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Abstract—In this paper, we propose to conduct anomaly
detection across multiple sources to identify objects that have
inconsistent behavior across these sources. We assume that a set
of objects can be described from various perspectives (multiple
information sources). The underlying clustering structure of
normal objects is usually shared by multiple sources. However,
anomalous objects belong to different clusters when considering
different aspects. For example, there exist movies that are
expected to be liked by kids by genre, but are liked by
grown-ups based on user viewing history. To identify such
objects, we propose to compute the distance between different
eigen decomposition results of the same object with respect
to different sources as its anomalous score. We also give
interpretations from the perspectives of constrained spectral
clustering and random walks over graph. Experimental results
on several UCI as well as DBLP and MovieLens datasets
demonstrate the effectiveness of the proposed approach.

Keywords-anomaly detection; multiple information sources;
spectral methods

I. INTRODUCTION

Nowadays, there are usually several sources of infor-

mation that describe different properties or characteristics

of individual objects. For example, we can learn about a

movie from its basic information including genre, cast, plots,

etc., or the tags users give to the movie, or the viewing

histories of the users who watched the movie. On each of

the information source, a relationship graph can be derived to

characterize the pairwise similarities between objects where

the edge weight indicates the degree of similarity. As an

example, Figure 1 shows the similarity relationships among

a set of movies derived from two information sources: movie

genres and users. The genre information may indicate that

two movies that are both “animations” are more similar than

two other movies where one is an “animation” and the other

is a “romance” movie. Similarly, movies watched by the

same set of users are likely to be more similar than movies

that are watched by completely different sets of users.

Clearly, objects form a variety of clusters or communities

based on individual similarity relationship. For example, two

clusters can be found from both of the similarity graphs

in Figure 1. One cluster represents the movies that are

animations, which are loved by kids; while the other cluster

represents romance movies, which are liked by grown-ups.

Most of the movies belong to the same cluster even though

different information sources are used. However, there are

some objects that fall into different clusters with respect

to different sources. In this example, the animated movie

“Wall-E” by genre is expected to be liked by kids, but it is

liked by grown-ups based on user viewing history. Finding

such “inconsistent” movies can help film distributors better

understand the expected audiences of different movies and

make smarter marketing plans. In this paper, we propose

to detect objects that have “inconsistent behavior” among

multiple information sources, which we refer to as hori-
zontal anomaly detection. Some other example scenarios

of horizontal anomaly detection include detecting people

who fall into different social communities with respect to

different online social networks and detecting inconsistency

across multiple module interaction graphs derived from

different versions of a software project. Furthermore, iden-

tifying horizontal anomalies can find applications in many

fields including smarter planet, internet of things, intelligent

transportation systems, marketing, banking, etc.

To the best of our knowledge, this is the first work

on identifying horizontal anomalies by exploring the in-

consistencies among multiple sources. Traditional anomaly

detection [4] approaches focus on identifying objects that are

dissimilar to most of the other objects from a single source

[9], [3], [12], [8]. On the other hand, most of the exist-

ing work on mining multiple information sources concerns

merging and synthesizing models, rules, patterns obtained

from multiple sources by reconciling their differences, such

as multi-view learning [2], emerging or contrast patterns [5],

multi-view clustering [1], [18] and consensus clustering [15],

[6]. As for multi-source anomaly detection, the studies focus

on how to identify anomalies within a specific context where

the pre-defined contextual attributes include spatial attributes

[13], neighborhoods in graphs [16], social communities [7],

and contextual attributes [17], [14]. Although these studies

take two types of attributes (behavioral and contextual [4])

into consideration, they cannot be easily generalized to

horizontal anomaly detection spanning multiple sources.

The reason is that they simply detect anomalies from the

behavioral attributes while the contextual attributes only

provide the context in which the anomalies are detected.

In some sense, these contextual anomalies are still extracted

from one source, whereas the proposed method can identify
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Figure 1: A Horizontal Anomaly Detection Example

objects with inconsistent behavior across multiple sources.

