM NB
0.9103 0.7374 0.3636 0.1212 0.8186 0.935
1.0000 1.0000 0.3636 0.1212 0.0682 0.754

Table 1: Description of Data Sets

M| | o

Data sets #offea-| % of | % of | #ofin- : a 5
wres | outliers | labels | stances 0.953] 0.8489 0.363§ 0.1212 0.1259 0.835
ST 3 1% 5% 3132 FA | 0.0043 0.0157 0.0280 0.0387 0.0007 0.0053
hOptlgaI it 58 3% 5% 3547 Table 3: Optical handwritten dafaé& 5,7 = 85)
I":” wrt 3” = - 1150 FuzzyS HardS| K_dist] LOF | NBEM NB
tgcrtlijer]m e 0 0 R | 0.0810 0.7111 0.05 | 0.05 | 1.0000 0.8
n__ P | 0.8250 0.8000 0.05 | 0.05 | 0.9750 0.923
Physiologica| 9 12% | 5% | 4050 F 10.1903 0.7529 0.05 | 0.05 | 0.9873 0.857

FA | 0.1376 0.0067 0.01 | 0.01 | 0.0000 0.001
We have performed extensive experiments using real
data sets to evaluate the performances of our proposed Table 4: Intrusion detection data& 2,y = 50)
algorithms. The data sets used in our experiments are FuzzyS HardS| K_dist| LOF | NBEM NB
summarized in Table 1. The two variants proposed in thisR | 0.4011 0.7213 0.5123 0.4322 0.8336 0.988
paper are denoted as HardS and FuzzyS, which correspond | 0.9980 0.9940 0.3333 0.1167 0.9520 1.000(
to hard anomaly detection and fuzzy anomaly detectianF | 0.5722 0.8360 0.4039 0.1838 0.8889 0.994
respectively. The parameters of these algorithms are selecteda | 0.0745 0.0192 0.0439 0.0402 0.0095 0.0004
using the methodology described in our technical report [4].
We compared the performances of our algorithms Table 5: Physiological data(= 2,y = 50)
against a distance-based anomaly detection algorithm called FuzzyS HardS| K_dist| LOF | NBEM NB
K-dist [6] and a density-based algorithm known la®F R | 0.8824 0.9167 0.92 | 0.060 | 1.0000 0.875
[2]. K-dist uses the distance between a data point té-ts | P | 0.9000 0.8800 0.92 | 0.060 | 0.0400 1.000¢
th nearest neighbor to be the anomaly score. LOF, on thé= | 0.8911 0.8980 0.92 | 0.060| 0.0767 0.933
other hand, computes the anomaly score in terms of the rati¢cA | 0.0015 0.0010 0.002 | 0.0235 0.0000 0.000(
between the density of a point to the density offiteear-
est neighbors. Semi-supervised classification is another ap-
proach for detecting anomalies using labeled and unlabetedure of the data, a situation in which the notion of distance
examples. We apply the semi-supervised classification ialtikely to break down.
gorithm (NBEM) developed by Nigam et al. [8], which Both semi-supervised classification and semi-
combines nive Bayes with EM algorithm. Finally, we alsosupervised anomaly detection algorithms employ labeled
employ a supervised learning algorithm—théweaBayes data to improve the detection of anomalies. Our empirical
classifier N\B)—as a baseline classifier for comparison puresults show that HardS and FuzzyS algorithms perform bet-
poses. Note that the v Bayes classifier is trained usinger than NBEM on two of the four data sets. To understand
the actual class labels for the entire data set. Therefore,wigy one algorithm may be better than the other, Figure 2
do not expect any of the unsupervised or semi-supervisedsilews a comparison between our proposed algorithms and
gorithms to outperforniNB. NBEM on the Physiological data set when the percentage
We employ four evaluation metrics to compare thef outliers is varied from 1% to 35%. Our experimental
performances of our algorithms: Precision(P), Recall(R), Fesults suggest that FuzzyS and HardS tend to outperform
measure(F), and False Alarm rate (FA). NBEM when the percentage of outliers is small, whereas
NBEM performs better when the percentage of outliers is
4.1 Comparisons Among Unsupervised, Semi-more than 20%. We expect semi-supervised classification
supervised and Supervised Anomaly Detection Al- algorithms to do a poor job when the distribution is highly
gorithms Tables 2 to 5 show the results of applying thekewed because estimating the probability distribution
various algorithms to four real data sets. Notice that Fuzzig€comes a challenging task if there are very few examples
and HardS algorithms generally outperform both LOF ail the outlier class. It should be noted that in anomaly
K-dist, except on the Physiological data. In the Shuttteetection, the scenario where anomalies account for more
data, the F-measure for FuzzyS and HardS algorithms #ran 20% of the data is a very rare situation indeed. In short,
even better than the nhee Bayes classifier. For the opticakemi-supervised anomaly detection would be a better choice
handwritten data, the unsupervised learning algorithtfigin semi-supervised classification when the percentage of
perform poorly because of the high-dimensional and spasdliers is small.
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1

5 Conclusion

This paper introduces a probability-based framework for
detecting anomalies using labeled and unlabeled data. The
labeled examples are used to guide the anomaly detection
ol algorithm towards distinguishing data points that are hard
: to classify (e.g., anomalies that are located in high density
o1 02 03 04 regions or normal points that are located in low density
oo o FErCene o Fercenage regions). Experimental results using real data sets confirmed
that our proposed algorithm is generally more superior than
unsupervised anomaly detection algorithms such as k-dist
and LOF. We also compared the performances of proposed
HardS and FuzzyS algorithms against a semi-supervised
classification algorithm called NBEM. The results show that
semi-supervised anomaly detection tends to do better when
the percentage of outliers is considerably smaller than the
percentage of normal points.
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