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Abstract

This paper presents a principled approach for incorporat-
ing labeled examples into an anomaly detection task. We
demonstrate that, with the addition of labeled examples, the
anomaly detection algorithm can be guided to develop better
models of the normal and abnormal behavior of the data, thus
improving the detection rate and reducing the false alarm rate
of the algorithm. A framework based on the finite mixture
model is introduced to model the data as well as the con-
straints imposed by the labeled examples. Empirical studies
conducted on real data sets show that significant improve-
ments in detection rate and false alarm rate are achieved us-
ing our proposed framework.

1 Introduction

Anomalies or outliers are aberrant observations whose char-
acteristics deviate significantly from the majority of the data.
Anomaly detection has huge potential benefits in a variety
of applications, including the detection of credit card frauds,
security breaches, network intrusions, or failures in mechan-
ical structures.

Over the years, many innovative anomaly detection al-
gorithms have been developed, including statistical-based,
depth-based, distance-based, and density-based algorithms
[6, 2, 3]. While these algorithms prove to be effective in
detecting outliers in many datasets, they may not be able to
detect some outliers that are difficult to identify. Let’s ex-
amine some scenarios where outliers are quite hard to find.
In some data sets, the data used to create a profile of the
“normal” behavior may not be representative of the overall
population. As a consequence, it is not easy to distinguish
between true outliers and previously unseen normal obser-
vations. Furthermore, although anomalies are, by definition,
relatively rare, their number of occurrences may not be infre-
quent in absolute terms. For example, in intrusion detection,
the number of network connections associated with an attack
such as denial-of-service can be quite large. Such attacks are
usually quite hard to detect.

To further illustrate this problem, consider the synthetic
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Figure 1: Example of a 2-D Data Set

dataset shown in Figure 1. The normal points are represented
as dots, while the outliers are represented as plus signs. The
normal points are generated using two Gaussian distribu-
tions, centered at (15,20) and (70,90), respectively. The out-
liers are concentrated at the bottom right-hand corner of the
diagram. Without labeled information, it is difficult to dis-
tinguish the true outliers from the low density normal points
at the bottom left-hand corner. As a result, many existing
anomaly detection algorithms tend to perform poorly on such
data sets—some algorithms would consider all the low den-
sity normal points to be outliers, while others would consider
the outliers to be normal. If labeled examples for some of
these normal and outlying points are available, we may dis-
criminate the true outliers from low-density normal points
more effectively. This is the underlying strategy adopted by
our proposed semi-supervised anomaly detection algorithm.

In this work, we propose a novel probability-based ap-
proach for incorporating labeled examples into the anomaly
detection task. A framework based on finite mixture model
is introduced to model the data as well as the constraints
imposed by the labeled examples. Anomalies are found by
solving a constrained optimization problem using the stan-
dard Expectation-Maximization (EM) algorithm. Two vari-
ants of the algorithm are considered, namely, hard and soft
(fuzzy) detection algorithms. Experimental results using real



data sets show that our proposed algorithm outperform unsu-
pervised anomaly detection algorithms (including distance-
based and density-based algorithms). We also show that our
semi-supervised anomaly detection algorithm works better
than semi-supervised classification algorithm for data sets
with skewed class distribution.

2 Methodology

Let X = {x1, x2, · · · , xN} denote a set ofN data points
drawn from ad-dimensional space,Rd. Following the
approach in [3], we assume each data point has a probability
π0 of being an outlier and a probability(1 − π0) of being
normal. π0 is usually chosen to be a small number between
0 and 1. We further assume that the normal points are
generated from a gaussian mixture model ofk components
whereas the outliers come from a uniform distribution.

Let T = [tij ] denote anN × k configuration matrix,
wheretij = 1 if xi belong to thej-th mixture component.
If

∑k
j=1 tij = 0, thenxi is considered an outlier. Assum-

ing that the data points are independent and identically dis-
tributed, the conditional distribution of the dataset is:

P (X|T ) =
[
(1− π0)|M | ∏

xi∈M

PM (xi|ti)
]

(2.1)

×
[
π
|U |
0

∏

xj∈U

PU (xj |tj)
]

Since the outliers are uniformly distributed,PU (xj |tj) =
1/Z0 whereZ0 is a constant. Furthermore,|M | =

∑
i,j tij

and |U | = N − ∑
i,j tij . The conditional distribution

PM (xi|ti) is given by a mixture of normal distributions:

PM (xi|ti) =
∏

j=1

[
αjp(xi|θj)

]P
j tij

whereαh ≥ 0 (h = 1, · · · , k),
∑k

h=1 αh = 1. Each mixture
component is normally distributed:

p(xi|θj) =
1

(2π)d/2|Σj |1/2
exp[−1

2
(xi−µj)tΣ−1

j (xi−µj)]

whereµj andΣj are the corresponding mean and covariance
matrix associated with the parameter vectorθj . Following
the approach taken by Mitchell in [7], the model can be
further simplified by assuming that each of thek mixture
components is equally probable; i.e.,∀j : αj = 1/k.

