On Appropriate Assumptions to Mine Data Streams: Analysis and Practice

Jing Gao'

Wei Fan?

Jiawei Han'

TUniversity of Illinois at Urbana-Champaign
*IBM T. J. Watson Research Center
jinggao3 @uiuc.edu, weifan @us.ibm.com, hanj@cs.uiuc.edu

Abstract

Recent years have witnessed an increasing number of
studies in stream mining, which aim at building an accurate
model for continuously arriving data. Somehow most ex-
isting work makes the implicit assumption that the training
data and the yet-to-come testing data are always sampled
from the “same distribution”, and yet this “same distribu-
tion” evolves over time. We demonstrate that this may not
be true, and one actually may never know either “how” or
“when” the distribution changes. Thus, a model that fits
well on the observed distribution can have unsatisfactory
accuracy on the incoming data. Practically, one can just
assume the bare minimum that learning from observed data
is better than both random guessing and always predicting
exactly the same class label. Importantly, we formally and
experimentally demonstrate the robustness of a model aver-
aging and simple voting-based framework for data streams,
particularly when incoming data “continuously follows sig-
nificantly different” distributions. On a real streaming data,
this framework reduces the expected error of baseline mod-
els by 60%, and remains the most accurate compared to
those baseline models.

1. Problems and Motivations

Classification on stream data has been extensively stud-
ied in recent years with many important algorithms devel-
oped. Much of the previous work focuses on how to ef-
fectively update the classification model when stream data
flows in [1, 4, 6]. The old examples can be either thrown
away after some period of time or smoothly faded out by de-
creasing their weights as time elapses. Alternatively, other
researchers explore some sophisticated methods to select
old examples to help train a better model rather than just
using the most recent data alone [10, 2, 9, 7, 8]. These al-
gorithms select either old examples or old models with re-
spect to how well they match the current data. Hence, they

also implicitly make the assumption that the current train-
ing distribution is considerably close to the unknown dis-
tribution that produces future data. Among these methods,
the weighted ensemble approaches [2, 7, 8, 9] were demon-
strated to be highly accurate, when the “stationary distribu-
tion assumption” holds true. Formally, we denote the fea-
ture vector and class label as x and y respectively. Data
stream could be defined as an infinite sequence of (x;,y;).
Training set D and test set 1" are two sets of sequentially ad-
jacent examples drawn from the data stream. The labels in
T are not known during classification process and will only
be provided after some period of time. The assumption held
by existing algorithms is stated as follows:

Assumption 1 (Shared Distribution - Stationary Distribution)

Training D and test data T are assumed to be generated by
the same distribution P(x,y) = P(y|x) - P(x) no matter
how P(x,y) evolves as time elapses.

Given this assumption, one would ask: “what is the differ-
ence between stream mining and traditional mining prob-
lems?” The most significant difference from traditional
“static” learning scenarios is that this shared distribution
between training and testing data (abbreviated as “shared
distribution” in the rest of paper) evolves from time to
time in three different ways [3]: (1) feature changes, i.e.,
the changes of the probability P(x) to encounter an ex-
ample with feature vector x; (2) conditional changes, i.e.,
the changes of the conditional probability P(y|x) to assign
class label y to feature vector x; and (3) dual changes, i.e.,
the changes in both P(x) and P(y|x). An illustration with
a real-world intrusion dataset can be found later in this sec-
tion.

Under the “shared distribution assumption”, the funda-
mental problems that previous works on stream mining fo-
cus on are mainly the following areas: 1) How often the
shared distribution changes? It could be continuous or pe-
riodical, and fast or slow; 2) How much data is collected to
mine the “shared distribution”? It could be sufficient, insuf-
ficient or “just don’t know”’; 3) What is this “shared distri-

= true P(y)
- - Batch Update
Real Time Update

Time x 10

Figure 1. Evolution of P(y)

bution”? It could be balanced or skewed, binary or multi-
class, and etc.; 4) How the shared distribution evolves?
There could be conditional change, feature change, or dual
change; and 5) How to detect the changes in shared dis-
tribution? Some methods do not detect them at all and al-
ways keep the models up-to-date whereas others only trig-
ger model reconstruction if a change is suspected. Obvi-
ously, the validity of some of these problems relies on the
“shared distribution assumption”, which we challenge be-
low. Interestingly, given “stationary distribution assump-
tion”, stream learning would still be effectively the same
as traditional learning if the set of training examples col-
lected to mine the “shared distribution” is sufficiently large
so that additional examples cannot construct a more accu-
rate model [2].

Realistic Assumption The implicitly held assumption
(Assumption 1) may not always be true for data streams.
As an example, let us consider the KDDCUP’99 “intrusion
detection” dataset that is widely used in the stream mining
literature. We plot the evolution on the percentage of intru-
sions using “averaged shifted histogram (ASH)” in Figure
1. The true probability P(y) to encounter an intrusion is
shown in thick solid line. Obviously, P(y) is very volatile.
As time elapses, P(y) continues to change and fluctuate.
At some period, the change is more significant than others.
Except for the flat area between time stamps 2x10° and
3x105, P(y) from the past is always different from that of
the future examples. Under “shared distribution” assump-
tion, the training distribution ought to be accurately mod-
eled as the ultimate target. However, it may not precisely
match future testing distribution due to continuous change.