In this paper, we propose a systematic approach to identify

horizontal anomalies from multiple information sources. We

assume that each individual information source captures

some similarity relationships between objects that may be

represented in the form of a similarity matrix (whose en-

tries represent the pairwise quantitative similarity between

objects). We combine the input matrices into one large simi-

larity matrix and adopt spectral techniques to identify the key

eigenvectors of the graph Laplacian of the combined matrix.

Horizontal anomalies are identified by computing cosine

distance between the components of these eigenvectors. The

method can be regarded as conducting spectral clustering

on multiple information sources simultaneously with a joint

constraint that the underlying clustering structures are simi-

lar, and objects that are clustered differently are categorized

as horizontal anomalies. The horizontal anomalies can also

be regarded as those having long commute time in the ran-

dom walk defined over the graph. We validate the proposed

algorithm on both synthetic and real data sets, and the results

demonstrate the advantages of the proposed approach in

finding horizontal anomalies.

II. METHODOLOGY

Suppose we have a set of N objects X =
{x1, x2, . . . , xN} and there are P information sources that

describe different aspects of these objects. The objective is

to assign an anomalous score si to each object xi, which

represents how likely the object is anomalous when its

behavior differs among the P different information sources.

In this section, we present a HOrizontal Anomaly Detection

(HOAD) algorithm to solve the proposed problem. An object

can be regarded as a horizontal anomaly if it is assigned to

different clusters when using various information sources,

and thus we calculate the anomalous degree of an object

based on how much its clustering solutions differ from

each other. To simplify the notations, we start with the

cases having two distinct information sources (Section II-A),

give spectral clustering and random walk interpretations in

Section II-B, and explain how it is generalized to multiple

information sources in Section II-C.

A. HOAD Algorithm

Suppose we have two N × N similarity matrices on

the N objects: A and W , where aij and wij define the

similarity between xi and xj from different aspects. The

algorithm consists of two major steps: First, we conduct soft

clustering on A and W together with the constraint that an

object should be assigned to the same cluster; Second, we

quantify the difference between the two clustering solutions

to derive anomalous scores. The details are as follows. We

construct a combined graph by connecting the nodes which

correspond to the same object in the two similarity graphs

with an edge weighted m. m, a large positive number, is a

penalty parameter. An example of such a graph is illustrated

in Figure 1. The set of nodes in the combined graph consists

of two copies of the objects: {x1, . . . , xN , x′
1, . . . , x

′
N} (2N

nodes in total). Let M be an N×N diagonal matrix with m
on the diagonal: M = m · I where I is an N × N identify

matrix. Let Z be the adjacency matrix of the combined

graph, which is a 2N × 2N matrix:

Z =
[

A M
M W

]
. (1)

First, we compute the graph Laplacian L as:

L = D − Z (2)

using degree matrix D (a 2N × 2N diagonal matrix):

D = diag
({ 2N∑

j=1

zij}2N
i=1

)
. (3)

Secondly, compute the k smallest eigenvectors of L (with

smallest eigenvalues) and let H ∈ R
2N×k be the matrix

containing these eigenvectors as columns. We divide H into

two submatrices U and V each with size N × k so that

H = [U V ]T . Therefore, the i-th and (i + N)-th rows of

H are represented as:

�ui = �hi, �vi = �hi+N , (4)

which correspond to two “soft clustering” representations of

xi with respect to A and W respectively. As can be seen,

with the help of the edge between the copies of the same

object, we try to cluster the objects in the same way across

different sources. In Section II-B, we give a theoretical

justification of this claim. Finally, compute the anomalous

score for object xi using cosine distance between the two

vectors:

si = 1 − �ui · �vi

||�ui|| · ||�vi|| . (5)

The algorithm flow is summarized in Algorithm 1.



Algorithm 1 HOAD algorithm

Input: similarity matrices A and W , number of eigenvectors k,
penalty parameter m;
Output: anomalous score vector �s;
Algorithm:

1. Compute matrix Z according to Eq. (1)
2. Compute graph Laplacian L as in Eq. (2)
3. Conduct eigen-decomposition of L and Let H be the k
smallest eigenvectors with smallest eigenvalues
4. Compute anomalous score of each object si based on Eq.
(4) and Eq. (5) for i = 1, . . . , N
return �s

B. Interpretations

In this part, we explain the algorithm from the perspec-

tives of spectral clustering and random walk.