Labeled examples impose additional constraints on how
the configuration matrixT should be determined. Following
the strategy used by Basu et al. [1], the constraints provided
by labeled examples are modeled using Hidden Markov Ran-
dom fields (HMRF). IfM is the set of known outliers mis-
labeled as normal points andU is the set of known normal
points mislabeled as outliers, then the prior probability of a

configuration matrixT can be expressed as follows:
(2.2)

P (T ) =
1
Z2

exp
[−C10

∑

xi∈M

(1−
k∑

j=1

tij)−C01

∑

xi∈U

k∑

j=1

tij
]
,

whereC01 andC10 are the respective costs of misclassify-
ing normal points as outliers and outliers as normal points.
Intuitively, Equation 2.2 gives a lower probability to a con-
figuration matrix that misclassifies many labeled examples.

Our objective is to maximize the following posterior
probability:

(2.3) P (T |X) =
1
Z3

P (T )P (X|T )

Taking a logarithm on Equation 2.3 and substituting Equa-
tions 2.1 and 2.2 into the formula lead to the following
objective function to be minimized by our semi-supervised
anomaly detection algorithm:

Q =
N∑

i=1

k∑

j=1

tijDij + γ
N∑

i=1

(1−
k∑

j=1

tij)(2.4)

+ C10

∑

xi∈M

(1−
k∑

j=1

tij) + C01

∑

xi∈U

k∑

j=1

tij

whereγ is a constant and

Dij =
1
2

[
(xi − µj)T Σ−1

j (xi − µj)− log |Σj |
]
.

3 Algorithms

This section describes our proposed algorithm based on
the EM framework for solving the constrained optimization
problem given in Equation 2.4.

3.1 EM Framework We first randomly initialize the pa-
rameters forµj andΣj (j = 1, 2, · · · , k). During the E-step,
we determine the configuration matrixT by assigning each
data point either to the outlier component or one of thek
Gaussian components in such a way that minimizes the opti-
mization function given in Equation 2.4. During the M-step,
the parametersµj andΣj are re-estimated based on the cur-
rent configuration matrixT .

There are two strategies for assigning data points to the
outlier or Gaussian mixture components. The first approach,
which we calledhardanomaly detection, assigns a data point
to only one of thek + 1 components. The second approach,
which we calledsoft or fuzzyanomaly detection, assigns
a data point either to the outlier component or to every
Gaussian component with varying degrees of membership.

3.2 Hard Detection In hard detection, the configuration
matrix T is a binary 0/1 matrix that satisfies the following



constraints:tij ∈ {0, 1},∑k
j=1 tij ≤ 1 (1 ≤ i ≤ n, 1 ≤

j ≤ k). In order to minimizeQ, we should minimize the
contribution of every point to the overall objective function.
For each pointxi, we can minimize the first term inQ
by assigningxi to the j∗-th component such thatj∗ =
argminjDij . After the initial assignment, every point is now

considered to be normal, i.e.,∀i :
∑k

j=1 tij = 1. To improve
the assignment, we evaluate the possibility of relabeling
some of the points as outliers, i.e. convertingtij∗ from one
to zero. To do this, we first express the change in objective
function as a result of relabeling as a matrix equation,Q′ =
AT T ∗+b, whereT ∗ = {tij∗}N

i=1 is the current configuration
matrix,A = {ai}N

i=1 is a vector of coefficients expressed in
terms ofDij , γ, C10, andC01, while b is a constant that does
not affect the label assignment. Note that optimizingQ′ is
equivalent to a linear programming problem. Ifai > 0,
setting tij∗ to zero will minimize its contribution to the
objective function [9]. On the other hand, ifai ≤ 0, tij∗
should retain its previous value of1 in order to minimizeQ′.