The fluctuation in P(y) comes from changes in P(y|x)
or P(x). Let + denote intrusions. By definition, P(y =

Y P(xy=+)
R
then P(y) x P(x,y) = P(y|x)- P(x). Thus, the change in
P(y) has to come from P(y|x), or P(x), or possibly both
P(y|x) and P(x). Unless the dataset is synthesized, one

and Y P(x) is fixed for a given period,

Time Time Time
Stamp Stamp Stamp

0 025 0 025 0 0.25

Figure 2. Evolution of P(x) and P(y|x)

normally does not know which of these three cases is true,
either before or after mining. Because of this, a model con-
structed from the training data may not be highly accurate
on the incoming data. This can particularly be an issue if the
changes are attributed to conditional probability P(y|x). As
follows, we illustrate how P(x) and P(y|x) change using
the same intrusion detection example.

Figure 2 shows the histograms of the percentage
of intrusions and normal connections given the feature
‘srv_diff_host_rate’ in three different time periods, where
gray represents intrusions and black indicates normal con-
nections. The range of this feature, or the percentage of
connections to different hosts, remains within [0,1]. Due
to the space limit, we only show the histograms between
0 and 0.25. Most bars between 0.25 and 1 have heights
close to 0 and do not reveal much useful information. It
is obvious that the distribution of this feature, or visually
the relative height of each bar in the histogram represent-
ing the percentage of connections, is different among these
three time periods. This obviously indicates the change in
P(x) as data flows in. In addition, the probability distri-
bution to observe intrusions given this feature is quite dif-
ferent among these three periods. For example, in the first
time period, P(y = +|z € [0.095,0.105]) = 0 but it later
jumps to around 0.7 at the last time stamp. In the following,
we will discuss how the “shared distribution” assumption
affects learning when the actual data evolves in the manner
described above. It is worth noting that some stream mining
algorithms [10, 6, 2, 9, 7, 12, 8] discuss about the concept
drifts in streams and recognize the changes in the distribu-
tion that generates the data. However, they still make some
assumptions about the forms of concept drifts. For exam-
ple, most of them assume that the most recent training data
is drawn from the distribution which is considerably close
to that generates the test data [6, 2, 9, 7, 8].

Depending on when labeled training data becomes avail-
able, existing stream classification algorithms belong to two
main categories. The first group [1, 4] updates the training
distribution as soon as labeled example becomes available
and flows in, and at the same time, obsolete examples are

either discarded or “weighted” out. Under the “shared dis-
tribution” assumption, such method obviously assumes that
the distribution of the next moment is the same as those ob-
served data in memory. Visually, it assumes a “shifted” or
“delayed” P(y) as the distribution of the future, as shown
by the “Real Time Update” curve in Figure 1. To be pre-
cise, when either the number of examples kept in mem-
ory is not sufficiently large or the fading weights are not
set properly, P(y) may not only be shifted but also carry
a “different shape” from the plot constructed by average
shifted histogram. The second family of stream classifica-
tion algorithms [2, 9, 7, 8] normally receives labeled data
in “chunks”, and assumes that the most recent chunk is the
closest to the future distribution. Thus, they concentrate
on learning from the most recent data accurately as well as
some old examples that are similar to the current distribu-
tion. Due to the changing P(y), we observe both “shift”
and “flattening” of the assumed future distribution, shown
in the “Batch Update” curve in Figure 1. “Flattening” is due
to chunking and is hard to avoid since labeled data may ar-
rive in chunks. As a summary, for both families of methods,
“shifting” is not desirable and ought to be resolved.

In fact, “shift” or “delay” is inevitable under the “shared
distribution assumption”, since the culprit is the assump-
tion itself: the future data is not known and can change
in different ways from the current data, but they are im-
plicitly assumed to be the same. In order to overcome the
“delaying” problem, the main question is how one should
judiciously use what is known in order to optimally match
the unknown future, with the least surprise and disappoint-
ment. Existing algorithms have obviously taken the road
to accurately match the training distribution with the hope
that it will perform well on the future data. However, from
the above example as well as detailed experiments on this
example in Section 3, they could perform poorly when the
future is quite different from the current. By this token, we
could see that the commonly held “shared distribution as-
sumption” may not be appropriate, and stream classification
algorithms ought to consider situations where training and
testing distributions are different. Thus, we take this differ-
ence into consideration and suggest a relaxed and realistic
assumption as follows:

Assumption 2 (Learnable Assumption) The training and
testing distributions are similar to the degree that the model
trained from the training set D has higher accuracy on the
test set 'I' than both random guessing and predicting the
same class label.

The core of this new assumption is that it does not assume
to know any exact relationship between current training and
future test distribution, but simply assume that they are sim-
ilar in the sense that learning is still useful. As commonly
understood, this is the bare minimum for learning. It should

e x is feature vector from feature space X and P(x) is the proba-
bility distribution of feature vectors.

e y is the class label from space Y and P(y) is the prior class
probability.

e P(x,y) is the joint probability of having feature vector x and
class label y, and P(y|x) is the conditional probability for x to
have label y.

e Stream data is an infinite sequence of X — Y pairs, {(xi, y:)}
where the value of y; is known after a certain time period.

e Since P(x,y) is evolving in streams, we use P;(x, y) to repre-
sent the joint distribution over X — Y space at time ¢.

e Training set D and test set 7" contain sequentially adjacent exam-
ples drawn from the stream data. The true values of y; in 7" is not
known at the time of learning.

e Training set D is drawn from distribution P, (x,y), and test set
T is drawn from Pe(x,y). a < e, and P,(x,y) and Pe(x,y)
are different.

e P,(x,y) and Pe(x,y) are similar in the sense that the model
trained on D and evaluated on 7" is more accurate than random
guessing and fixed prediction.

Figure 3. Notations and Assumptions

be noted that this assumption is made concerning the induc-
tive learning problem. Mining data streams from other per-
spectives, such as clustering, association mining, may re-
quire other appropriate assumptions. All the notations and
assumptions we made in the paper are summarized in Fig-
ure 3. With the relaxed assumption, we first elaborate the
idea that one should only match the training distribution to
a certain degree, then we shall provide a straightforward
framework that can maximize the chance for models to suc-
ceed on future data with different distributions.