Clustering on Combined Graph. As can be seen, we

first perform spectral clustering on the combined graph in

Algorithm 1. The basic idea of spectral clustering is to

project the objects into a low-dimensional space (defined by

the k smallest eigenvectors of the graph Laplacian matrix) so

that the objects in the new space can be easily separated. We

call the projections as spectral embeddings of the objects.

It has been shown that the matrix formed by the k eigen

vectors (H) of L is the solution to the following optimization

problem [11]:

minH∈RN×k Tr(H ′LH) s.t. H ′H = I (6)

H is a 2N ×k matrix, which equals to [U V ]T . The graph

Laplacian L is defined as D−Z (Eq. (2)), and Z is defined

in Eq. (1). Moreover, we suppose the degree matrices for A
and W are Da and Dw respectively:

Da = diag
({ N∑

j=1

aij}N
i=1

)
, Dw = diag

({ N∑
j=1

wij}N
i=1

)
.

Then we can derive an equivalent formulation for the prob-

lem in Eq. (6):

minU,V Tr(U ′(Da − A)U) + Tr(V ′(Dw − W )V )

−2m
n∑

i=1

k∑
j=1

uijvij s.t. U ′U + V ′V = I (7)

The proof is omitted due to space limit. Clearly, each of

the first two terms in Eq. (7) corresponds to the spectral

clustering problem using A or W alone. The third term acts

as the constraint that the two clustering solutions should be

similar (cosine similarity). Therefore, the first three lines

in Algorithm 1 can be interpreted as conducting spectral

clustering on the two input similarity graphs simultaneously

with a joint constraint.

Our goal is to detect horizontal anomalies that have incon-

sistent behavior across sources, and thus the final step is to

compute anomalous scores. Note that in Algorithm 1, the i-
th row vector in U (the first N rows of H) and V (the last N

rows of H) contain the projections of object xi. Due to the

principle of spectral clustering, if the spectral embeddings �ui

and �vi are close to each other, the corresponding object xi is

more likely to be assigned to the same cluster with respect

to two different sources. Therefore, the cosine similarity

between the two vectors �ui and �vi quantifies how similar

the clustering results of object xi on the two sources are,

and thus represents its “normal” degree. In turn, the cosine

distance as defined in Eq. (5) gives the “anomalous” degree

of xi with respect to the two sources. The higher the score

si is, the more likely xi is a horizontal anomaly.

Random Walk. Suppose we define a random walk over the

combined graph, where the transition probability from node

xi to node xj is proportional to the edge weight in the graph.

Let zij be the edge weight between two nodes xi and xj in

the graph, and vol(X) =
∑2N

i=1

∑2N
j=1 zij be the sum of all

the edge weights in the graph. Now we look at the commute

distance between xi and x′
i, two copies of the same object

in the combined graph. Commute distance is the expected

time it takes for the random walk to travel from xi to x′
i

and back, and it can be computed using the eigenvectors

of the graph Laplacian L as defined in Eq. (2). Suppose L
has eigenvalues λ1, . . . , λ2N , and U and V are two N ×N
matrices containing all the eigenvectors for the two copies

of the objects respectively. Let �ui and �vi denote the i-th row

of U and V . We define �γ as a length-2N vector with each

entry γl equal to (λl)−0.5 if λl �= 0, and 0 otherwise. Now

we divide �γ into two length-N vectors: �γ = [�γu �γv]. It can

be derived that the commute distance ci between xi and x′
i

is: ci = vol(X)||�ui · �γu − �vi · �γv||2.

