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Abstract—Network operators are continuously confronted with
malicious events, such as port scans, denial-of-service attacks,
and spreading of worms. Due to the detrimental effects caused
by these anomalies, it is critical to detect them promptly and
effectively. There have been numerous softwares, algorithms,
or rules developed to conduct anomaly detection over traffic
data. However, each of them only has limited descriptions of the
anomalies, and thus suffers from high false positive/false negative
rates. In contrast, the combination of multiple atomic detectors
can provide a more powerful anomaly capturing capability when
the base detectors complement each other. In this paper, we
propose to infer a discriminative model by reaching consensus
among multiple atomic anomaly detectors in an unsupervised
manner when there are very few or even no known anomalous
events for training. The proposed algorithm produces a per-
event based non-trivial weighted combination of the atomic
detectors by iteratively maximizing the probabilistic consensus
among the output of the base detectors applied to different traffic
records. The resulting model is different and not obtainable using
Bayesian model averaging or weighted voting. Through experi-
mental results on three network anomaly detection datasets, we
show that the combined detector improves over the base detectors
by 10% to 20% in accuracy.

I. INTRODUCTION

In today’s large-scale computer networks, an immense

amount of flow data are observed each day, among which

there are some records that do not conform to the normal

network behavior. Some of them are malicious and can cause

serious damage to the network. Therefore, it is important to sift

through traffic data and detect anomalous events as they occur

to ensure timely corrective actions. Although network anomaly

detection has been widely studied [1], it remains a challenging

task due to the following factors: 1) in large and complicated

networks, the normal behavior can be multi-modal, and the

boundary between normal and anomalous events is often

not precise; 2) usually, the network attacks adapt themselves

continuously to cheat the firewalls and security filters, making

the anomaly detection problem more difficult; 3) previous

known anomalies would soon be out of date and labeling

current anomalies is expensive and slow, therefore, very few or

even no labeled data are available for training or validation of

anomaly detection techniques; and 4) network traffic data often

contain noise which tends to be similar to the true anomalies,

and it is difficult to remove them.

All in all, it’s very hard for a single model to capture the

network-wide traffic behavior. However, due to the complexity
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of network systems, each detector may only be partially effec-

tive. To address this problem, we propose to combine anomaly
detectors generated by various definitions, formations and

rules applied on each event to gain better detection accuracy.

The benefits of combining anomaly detectors include: 1) it can

reduce the chance of misclassifying noise and false alarms as

anomalies by averaging out uncorrelated errors; 2) although

the atomic detectors can be very simple and not quite effective,

the combination can make them strong; 3) it can capture

the diversified behavior of both normal and anomalous traffic

when each of the detectors is good at detecting certain kinds

of anomalies; and 4) the combination of multiple detectors is

usually more robust than single detectors in a dynamic system

when the traffic behavior continuously evolves.

In a dynamic network, it is impossible to manually label the

anomalies continuously. Without labeled data, it is difficult to

evaluate the performance of base detectors. In this case, a

consensus solution would represent the best we can get from

the base detectors. The strength of one detector usually com-

plements the weakness of the other, and thus maximizing the

agreement among them can significantly boost the detection

accuracy. As an example, Figure I shows the results of six

atomic detectors1. The first six rows show their predictions on

a batch of 1000 traffic records and the last row provides the

label, where 1 indicates an anomaly and 0 represents a normal

point. Clearly, most of the base detectors have a high false

positive rate, but the true anomalies usually occur at the points

where the detectors agree with each other. From this example,

we can see that the combined detector can identify the truth

from different sources by consolidating their differences.

Typically, an atomic detector can be a simple rule, (e.g.,

number of port scans > 50), or a complicated learning algo-

rithm, (e.g. PCA algorithm applied on traffic data). As long as

multiple atomic detectors provide “complementary” expertise,

we will gain from their consensus combination. Suppose we

have a set of traffic traces X = {x1, x2, . . . , xn} and k atomic

detectors that predict each record in X either as an anomalous

or a normal event. Our goal is to obtain a consolidated

anomaly detection solution on X which agrees with the base

detectors as much as possible. We refer to this problem as

consensus combination. Different from existing alert fusion

methods [2, 3], we propose to fuse the decisions of multiple

anomaly detectors without guidance of any labels. To achieve

1This example is one of the data sets we conduct experiments on, i.e., the
IDN data set. Please refer to Section IV for more details.
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Fig. 1. Example of Atomic Anomaly Detectors

this, a naive solution is to conduct a majority voting among the

detectors, but it is far from being accurate because: 1) majority

voting only considers consensus “locally” whereas we seek a

global optimal assignment of anomalous/normal labels for all

the records in the collection; and 2) majority voting treats each

base detector equally, but in fact the detection performance

varies among detectors and a weighted combination of the

base detectors is more precise.