2. A Robust and Extensible Framework

In Section 1, we illustrate that when learning from
stream data, it is unlikely that training and testing data al-
ways come from the same distribution. This phenomenon
hurts existing algorithms that are based upon such an as-
sumption. Some stream mining work has investigated
the change detection problem [5] or utilized the concept
change in model construction [12]. However, since there
are only unlabeled examples available in the test data set,
the “change detection” could at most detect feature change.
It is rather difficult to detect the change in P(y|x) before
class labels are given. The moral of the relaxed assump-
tion (Assumption 2) ought to be understood in the way that
“strong assumptions are no good for stream mining”. To
carry this understanding one step further, any single learn-
ing method on data streams also makes assumptions one
way or the other on how to match the training distribution
effectively and still perform well on testing distribution, and

these assumptions can also fail for a continuously chang-
ing data stream. Instead, we use a naive model averaging
based approach that does not depend specifically on any
single technique but combines multiple techniques wher-
ever and whenever available. Formally, suppose k£ models
{My, My, ..., My} are trained (e.g. using different learn-
ing algorithms) and each of them outputs an estimated pos-
terior probability P(y|x, M;) for each test example x. We
use simple averaging to combine the probability outputs,
thus f4(x) = %Zle P(y|x, M;), and its optimality is
discussed below.

Performance Guarantee As described above, we gener-
ate k models and each model M; outputs an estimated prob-
ability P(y|x, M;) for x. For the sake of simplicity, we use
M to denote any of the £ models M, and use O, to rep-
resent the collection of the £ models. Then any base model
M’s expected mean squared error is the difference between
its predicted probability and the true probability integrated
over all test examples:

ErrM = Z P(x,y)(P(ylx) — P(ylx, M))*
(x,y)€T
= Ep(x.y) [P(ylx)* = 2P(y[x)P(y|x, M) + P(y|x, M)?]

Suppose each model M has probability P(M) on the test
set, then the expected error incurred by randomly choosing
a base streaming model to do prediction is the above error
Err™ integrated over all models:

Er= % Y Plxy)(Pylx) - Plylx,M))*

MeO N (x,y)ET

STEIP 1! [] []] 1l |]
110

Stamp
* A i
.]
[Test Error

[] Training Error

Figure 4. Error Comparison

models is superior to any base streaming model chosen at
random with respect to reduction in expected errors on all
possible examples.

We are not claiming that model averaging is more accu-
rate than any single model at any given time. As a simple
illustration, Figure 4 shows the errors of three models at
time A and time B. At a specific time stamp, a single model
M that fits current distribution well could have much bet-
ter performances on test data than other models, e.g., M5 at
time A and M, at time B. At this same time stamp, the prob-
ability averaging of three models (shown as AP) may not
necessarily be more accurate than using a specific model.
However, in stream learning problems, it is hard to find a
single model that works well on all possible training-test
pairs drawn independently from continuously changing dis-
tributions. Since it is unknown which single model could be
optimal at each and every time stamp, the current practice is
to select a method and hope it will perform the best at any

= Ep(u),P(x,y) [P(y|x)? — 2P(y|x)P(y|x, M) + P(y|x, M)?] time stamp. However, this could be risky. In the above ex-

It should be noted that the above equation only evaluates the
general performances of base streaming models, but the pre-
dictions of test examples are not averaged. Now, we come
to the analysis of ensemble where the predictions are aver-
aged. As introduced before, we make the following “model
averaging” prediction: f#(x) = Ep(u)[P(y|x, M)]. Then
the expected error of this ensemble should be the error inte-
grated over the universe of test examples:

Errf= Z P(x,y)(P(y[x) — Epn) [P(ylx, M)])2
(xy)eT
=Ep ey [P(y|%)* = 2P(y|x) Epoa) [P(y]x, M)]
+Epn [Pylx, M))?]
<Epx,y) [P(ylx)* — 2P(y|x)Epary [P(y|x, M)
+Ep(n) [Pylx, M)?]]
The inequality holds since E[f(x))]?> < E(f(x)?] (in this

case, Epn) [P(y|x, M)]* < Epan [P (y[x, M)?]. There-
fore, ErrA < ErrM i.e., probability averaging of multiple

ample, the most accurate model M5 at time stamp A turns
out to be the least accurate at time stamp B. On the other
hand, the model averaging approach could reduce the prob-
ability of surprises and guarantee the most reliable perfor-
mance. The above analysis formally proves the expected er-
ror incurred by randomly choosing a single model is greater
than model averaging. Therefore, unless we know exactly
which model is always the best, unrealistic in a constantly
changing stream environment, we could expect model aver-
aging to have the best expected performance.

Optimality of Uniform Weights The next question is
how to decide P(M), or the probability of model M be-
ing optimal. The simplest way is to set P(M*) = 1 where
M* is the most accurate model and set other model’s prob-
ability as 0. This is one of the common practice adopted
by some stream mining algorithms where the model itself
is fixed but its parameters are re-estimated as labeled data
flows in. As discussed above, the expected performance of
a single model could be low, when the distribution is con-