Recall that we compute the anomalous score of xi as

1 − �ui·�vi

||�ui||·||�vi|| . We can see that both the anomalous score

and the commute distance can be represented as a distance
function applied on the spectral embeddings of the two
copies of the object. The difference is that all the eigen-

vectors are used and they are scaled by (λl)−0.5 in the

commute distance computation. Also, Euclidean distance is

used instead of cosine distance. Although the connection

is loose, commute distance can be a helpful intuition to

understand the anomalous scores. If it takes longer time to

commute between the two copies of object xi in the graph,

xi is more likely to be a horizontal anomaly.

C. Multiple Sources

We can adapt Algorithm 1 to handle more than two

information sources as follows. Suppose we have similarity

matrices {W (1),W (2), . . . ,W (P )} as the input. First, the

combined graph is constructed in a similar fashion as

discussed before: Duplicate the objects for P copies, in each

copy retain the similarity information from each source, and

connect each pair of the nodes corresponding to the same

object with an edge weighted m. After that, we calculate its

graph Laplacian and the k smallest eigenvectors following

exactly the same procedure as in Algorithm 1. One concern



is that, when the number of information sources increases,

the size of the matrix L grows quadratically. Note that

the graph Laplacian of Z is a sparse matrix, and also, we

only need the k smallest eigenvectors instead of the full

eigenspace. In fact, efficient packages such as ARPACK

[10], have been developed to compute a few eigenvectors of

large-scale sparse matrix. Then we calculate the anomalous

degree of an object xi based on the following P vectors:

{�hi,�hi+N ,�hi+2N , . . . , �hi+(P−1)N}. In the experiment, we

use the average pairwise distance as the measure:

si =
1

P (P − 1)

P−1∑
a=0

P−1∑
b=0

�a�=b ·
[
1 −

�hi+aN · �hi+bN

||�hi+aN || · ||�hi+bN ||

]

III. EXPERIMENTS

We evaluate the HOAD algorithm on synthetic data and

real datasets including DBLP and MovieLens to validate its

ability of identifying meaningful horizontal anomalies.

A. Synthetic Data

The concept of “horizontal anomaly” is new, and thus

there are no benchmark datasets for it. Therefore, we pro-

pose a method to convert a classification problem into a

horizontal anomaly detection problem, and then apply this

procedure on several UCI machine learning data sets.

Data Generation. Suppose we have a training set from a

classification problem where each object consists of feature

values and a class label. We simulate inconsistency across

multiple sources by swapping feature values of objects from

different classes. Suppose there are N objects in the training

set: {x1, . . . , xN}, and the features X can be partitioned into

two views. We assume that objects within the same class

share similar feature values in each feature set. Therefore, for

two objects xi and xj from different classes, if their feature

values are swapped in one view but remain unchanged in

the other, they have “inconsistent” behavior among these two

views, and thus represent horizontal anomalies. We apply the

above method on four data sets obtained from UCI machine

learning repository1: Zoo, Iris, Letter and Waveform. On

each data set, we repeat the transformation procedure 50

times and at each time, we generate a data set with around

10% anomalies. We evaluate the HOAD algorithm on the

50 data sets and report the average accuracy.

Evaluation Measure and Baseline Methods. For anomaly

detection problems, one of the most widely used evaluation

approaches is ROC analysis, which represents the trade-off

between detection rate and false alarm rate. The area under

ROC curve (AUC), which is in the range [0,1], is a good

evaluation metric. The higher the AUC is, the better the al-

gorithm performs. We show the performance of the proposed

HOAD algorithm with various parameter settings. Note that

the first step of the proposed algorithm is a constrained

1http://archive.ics.uci.edu/ml

soft clustering on multiple information sources. Instead of

conducting a joint clustering, the baseline method clusters

multiple sources separately and calculates the anomalous

scores based on the difference among different clustering

solutions. Specifically, in two-source problems, we conduct

eigen decomposition on the graph Laplacian matrices of the

two similarity matrices A and W separately. Suppose the top

k eigen representation of object xi are ui and vi respectively,

then we use Eq. (5) to compute the anomalous score of xi

for the baseline approach. Note that the major difference

between the HOAD algorithm and the baseline method is

on how to compute ui and vi.
Performance. The experimental results on the four data