During the M-step, upon differentiatingQ with respect
to µj and Σj and equating them to zero, we obtain the
following update formula for the mean vector and covariance
matrix of each component:

µj =
∑N

i=1 tijxi∑N
i=1 tij

Σj =
∑N

i=1 tij(xi − µj)T (xi − µj)∑N
i=1 tij

3.3 Fuzzy DetectionFuzzy clustering has been exten-
sively researched over the years [5]. Instead of assigning a
data point to a single cluster, each point belongs to a cluster
with certain degree of membership. For fuzzy detection, the
objective function is modified as follows:

Q =
N∑

i=1

k∑

j=1

(tij)mDij + γ
N∑

i=1

[
1− (

k∑

j=1

tij)m

]
(3.5)

+ C10

∑

xi∈M

[
1− (

k∑

j=1

tij)m

]

+ C01

∑

xi∈U

[ k∑

j=1

tij

]m

wherem > 1 is called the fuzzifier. Here, the configuration
matrix T satisfies the constraints:0 ≤ tij ≤ 1,

∑k
j=1 tij ≤

1 (1 ≤ i ≤ N, 1 ≤ j ≤ k). In our experiments, we choose
m = 2. The EM algorithm is also modified to deal with
fuzzy assignment of data points. First, during the E-step, it
can be shown that minimizingQ with respect totij leads
to a quadratic optimization problem with inequality con-
straints. The Karush-Kuhn-Tucker (KKT) Optimality Crite-

ria provides a necessary condition for solving the optimiza-
tion problem [9]. Lettingλi to be the Lagrange multipliers,
we obtainQ′ = Q −∑N

i=1 λi(
∑k

j=1 tij − 1). Thetij that
satisfies the following conditions are candidate solutions to
the optimization problem:

∂Q′

∂tij
= 0 (1 ≤ j ≤ k),

k∑

j=1

tij ≤ 1(3.6)

λi

( k∑

j=1

tij − 1
)

= 0, λi ≤ 0(3.7)

Equation (3.7) can be satisfied under the following two
situations:

1. If λi = 0, upon simplifying the results of Equation
(3.6), we obtain:

(3.8)
∂Q′

∂tij
= 2tijDij − 2β

k∑

j=1

tij = 0

whereβ = γ + C10 − C01. Simplifying this yields:

(3.9) tij =
β

∑k
j=1 tij

Dij

Summing uptij over allj leads to the solutiontij = 0.
In this case, the value of the objective function goes to
some constantq.

2. If
∑k

j=1 tij−1 = 0, then the following condition holds:

(3.10)
∂Q′

∂tij
= 2tijDij − 2β

k∑

j=1

tij − λi = 0

So we obtain the fuzzy degree of membership for each
point:

(3.11) tij =
1∑k

s=1(Dij/Dis)

Nevertheless, since the objective function is not a convex
function, the KKT conditions are necessary but not suffi-
cient. We must verify that thetij obtained minimizes the
overall objective function. To do this, we replacetij from
Equation 3.11 intoQ and compare it against the result of
using tij = 0. If the former value is greater, thentij is
re-assigned to0 to minimize the objective functionQ. Oth-
erwise, we retain the value oftij given by Equation 3.11.

Similar to hard detection, the following equations are
updated in M-step:

µj =

∑N
i=1 t2ijxi∑N
i=1 t2ij

Σj =

∑N
i=1 t2ij(xi − µj)T (xi − µj)∑N

i=1 t2ij



4 Experiments

Table 1: Description of Data Sets
Data sets # of fea-

tures
% of
outliers

% of
labels

# of in-
stances

Shuttle 9 4.2% 5% 3132
Optical
handwritten

58 3% 5% 3547

Intrusion de-
tection

38 9% 5% 11000

Physiological 9 1.2% 5% 4050

We have performed extensive experiments using real
data sets to evaluate the performances of our proposed
algorithms. The data sets used in our experiments are
summarized in Table 1. The two variants proposed in this
paper are denoted as HardS and FuzzyS, which correspond
to hard anomaly detection and fuzzy anomaly detection
respectively. The parameters of these algorithms are selected
using the methodology described in our technical report [4].

We compared the performances of our algorithms
against a distance-based anomaly detection algorithm called
K-dist [6] and a density-based algorithm known asLOF
[2]. K-dist uses the distance between a data point to itsk-
th nearest neighbor to be the anomaly score. LOF, on the
other hand, computes the anomaly score in terms of the ratio
between the density of a point to the density of itsk near-
est neighbors. Semi-supervised classification is another ap-
proach for detecting anomalies using labeled and unlabeled
examples. We apply the semi-supervised classification al-
gorithm (NBEM ) developed by Nigam et al. [8], which
combines näıve Bayes with EM algorithm. Finally, we also
employ a supervised learning algorithm—the naı̈ve Bayes
classifier (NB)—as a baseline classifier for comparison pur-
poses. Note that the naı̈ve Bayes classifier is trained using
the actual class labels for the entire data set. Therefore, we
do not expect any of the unsupervised or semi-supervised al-
gorithms to outperformNB.

We employ four evaluation metrics to compare the
performances of our algorithms: Precision(P), Recall(R), F-
measure(F), and False Alarm rate (FA).