tinuously evolving. Another more sophisticated approach is
introduced in [9], where each model is assigned a weight
that is reversely proportional to its error estimated using
training data. That is to say, P(M) is higher if the model
M incurs less errors when cross-validated using the train-
ing data. This weighting scheme is problematic because: 1)
the training examples may be insufficient to reflect the true
accuracy of model M, thus the weights may not represent
the true P(M); and 2) more importantly, the training and
testing distributions may not be the same as previous meth-
ods have assumed, thus the weights derived from the train-
ing data would be essentially inappropriate for the test data.
As illustrated in Figure 4, when training and test data have
different distributions, P(M) calculated using training data
may be off from its true value, thus leading to the unsatis-
factory performance of weighted ensemble (denoted as WE)
as compared with the simple model averaging (AP). As fol-
lows, we formally illustrate why simple averaging with uni-
form weights beats other non-uniform weighting schemes.
Suppose the weights of k models are {wy,ws, ..., wg},
each of which is from [0,1] and satisfies the constraint
S°F w; = 1. Ideally, the weight of model M;(1 < i < k)
ought approximate its true probability P(M;) as well as
possible. We use the following measure to evaluate the dif-
ference between the assigned weights and the true weights:

k

D(w) = (P(M;) — w;) (1)

i=1

Let ©; be the hypothesis space where M; is drawn, which
has a uniform distribution with a constant density C*. In
other words, we don’t have any prior knowledge about the
optimality of a model for a constantly changing stream.
This is a valid assumption since the choice of optimal model
is changing with the evolving distribution. The test distribu-
tion is somewhat revealed by the training distribution, how-
ever, which model fits the distribution the best remains un-
known. Another clarification is that P(M;) # P(M,)(i #
j) on a specific pair of training and test sets given in time.
This means that we cannot have preference for some model
over others, since the preference needs to change continu-
ously considering all possible training and test sets in time.
The constraint Zle P(M;) = 1 should also be satisfied.
As an example, suppose there are two models, M7 and M.
Then P(M;) and P(M5) are both uniformly distributed
within [0,1]. At one evaluation point, P(M;) = 0.8 and
P(M;) = 0.2, but at another time, P(M;) = 0.3 and
P(Ms) = 0.7. Tt is clear that both M; and M3 would be
preferred at some time but it is unknown when and how this
preference is changing. As another example, look at Figure
4 again, it is clearly shown that Ms and M; are the best
models with lowest test errors at time A and B respectively.
However, since the labels of test examples are not known

in advance, we could never know this changing preference
before mining.

Integrating the distance measure in Eq. 1 over all possi-
ble M;, we could obtain the expected distance as:

k
E[D(w>]=Z /@ CH(P(M;) — w;)*dM;
lk ’
:Z/ CY(P(M;)* — 2P(M;)w; + w3)dM;
i=17©i

The aim is to minimize E[D(w)] w.r.t w. Eliminating irrel-
evant items, the above could be simplified to:

k k
E[D(W)] =, —CQZ’LUi—FCngZZ 2)
i=1 =1

where {C7,C2,C3} are positive constants. Since
Zle w; = 1, the problem is transformed to:

k k
Minimize Z w? Subject to Z w; =land 0 < w; <1
i=1 i=1

The closed form solution to this constrained optimization
problem is: w; = %(1 < i < k). Therefore, when we
have no prior knowledge about each model, equal weights
are expected to be the closest to true model probabilities on
the test data over some period of time, thus giving the best
performances on average. This is particularly true in the
stream environment where the distribution is continuously
changing. As shown in the following experiments, the best
model on current data may have bad performances on future
data, in other words, P(M) is changing and we could never
estimate the true P(M) and when and how it would change.
Hence non-uniform weights could easily incur over-fitting,
and relying on a particular model should be avoided. Under
such circumstances, uniform weights for the models are the
best approximate of the true P(M).

3. Experiments

We conduct an extensive performance study using both
synthetic and real data sets, where training and testing dis-
tributions are explicitly generated differently, to demon-
strate the effectiveness of the averaging ensemble against
change. As discussed below in detail, this empirical study
validates the following claims: 1) ensemble based on model
averaging would reduce expected errors compared with sin-
gle models, thus is more accurate and stable; and 2) previ-
ous weighted ensemble approach is less effective than en-
semble based on simple voting or probability averaging.

3.1. Experiment Setup

Synthetic Data Generation We describe how to generate
synthetic data and simulate its concept changes, rephrased
from [3]. Form of P(x). x follows a Gaussian distribu-
tion, i.e., P(x) ~ N(u,X), where p is the mean vec-
tor and X is the covariance matrix. The feature change
is simulated through the change of the mean vector where
w; is changed to p;s;(1 + t) for each data chunk. ¢ is
between 0 to 1, representing the magnitude of changes,
and s; € {—1,1} specifies the direction of changes and
could be reversed with a probability of 10%. Form of
P(y|x) in deterministic problems. In binary problems,
the boundary between two classes is defined using function
g(x) = Zle a;T;Tq—;+1 — ag where a is the weight vec-
tor. Then the examples satisfying g(x) < 0 are labeled
positive, whereas other examples are labeled negative. a; is
initialized by a random value in the range of [0,1] and the
value of ag is set based on the values of r and {aq,...,aq}.
In multi-class problems, suppose there are [classes and the
count of examples in each class is {C1,Cs,...,C;}. We
calculate the value of g(x) for each x using the definition
given in binary problems. All the examples are ranked in
ascending order of g(x). Then the top C; examples are
given class label 1, examples with ranks Cy 4+ 1 to Cy 4+ Cy
are assigned to class 2, and so on. In both problems, the
concept change is represented by the change in weight a;,
which is changed to a;s;(1 + t) for every data chunk. The
parameters ¢ and s; are defined in the same way as in the
feature change. Form of P(y|x) in stochastic problems.
We use a sigmoid function to model the posterior distribu-
tion of positive class: P(+|x) = 1/(1 4 exp(g(x))). The
concept changes are also realized by the changes of weights
as illustrated in the deterministic scenario.