sets are shown in Figure 2 where we vary the values of the

parameters m and k. m indicates the penalty we enforce

when the two clustering solutions do not agree, and k
represents the number of top eigenvectors. Neither m nor k
is used in the baseline and its performance remains mostly

stable except slight fluctuation due to random sampling in

data generation. From the experimental results, we can see

that HOAD algorithm generally outperforms the baseline,

especially when k is small (e.g., k = 3). However, when

the value of m is higher, the difference in AUC between

the algorithms using different k is much smaller. Therefore,

we focus on how to select the appropriate m in the follow-

ing discussion. On UCI datasets, it is clear that when m
increases, the proposed algorithm has a higher AUC. In the

simulated study, the two feature sets are two disjoint subsets

of the original features, and usually using all of the features

leads to a better classification model. Hence the two views

are correlated and using a large m captures this correlation

well. However, this does not mean that we should assign a

big number to m in all cases because this pattern may not

always hold in real horizontal anomaly detection tasks. In

the following experiments on DBLP data sets, we illustrate

the relationship between m and the anomalous scores, and

state some principles in setting m.
In Figure 4, we show the running time of HOAD al-

gorithm with respect to 1000 to 6000 objects represented

in two, three or four information sources. We conduct the

experiments on synthetic data sets where we randomly

generate similarity matrices for 50 trials, and report the

average running time. The eigenvectors are computed using

Matlab eigs function, which is based on ARPACK package

[10]. As can be seen, the HOAD algorithm can scale well

to large data sets when the number of objects and number

of sources both increase.

B. Real World Data
We discuss the issues of setting parameters on DBLP data

and present illustrative results on MovieLens data.
DBLP. We define two horizontal anomaly detection tasks

based on the DBLP2 data where the objects are a set of

2http://www.informatik.uni-trier.de/∼ley/db/
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Figure 2: Anomaly Detection Performance Comparison on Simulated Detection Tasks based on UCI Data

conferences and authors respectively. 4220 conferences are

represented in two views: the keywords in the conferences

and the authors who published in the conferences. Specifi-

cally, each conference xi has two vectors. In the first vector,

each entry is the number of times each word appeared in the

paper titles of xi. In the second vector, each entry denotes

the number of times an author published in xi. The pairwise

similarity between two conferences xi and xj is defined

as the cosine similarity between the corresponding vectors.

Therefore, the conferences that share lots of keywords, or

share lots of authors are similar. Similarly, we select a set of

3116 authors from data mining related areas and extract two

types of information from DBLP: the publications and the

co-authorships. Each author xi also has two vectors where

in the first vector each entry denotes the occurrence of each

word in the authors’ publications, and each entry corre-

sponds to the number of times two authors collaborate in the

second one. Cosine similarity is used, and similar authors

will share co-authors, or keywords in their publications.

We study the effect of m on the anomalous scores. For

each m, we apply the HOAD algorithm to the data sets, and

compute the mean and standard deviation of the objects’

anomalous scores. The results on conferences and authors

are shown in Figure 3 where the points on the line are

the average anomalous scores and the error bar denotes

the standard deviation. Obviously, the average anomalous

score decreases as m increases. Recall that the anomalous

scores indicate the degree of differences between the spectral

embeddings derived from the two similarity matrices. When

we give a heavy penalty on different embeddings by the

two sources, we basically bias the two projections towards

the ones that agree the most. Therefore, when m is larger,

the spectral embeddings from the two sources are more

likely to be the same, and thus the difference between

them is smaller. Another observation is that the variance

among the anomalous scores goes up first and then goes

down as m increases. When m is quite large or quite

small, the two projections of all the objects would be very

similar or very different, and thus the objects receive similar

anomalous scores. There exists a large variability among

the anomalous scores only when m is in the middle of

the spectrum. Although m can be drawn from (0,∞), the

average anomalous scores are within a fixed range: [0,1].

Therefore, we can choose m which leads to an average
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Figure 3: Analysis of Parameter m on DBLP Data

anomalous score around 0.5 because the variance of the

anomalous scores usually reaches the highest point here and

this helps us identify the horizontal anomalies.