In this paper, we formulate the problem as an optimization

problem over a graph and solve it by iteratively propagating

the detection information among neighboring nodes. Both the

detectors’ weights and the labels of records are automatically

derived through the propagation. We extend the algorithm to

the online scenario where continuously arriving traffic data

is processed. Moreover, when a few labeled anomalous and

normal traffic traces are available, we can use such information

to bias the process towards better joint predictions of the

whole collection. We validate the performance of the proposed

consensus combination algorithm on three real network traffic

datasets. The encouraging experimental results suggest that

consensus combination of multiple diversified detectors can

reach a more accurate final decision for the task of network

traffic anomaly detection.

II. CONSENSUS COMBINATION

Suppose we have the output of k detectors applied on the

data set X with n records. We seek to find the solution that

is the most consistent with the decisions of base detectors.

Intuitively, the detector that agrees with the other detectors

more often should be weighted higher in the voting. To this

end, we propose to automatically derive the importance of

anomaly detectors as well as the probability of each record

being an anomaly through an iterative propagation process.

We first split the records into two clusters based on each

detector Ar’s predictions on X , and thus there are totally

s = 2k clusters. The cluster with index 2r − 1 (r = 1, . . . , k)

contains the records that are predicted to be anomalies by
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Fig. 2. Graph Representation

Ar, whereas the cluster with index 2r (r = 1, . . . , k) has

the records that are normal in the decisions of Ar. Consider

an example where X = {x1, . . . , x7}. For the sake of

simplicity, we only consider the output of two detectors:

A1 = {1, 0, 1, 1, 0, 0, 0} and A2 = {0, 1, 0, 1, 0, 0, 0} where 1
denotes a predicted anomaly and 0 represents a normal record.

Four clusters are formed, where c1 and c3 contain the records

that are predicted to have label 1 by A1 and A2 respectively.

On the other hand, records in c2 and c4 are predicted to have

label 0. Then we represent the records and the clusters in

a graph as shown in Figure 2, where a cluster links to all

the records it contains. As can be seen, the decisions of all

the base detectors are summarized losslessly in this graph, or

equivalently, the affinity matrix W of the graph:

wij = 1 xi assigned to cluster cj by a detector; 0 otherwise.

Let Y denote the variable of true label where Y = 1 for

an anomaly and Y = 0 otherwise. We aim at estimating the

probability of each record xi being an anomaly P̂ (Y = 1|xi).
As a nuisance parameter, the probability of each record xi

being normal P̂ (Y = 0|xi) is also estimated. Therefore, each

record xi is associated with a two-dimensional probability

vector �ui· =
(
P̂ (Y = 1|xi), P̂ (Y = 0|xi)

)
. On the other

hand, atomic detectors could make mistakes, and thus each

cluster is actually a mixture of normal and anomalous events.

Therefore, we also associate each cluster cj with a probability

vector: �vj· =
(
P̂ (Y = 1|cj), P̂ (Y = 0|cj)

)
.

In Figure 2, we introduce a “groundtruth” detector with two

clusters having probability vectors (1, 0) (anomalous cluster

CA) and (0, 1) (normal cluster CN ) respectively. We connect

each cluster of the base detectors to the corresponding “truth”

cluster by an edge with weight α, where α represents our

confidence in the base detectors’ predictions. In the aforemen-

tioned example, c1 and c3 are connected to CA as anomalous

clusters, whereas c2 and c4 are linked to CN . Although the

base detectors make mistakes, we assume that at least their

predictions should not be flipped. For example, the probability

vector of c1 could be (0.8,0.2), but is unlikely to be (0.1,0.9).