The distribution within a data chunk is unchanged
whereas between data chunks, the following changes may
occur: 1) each data chunk could either be deterministic or
stochastic (in binary problem); 2) in each chunk, the Gaus-
sian distribution of the feature values may either have diago-
nal variance matrix or non-diagonal one; 3) either one of the
three concept changes (feature change, conditional change
and dual change) may occur; 4) the number of dimensions
involved in the concept change is a random number from 2
to 6; and 5) the magnitude of change in each dimension is
randomly sampled from {10%, 20%, . ..,50%}. Since lots
of random factors are incorporated into the simulated con-
cept change, it is guaranteed that training and testing distri-
butions are different and evolving quickly.

Real-World Data Sets We test several models on KDD
Cup’99 intrusion detection data set, which forms a real data
stream. This data set consists of a series of TCP connec-
tion records, each of which can either correspond to a nor-

mal connection or an intrusion. We construct three data
streams from the 10% subset of this data set: Shuffling.
Randomly shuffle the data and partition it into 50 chunks
with varying chunk size from 5000 to 10000. Stratified
Sampling. Put the data into class buckets: One for normal
connections and one for intrusions. Generate 50 chunks as
follows: 1) choose an initial P(y), 2) sample without re-
placement from each bucket to form a chunk that satisfies
P(y), 3) evolve P(y) and sample from the remaining data
in the buckets as the next chunk, and finally, 4) put data
sampled in step 2 back to the buckets and repeat steps 2 and
3. The chunk size is also varied from 5000 to 10000. Merg-
ing. Partition the data into chunks and maintain its original
order. Both normal connections and intrusions should ac-
count for at least 5% in each chunk, if this is not satisfied,
merge the chunk with the next chunk until the percentage
is above the threshold. In the experiments, we discard one
large data chunk with only normal examples and there are
altogether 22 chunks with chunk size varying from 1069 to
32122. We construct these three data sets because the origi-
nal data set does not have explicit time stamps and there are
chunks of intrusions followed by chunks of normal exam-
ples. Each chunk may only contain examples of one class
and this is a non-learnable problem. On the other hand,
the three data streams we constructed have the following
properties: 1) each chunk is ensured to have examples from
both classes; and 2) the distributions of two consecutive data
chunks are different and evolve in different ways in three
streams. Upon such datasets, we could validate our claims
of stream mining upon the relaxed assumption.

Measures and Baseline Methods For a data stream with
chunks 71,75, ..., Tx, we use T; as the training set to clas-
sify T+, and the distribution of the test set 7 ; is not nec-
essarily the same as that of 7;. We evaluate the accuracy of
each model. For the classifier having posterior probability
as the output, the predicted class label is the class with the
highest posterior probability under zero-one loss function.
Another measure is mean squared error (MSE), defined as
the averaged difference between estimated probability and
true posterior probability P(y|x). In problems where we
are only exposed to the class labels but do not know the
true probability, we set P(y|x) = 1 if y is x’s true class
label, otherwise P(y|x) = 0. We are comparing the fol-
lowing algorithms: single models built using Decision Tree
(DT), SVM, Logistic Regression (LR) and ensemble ap-
proaches including Weighted Ensemble (WE), Simple Vot-
ing (SV) and Averaging Probability (AP). Different from
averaging ensemble framework, the weighted ensemble ap-
proach assigns a weight to each base model which reflects
its predictive accuracy on the training data (obtained by ten-
fold cross validation) and the final prediction outputs are
combined through weighted averaging. In previous work,

Table 1. Performance Comparison on Synthetic Stream Data
Binary Stream Data

Chunk Size 100

Chunk Size 2000

Measure |—5r SVM IR WE SV AP DT SVM IR WE SV AP
Aacc || 07243 | 0.7591 | 0.7346 || 0.7461 || 0.7595 | 0.7690 || 0.8424 | 0.8318 | 0.8366 || 0.8339 || 0.8370 | 0.8369
Amse || 02731 | 02387 | 0.2625 || 0.1889 || 0.2379 | 0.1752 || 0.1540 | 0.1649 | 0.1601 || 0.1262 || 0.1597 | 0.1242
AR || 22323 | 1.6465 | 2.1111 || 1.8889 || 1.5152 | 1.4848 || 2.1313 | 1.8485 | 1.6869 || 1.7980 || 1.5455 | 1.5455
SR || 0.8902 | 0.6898 | 0.8193 || 0.7544 || 0.5414 | 0.5414 || 0.9757 | 0.8732 | 0.8765 || 0.8687 || 0.7460 | 0.7460
W 30 47 28 34 50 53 41 46 58 49 60 60
#L 53 12 39 23 2 2 54 31 27 29 15 15
Multi-Class Stream Data
Moasure Chunk Size 100 Chunk Size 2000
DT | SYM | LR WE SV AP DT | SYM | LR WE SV AP
Aacc || 05111 | 05295 | 0.5298 || 0.5301 || 0.5320 | 0.5314 || 0.4991 | 0.4939 | 0.4920 || 0.5130 || 0.4950 | 0.5139
Amse || 0.1745 | 0.1413 | 0.1272 || 0.1210 || 0.1872 | 0.1208 || 0.1764 | 0.1461 | 0.1322 || 0.1246 || 0.2020 | 0.1244
AR || 23636 | 1.9293 | 1.9798 || 1.8283 || 1.8788 | 1.7273 || 2.0202 | 2.2626 | 2.2424 || 1.6667 || 2.1111 | 1.4040
SR || 0.8263 | 0.7986 | 0.7822 || 0.5159 || 0.6589 | 0.6197 || 0.8919 | 0.8758 | 0.9045 || 0.4949 || 0.9023 | 0.5330
#W 2 35 31 23 28 36 38 28 31 34 35 61
#L 58 28 29 6 16 9 40 54 55 1 46 2

such weighted ensembles are shown to be effective when
the “shared distribution” assumption holds true. In our ex-
periments, we evaluate its performances upon the relaxed
assumption. For all the base learning algorithms, we use the
implementation in Weka package [11] with parameters set
to be the default values. In the averaging ensemble frame-
work, either SV or AP, the base streaming models could be
chosen arbitrarily. We test the framework where base mod-
els are constructed from either different learning algorithms
or different samples of the training sets.