MovieLens. We use the Movielens dataset3 with movies

as objects. There are three sources of information to capture

their relationships: 1) Genre: Movies are classified as being

of one or more of 18 genres, such as Comedy and Thriller,

which can be treated as binary vectors. 2) User viewing

history: Each movie has a list of users that watched the

movie. This may also be represented as a vector (per

movie) across all users. 3) User tagging history: Movies are

tagged by different users. Looking across all users, we can

determine a vector per movie. In all three cases, we compute

the pairwise similarity using cosine similarity across the

vectors. The data set contains 10 million ratings and 100,000

tags for 10681 movies by 71567 users. We choose a set

of 7595 movies, each of which has both ratings and tags.

We then have three similarity matrices, corresponding to

these three different sources. To evaluate the performance

of the HOAD algorithm on MovieLens dataset, we label

some movies as “horizontal anomalies” based on the list of

weirdest movies4. There are 572 movies listed as weirdest

movies and among them 127 are found in the MovieLens

dataset. These 127 movies are labeled as “anomalous” and

the remaining 7468 movies are “normal”. Based on these

labels, we calculate the area under ROC curve (AUC) of both

HOAD and the baseline method based on their computed

anomalies scores for the 7595 movies. HOAD algorithm

achieves a better AUC (0.4879) compared with that of

the baseline method (0.4423). This demonstrates the ability

3http://www.grouplens.org/node/73
4http://366weirdmovies.com/the-weird-movie-list
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Table I: Anomalous Scores of 20 Popular Movies from MovieLens
Movie Score Movie Score

One Flew Over the Cuckoo’s Nest 0.8079 Seven Samurai 0.6404
Pulp Fiction 0.7713 Fight Club 0.6364
Casablanca 0.7205 City of God 0.6278

The Shawshank Redemption 0.6949 The Lord of the Rings: The Return of the King 0.3512
The Godfather: Part II 0.6822 The Lord of the Rings: The Fellowship of the Ring 0.3478

The Godfather 0.6770 The Good, the Bad and the Ugly 0.3194
Goodfellas 0.6768 Raiders of the Lost Ark 0.3181

Schindler’s List 0.6755 Rear Window 0.3095
12 Angry Men 0.6713 Star Wars 0.2982

The Dark Knight 0.6535 Star Wars: Episode V-The Empire Strikes Back 0.2562

of the proposed HOAD algorithm in detecting inconsistent

movies across various information sources.

Moreover, we present the anomalous scores for the 20

most popular movies5 as shown in Table I. As may be

seen, the movies “One Flew Over the Cuckoo’s Nest” and

“Pulp Fiction” are identified as horizontal anomalies, as

they tend to show strong disagreement between the genre

classification, and the sets of users that watched and tagged

them. Intuitively, this is expected as these two movies do

not really fit into one classification or user category. Bor-

rowing reviews from Wikipedia6, “Pulp Fiction” is known

for its rich, eclectic dialogue, ironic mix of humor and

violence, and nonlinear storyline, which make it different

and anomalous among movies. For “One Flew Over the

Cuckoo’s Nest”, the review says “it is a comedy that can’t

quite support its tragic conclusion”. These tell us the reasons

why these two movies are detected as being inconsistent. On

the other hand, “Star Wars” receives the lowest anomalous

score as it attracts a particular set of audiences.

IV. CONCLUSIONS

We propose to detect horizontal anomalies, or objects that

have inconsistent behavior among multiple sources. Intu-

itively, they belong to different clusters when considering

many aspects from multiple information sources. The pro-

posed algorithm has two intrinsic steps. In the first step, we

construct a combined similarity graph based on the similarity

matrices and compute the k smallest eigenvectors of the

graph Laplacian as spectral embeddings of the objects. After

that, we calculate the anomalous score of each object as the

cosine distance between different spectral embeddings. The

physical meaning of the proposed algorithm is explained

from both constrained spectral clustering and random walk

point of view. Experimental results show that the proposed

algorithm can find horizontal anomalies from real-world

datasets, where other anomaly detection methods fail to

identify these anomalies.
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