4.1 Comparisons Among Unsupervised, Semi-
supervised and Supervised Anomaly Detection Al-
gorithms Tables 2 to 5 show the results of applying the
various algorithms to four real data sets. Notice that FuzzyS
and HardS algorithms generally outperform both LOF and
K-dist, except on the Physiological data. In the Shuttle
data, the F-measure for FuzzyS and HardS algorithms are
even better than the naı̈ve Bayes classifier. For the optical
handwritten data, the unsupervised learning algorithms
perform poorly because of the high-dimensional and sparse

Table 2: Shuttle(k = 2,γ = 20)
FuzzyS HardS K dist LOF NBEM NB

R 0.9103 0.7374 0.3636 0.1212 0.8186 0.935
P 1.0000 1.0000 0.3636 0.1212 0.0682 0.754
F 0.9531 0.8489 0.3636 0.1212 0.1259 0.835
FA 0.0043 0.0157 0.0280 0.0387 0.0007 0.0053

Table 3: Optical handwritten data(k = 5,γ = 85)
FuzzyS HardS K dist LOF NBEM NB

R 0.0810 0.7111 0.05 0.05 1.0000 0.8
P 0.8250 0.8000 0.05 0.05 0.9750 0.923
F 0.1903 0.7529 0.05 0.05 0.9873 0.857
FA 0.1376 0.0067 0.01 0.01 0.0000 0.001

Table 4: Intrusion detection data(k = 2,γ = 50)
FuzzyS HardS K dist LOF NBEM NB

R 0.4011 0.7213 0.5123 0.4322 0.8336 0.988
P 0.9980 0.9940 0.3333 0.1167 0.9520 1.0000
F 0.5722 0.8360 0.4039 0.1838 0.8889 0.994
FA 0.0745 0.0192 0.0439 0.0402 0.0095 0.0006

Table 5: Physiological data(k = 2,γ = 50)
FuzzyS HardS K dist LOF NBEM NB

R 0.8824 0.9167 0.92 0.060 1.0000 0.875
P 0.9000 0.8800 0.92 0.060 0.0400 1.0000
F 0.8911 0.8980 0.92 0.060 0.0767 0.933
FA 0.0015 0.0010 0.002 0.0235 0.0000 0.0000

nature of the data, a situation in which the notion of distance
is likely to break down.

Both semi-supervised classification and semi-
supervised anomaly detection algorithms employ labeled
data to improve the detection of anomalies. Our empirical
results show that HardS and FuzzyS algorithms perform bet-
ter than NBEM on two of the four data sets. To understand
why one algorithm may be better than the other, Figure 2
shows a comparison between our proposed algorithms and
NBEM on the Physiological data set when the percentage
of outliers is varied from 1% to 35%. Our experimental
results suggest that FuzzyS and HardS tend to outperform
NBEM when the percentage of outliers is small, whereas
NBEM performs better when the percentage of outliers is
more than 20%. We expect semi-supervised classification
algorithms to do a poor job when the distribution is highly
skewed because estimating the probability distribution
becomes a challenging task if there are very few examples
in the outlier class. It should be noted that in anomaly
detection, the scenario where anomalies account for more
than 20% of the data is a very rare situation indeed. In short,
semi-supervised anomaly detection would be a better choice
than semi-supervised classification when the percentage of
outliers is small.
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Figure 2: Performances while varying the percentage of
outliers

4.2 The Utility of Labeled Information Figure 3 shows
the effect of varying the amount of labeled data while
keeping the amount of unlabeled data to be the same. We
use the FuzzyS anomaly detection algorithm on the Intrusion
Detection data set for this experiment. Naturally, having
more labeled data helps to increase the detection rate and
to reduce the false alarm rate. When the percentage of
labeled data increases, the detection rate and false alarm
rate for FuzzyS both improve. Furthermore, notice that our
algorithm achieves a very high detection rate (more than
99%) and low false alarm rate (less than 2%) when the
percentage of labeled data is more than 10%.
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Figure 3: Detection rate while varying the percentage of
labeled data

5 Conclusion

This paper introduces a probability-based framework for
detecting anomalies using labeled and unlabeled data. The
labeled examples are used to guide the anomaly detection
algorithm towards distinguishing data points that are hard
to classify (e.g., anomalies that are located in high density
regions or normal points that are located in low density
regions). Experimental results using real data sets confirmed
that our proposed algorithm is generally more superior than
unsupervised anomaly detection algorithms such as k-dist
and LOF. We also compared the performances of proposed
HardS and FuzzyS algorithms against a semi-supervised
classification algorithm called NBEM. The results show that
semi-supervised anomaly detection tends to do better when
the percentage of outliers is considerably smaller than the
percentage of normal points.
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