For a learning algorithm Aj,, we build a model based on
T; and evaluate it on 7;;; to obtain its accuracy p;; and
MSE e;;,. There are altogether N — 1 models and we re-
port its average accuracy (Aacc) and average MSE (Amse).
Furthermore, in each of the N —1 runs, we compare the per-
formances of all algorithms and decide the winner and loser
in the following way: if p;; is within m% of maxy, p;,, al-
gorithm Ay, is a winner in that run, similarly, if p;;, is within
m% of miny, p;p, it is a loser. In other words, we tolerate
some small difference between two algorithms, if their ac-
curacies are the same with respect to the “margin tolerance
rate” m, we regard their performances as the same. We re-
port the number of wins and loses for each algorithm (#W
and #L). With winners ranking the first, losers ranking the
third and all other algorithms occupying the second posi-
tion, we give N — 1 ranks to each algorithm and obtain the
mean and standard deviation of the ranks (AR and SR). A
good algorithm will have a higher accuracy, a lower MSE
and average rank closer to 1. If it has a lower standard de-
viation in the ranks, the learning algorithm is more stable.

3.2. Empirical Results

We report the experimental results comparing the two
ensemble approaches (SV, AP) with single model algo-

rithms (DT, SVM, LR) as well as weighted ensemble
method (WE). As discussed below in detail, the results
clearly demonstrate that on the stream data where training
and testing distributions are different and fast evolving, the
two ensemble approaches have the best performances on av-
erage with higher accuracy and lower variations. Therefore,
when facing unknown future, the ensemble framework is
the best choice to minimize the number of bad predictions.

Test on Concept-Drifting Stream Data We generate
four synthetic data streams, each of which is either binary
or multi-class and has chunk size 100 or 2000. Each data
set has 10 dimensions and 100 data chunks. The margin
tolerance rate is set to be 0.01. From Table 1, it is clear
that the two ensemble approaches (SV and AP) have better
performances (best are highlighted in bold font) regardless
of the measures we are using, the problem type (binary or
multi-class) and the chunk size. Take the binary problem
with chunk size 100 as an example. AP proves to be the
most accurate and stable classifier with the highest accu-
racy (0.7690), lowest MSE (0.1752), 53 wins and only 2
loses. SV is quite comparable to AP with 50 wins and 2
loses. The best single classifier SVM wins 47 times and
loses 12 times and WE approach seems to suffer from its
training set-based weights with only 34 wins but 23 loses.
These results suggest the following: when the “same distri-
bution” between training and testing data does not exist: 1)
there are no uniformly best single classifiers, even decision
tree, which has the worst average performance, still wins
30 times among all 99 competitions. The large variabilities
of single models result in their high expected errors; 2) on
average, ensemble approaches, simple voting or probability
averaging, are the most capable of predicting on future data
with unknown distributions; 3) assigning a weight to each

Table 2. Data Steam with Shared Distribution

Table 3. Ensemble on Real Data
Shuffling

DT SVM LR WE Sv AP

DT SVM LR WE SV AP

Aacc | 0.7366 | 0.7756 | 0.7604 | 0.7704 | 0.7772 | 0.7797
Amse | 0.2369 | 0.1980 | 0.2052 | 0.1427 | 0.1939 | 0.1254
AR | 23030 | 1.7071 | 2.1010 | 1.7879 | 1.6768 | 1.6364

Aacc | 0.9961 | 0.9941 | 0.9957 | 0.9964 | 0.9975 | 0.9975
Amse | 0.0039 | 0.0059 | 0.0043 | 0.0028 | 0.0025 | 0.0024
AR | 1.9592 | 2.5306 | 1.9388 | 1.6939 | 1.0000 | 1.0000

base learner even hurts the predictive performances on test-
ing data since the distribution it tries to match is different
from the true one.

For binary streams, we also record the results on the
first 40 chunks to see how the concept evolution affects the
classification performances. The results indicate that even
within the same data stream, the best single classifier for the
first 40 chunks is different from the best one on the whole
data set. Take the stream data with chunk size 100 as an
example. At first, LR has 18 wins, compared with DT (4
wins) and SVM (14 wins), it appears to be the best on av-
erage. However, later, SVM takes the first place with 47
wins (DT 30 and LR 28). This clearly indicates that in a
stream whose distribution evolves, a model which performs
well on current data may have poor performances on future
data. Since we never know when and how the distribution
changes, depending on one single classifier is rather risky.
On the other hand, ensemble based on averaged probability
is more robust and accurate, which is the winner for classi-
fying data streams with regard to the average performance
(ranks around 1.5 while others rank more than 2 on aver-
age). Ensemble based on simple voting (SV) produces re-
sults similar to that of AP in binary stream problems, but
is not that competitive in multi-class problems. The rea-
son may be that two class problems are easier for predic-
tion tasks, so the probability outputs of a classifier may be
rather skewed, greater than 0.9 or less than 0.1. So there
isn’t much difference between simple voting and averag-
ing probability in this case. However, when the number of
classes grows large, it is quite unlikely that the predicted
probability is skewed. The strengths of probability averag-
ing over simple voting is therefore demonstrated on multi-
class problems. As for the weighted ensemble approach, it
sometimes increases the predictive accuracy, but sometimes
gives even worse predictions compared with single models.
Whether it performs good or not is dependent on how the
training and testing distributions match. In this sense, the
other two simple ensemble methods are more robust since
they are not based on the assumption that training and test-
ing data come from the same distribution.

We also compare all the methods on data streams where
training and testing distributions are identical, as assumed
by previous stream mining algorithms. Two data streams

SR | 0.8506 | 0.6739 | 0.8143 | 0.7460 | 0.5312 | 0.5431 SR | 0.8406 | 0.7665 | 0.8013 | 0.7959 0 0
#W 25 41 28 40 35 39 #W 18 8 17 25 49 49
#L 55 12 38 19 3 3 #L 16 34 14 10 0 0
Stratified Sampling
DT SVM LR WE NY AP

Aacc | 0.9720 | 0.9744 | 0.9699 | 0.9707 | 0.9755 | 0.9755
Amse | 0.0280 | 0.0256 | 0.0301 | 0.0259 | 0.0245 | 0.0232
AR | 1.6531 | 1.5510 | 1.6122 | 1.5306 | 1.2245 | 1.2245
SR | 0.9026 | 0.7654 | 0.8854 | 0.8191 | 0.4684 | 0.4684
#W 31 30 32 33 39 39
#L 14 8 13 10 1 1

are generated, where the first one is used as the training set
and the second one is the testing data. They have “evolv-
ing shared distribution” in the sense that the corresponding
chunks of training and testing streams are sampled from the
same distribution, but this shared distribution is evolving in
the way we have described in Section 3.1. Each stream has
100 data chunks with 100 examples in each chunk. Since
the training examples may be far from sufficient due to the
small training size, it may not obtain an accurate model
even if the training and testing distributions are the same.
As indicated in Table 2, again, ensemble could help reduce
the classification errors on such data sets (from around 0.2
to 0.12). AP has obtained the highest accuracy, the low-
est mean squared error and the highest rank on average.
Weighted ensemble wins 40 times, which appears to be
competitive, but worse than AP in terms of loses (19 ver-
sus 2). Therefore, even if the “shared distribution” assump-
tion holds true, simple averaging or simple voting are still
more effective than weighted ensemble because the train-
ing samples may be insufficient and training errors derived
from such data sets are unreliable. We could safely con-
clude that the averaging ensemble framework could maxi-
mize the chance of matching the true distribution, thus re-
turn the most satisfactory prediction results in general.

Test on KDD Cup’99 Data In Section 3.1, we describe
the three data streams we generate from the KDD Cup’99
intrusion detection data set and how the training and testing
distributions are made different explicitly. Also, as illus-
trated in Section 1, both P(x) and P(y|x) undergo contin-
uous and significant changes in this stream data. Results
of various methods on streams generated by “Shuffling”
and “Stratified Sampling” are summarized in Table 3 where
margin tolerance rate is set to be 0.001. Similar to earlier
results on simulated streams, the advantage of the ensem-
ble framework is clearly demonstrated. The two ensemble

Normalized Precision

1[opeqeeces

O e00p0R
o L e
N

Normalized MSE

Chunk ID

Figure 5. Accuracy and MSE on Real Data

approaches not only increase the accuracy of single models
but also occupy the first place in most of the evaluations.
The most significant improvements could be observed on
the data set generated by shuffling, where accuracy goes up
from 0.9961 to 0.9975 and the number of wins increases
from 18 to 49 after combining outputs of multiple models.
The performances of SV and AP are almost the same for
these two data sets. As discussed in the synthetic data exper-
iments, SV and AP are expected to have similar predictions
when the estimated probabilities of each class are skewed in
binary problems. Another observation is that the weighted
ensemble approach could improve over a single model but
the improvements are less significant compared with simple
averaging. This phenomenon again shows that the weight-
ing scheme cannot survive the relaxed assumption where
training and testing distributions could be different since it
fits the training data too “tightly”.

Figure 5 reveals some detailed information about the
evaluation results (Accuracy and MSE w.r.t Chunk ID) on
the first data set where data records are randomly shuffled.
To exclude the effects of different scales, we normalize the
measures by the maximal value. It is obvious that the prob-
ability averaging ensemble (AP) is the most accurate clas-
sifier in general with normalized accuracy close to 1 and
mean squared error below 0.5. Also, as shown in both
plots, as measures of single models fluctuate within a wide
range, the performances of probability averaging ensemble
are much more stable. This clearly shows the benefits of us-

Table 4. Ensemble on Data Set with Merging

DT SVM LR WE SV AP
Aacc | 0.8508 | 0.8193 | 0.7869 | 0.8182 | 0.8218 | 0.8218
Amse | 0.1492 | 0.1807 | 0.2131 | 0.1801 | 0.1782 | 0.1559
AR 1.95 1.65 2.55 1.65 1.65 1.65
SR | 0.8256 | 0.7452 | 0.6048 | 0.5871 | 0.6708 | 0.6708
#W 7 10 1 8 9 9
#L 6 3 12 1 2 2

Table 5. Ensemble of Multiple Samples

DT SVM WE AP APS
Aacc | 0.8508 | 0.8193 | 0.8182 | 0.8218 | 0.8579
Amse | 0.1492 | 0.1807 | 0.1801 | 0.1559 | 0.1301

AR 2.25 2.05 1.9 1.85 1.65
SR | 0.9665 | 0.8256 | 0.7182 | 0.7452 | 0.7452

#W 7 6 6 7 10
#L 12 7 4 4 3

ing our ensemble framework when the testing distribution
is unknown and departed from the training distribution. On
average, the ensemble would approximate the true distribu-
tion more accurately than single models, with least number
of loses. The weighted ensemble could achieve higher accu-
racy than single-model classifier but still has larger variance
and worse average performance compared with AP. For ex-
ample, the highest normalized MSE of AP is only around
0.6, but over 0.8 for weighted ensemble approach.

In Table 4, the results on the third data stream where
the original order is maintained are reported. It seems that
logistic regression is consistently worse than the other two
base learners, which wins only once, whereas DT and SVM
win 7 and 10 times respectively. In general, the ensemble
approaches (SV and AP) still predict well, win 9 times and
lose twice. Unlike the synthetic stream where distribution
evolves quickly and no uniformly best classifier could be
derived, this data set may have certain characteristics that
favor one classifier over another. This property could be
observed and analyzed from the data set and regarded as
prior knowledge. We could incorporate such knowledge
into each base learner and further improve a single model.
In this case, if we know that logistic regression is not suit-
able for this data and expected to perform bad, we could
construct an ensemble based on multiple samples from the
training data using decision tree and SVM as the base learn-
ers. In this experiment, we build 10 base models from 10
samples of the original data and combine their outputs by
averaging the probabilities. As shown in Table 5, the en-
semble based on multiple samples (denoted as APS), boosts
the accuracy from 0.8508 (accuracy of the best single clas-
sifier) to 0.8579 and reduces the MSE from 0.1492 down to
0.1301. When counting the number of wins and loses, APS

is the best compared with single models and other ensem-
ble approaches. It should be noted that we are not against
the ensemble based on multiple learning algorithms. Logis-
tic regression is not working on this data set but may per-
form good on others, when we know nothing about the data
set, ensemble based on multiple learning algorithms is the
safest way for prediction. The key point here is that ensem-
ble demonstrates its strengths no matter we know nothing
or something about the stream data. Regardless of the base-
line models, the averaging ensemble framework is expected
to generate the best estimate of the true target function from
the limited information conveyed by training examples.

4. Related Work

Sample selection bias [13] investigates the effect on
learning accuracy when the training data is a “biased” sam-
ple of the true distribution. Although the true target function
to be modeled, P(y|x), does not “explicitly” change, its
value can be wrong in various ways in the biased training
data. Previously, decision tree based model averaging has
been shown to be helpful to correct feature bias or the bias
where the chance to sample an example into the training
set is independent on y given x [13]. The most important
difference of our work from these previous studies is: (1)
P(y|x) in our problem is allowed to explicitly change and
can change significantly, (2) changes in P(y|x) are com-
bined with changes in P(x). To consider the significance of
our work under sample selection bias formulation, our com-
prehensive results significantly extend the previous work
and demonstrate that model averaging can reliably correct
sample selection bias where biased conditional probability
is quite different from unbiased testing data.

5. Conclusions

We demonstrate that assuming training and testing data
follow the same distribution, as commonly held by much
existing work, is inappropriate for practical streaming sys-
tems. On the contrary, the distributions on both feature vec-
tor and class label given feature vector can evolve in some
unknown manner, and models matching training distribu-
tion well may perform poorly in continuously changing dis-
tributions. As a result, the difference between training and
testing distributions needs to be taken into account. We also
argue that, contrary to common practice, in order to de-
sign robust and effective stream mining algorithms against
changes, an appropriate methodology is not to overly match
the training distribution, such as by weighted voting or
weighed averaging where the weights are assigned accord-
ing to training distribution. On these basis, we use both
model averaging of conditional probability estimators and
simple voting of class labels as a robust framework “against

change” and argue that weighted averaging/voting are inap-
propriate. We demonstrate both formally and empirically
such a framework can reduce expected errors and give the
best performance on average when the test data does not
follow the same distribution as the training data. Among
many experiments, in a test on KDDCup’99 intrusion de-
tection dataset, the framework’s predictions are the most ac-
curate in 49 out of 49 competitions, whereas the best base-
line model is the most accurate only 18 times. The base-
line models are not limited to those used in the empirical
evaluations and other more sophisticated methods can be
plugged in. Since the property of expected error reduction
is proved formally, the framework is expected to have ro-
bust and better performance regardless of chosen baseline
models. Nonetheless, for stream mining research in gen-
eral, practitioners and researchers ought to clearly specify
the training and testing assumptions made in the algorithms,
and evaluation benchmarks ought to be designed with these
assumptions clearly considered.

References

[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On demand
classification of data streams. In Proc. KDD’04, pages 503—
508.

[2] W. Fan. Systematic data selection to mine concept-drifting
data streams. In Proc. KDD’04, pages 128-137.

[3] J. Gao, W. Fan, J. Han, and P. Yu. A general framework for
mining concept-drifting data streams with skewed distribu-
tions. In Proc. SDM’07.

[4] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In Proc. KDD’01, pages 97-106.

[5] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in
data streams. In Proc. VLDB’04, pages 180-191.

[6] R. Klinkenberg and T. Joachims. Detecting concept drift
with support vector machines. In Proc. ICML’00, pages
487-494.

[7] J. Kolter and M. Maloof. Using additive expert ensembles to
cope with concept drift. In Proc. ICML’05, pages 449-456.

[8] M. Scholz and R. Klinkenberg. An ensemble classifier for
drifting concepts. In Proc. ECML/PKDD’05 Workshop on
Knowledge Discovery in Data Streams.

[9] H.Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting
data streams using ensemble classifiers. In Proc. KDD’03,
pages 226-235.

[10] G. Widmer and M. Kubat. Learning in the presence of con-
cept drift and hidden contexts. Machine Learning, 23:69—
101, 1996.

[11] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2005.

[12] Y. Yang, X. Wu, and X. Zhu. Combining proactive and re-
active predictions for data streams. In Proc. KDD’05, pages
710-715.

[13] B.Zadrozny. Learning and evaluating classifiers under sam-
ple selection bias. In Proc. ICML’04.