Such constraints are encoded in the groundtruth probability

matrix Fs×2 = (�f1·, . . . , �fs·)T , where

�fj· =
{

(1, 0) j = 2r − 1 (r = 1, . . . , k)

(0, 1) j = 2r (r = 1, . . . , k)

Actually, the probability vector of each cluster in F is the

probability vector of the groundtruth cluster it links to. Based
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on the graph, reaching consensus among the base detectors is

defined as the following optimization problem:

min
�ui·,�vj·

( n∑
i=1

s∑
j=1

wij ||�ui· − �vj·||2 + α

s∑
j=1

||�vj· − �fj·||2
)

(1)

s.t. �ui· ≥ �0, |�ui·| = 1 for i = 1 : n (2)

�vj· ≥ �0, |�vj·| = 1 for j = 1 : s (3)

where ||.|| and |.| denote a vector’s L2 and L1 norm respec-

tively. In the graph, CA and CN have fixed probability vectors,

which only act as constraints. The first term in the objective

function (Eq. (1)) ensures that a record xi has similar prob-

ability vector as the cluster to which it belongs. The second

term puts the constraint that a cluster cj’s probability vector

should not deviate much from the corresponding groundtruth

assignment. For example, c1’s conditional probability needs

to be close to that of the groundtruth cluster CA, as well as

that of the records it links to: x1, x3 and x4. �ui· and �vj· are

probability vectors, so each component must be greater than

or equal to 0 and the sum equals 1.

We propose to solve this problem using the block coordinate

descent method. At the t-th iteration, we set the partial

derivatives to 0 and obtain the unique global minimum of the

cost function with respect to �ui· and �vj· respectively:

�u
(t)
i· =

∑s
j=1 wij�v

(t)
j·∑s

j=1 wij
�v

(t+1)
j· =

∑n
i=1 wij�u

(t)
i· + α�fj·∑n

i=1 wij + α
(4)

We start by initializing the probability of clusters (i.e.,�v j·)
using the groundtruth probability �fj·. Then the clusters first

propagate the information to their neighboring records when

updating �u i·. In turn, to update �v j·, the clusters receive the

information from neighboring records and try to retain initial

values. It is straightforward to prove that the objective function

is convex and thus �u i·, �v j· converges to the global minimum

[4]. Finally, the consensus probability of each record being an

anomaly can be found in �u i1. In some sense, �v j· represents

the weights assigned to the base detector. For a detector Ar, if

the conditional probabilities of its two clusters c2r−1 and c2r

are rather skewed, then Ar’s predictions will cast important

votes in determining the probabilities of the records they link

to. On the other hand, if the two clusters of Ar have uniform

probabilities, Ar is not informative and has a lower weight.

Note that although the example discussed in this section only

has binary output, the proposed framework can be applied on

probabilistic output by utilizing the probability as edge weight

of the bipartite graph in the optimization framework.

Performance Analysis. Suppose each detector A outputs an

estimated probability P (y|x,A) (y = 0 or 1) for a record x,

and the chance of picking A is P (A). The true conditional

and joint probability of a record is P (y|x) and P (x, y) re-

spectively. The expected error incurred by randomly choosing

an atomic detector is the error integrated over all detectors

and all records: ErrS =
∑

A P (A)
[∑

(x,y) P (x, y)(P (y|x)−
P (y|x, A))2

]
. On the other hand, consensus combination

takes the expectation of the predicted probabilities over all

the base detectors as the final output, and its expected er-

ror is the error integrated over all the records: ErrC =∑
(x,y) P (x, y)(P (y|x) − ∑

A P (A)P (y|x,A))2. Here P (A)
can be regarded as the consensus weight of detector A. By

comparing them, we find that the expected error of a combined

detector is always less than or equal to the expected error of

randomly selecting an atomic detector, i.e., ErrC ≤ ErrS .

The proof is omitted due to space limit. Note that we are not

claiming that the consensus detector is more accurate than any

single detector all the time. It is possible that there exists a

very good atomic detector which has much better performance

than the others, and thus is also better than the combined

detector. However, in dynamic network systems, the traffic

behavior always evolves over time, without being known by

the operators. It is nearly impossible for any atomic detector to

perform consistently well and stand out as the best one. There-

fore, we need to utilize the combination of detectors to reduce

the risk because it can achieve the best expected performance.

The base detectors can be simple rules, or anomaly detection

algorithms. Many studies in ensemble learning have shown

that the diversity among base detectors can greatly improve

the combination performance [5, 6]. Intuitively, when we use

some rules or algorithms that capture different aspects of the

traffic data, the base detectors would be diversified. In fact,

we can use some correlation measures to explore the diversity

degree of detectors based on the predictions they made [6].

III. EXTENSIONS

In this section, we propose an online component for the

anomaly detection system as well as extend the algorithm to

semi-supervised learning scenarios.

Incremental Consensus Combination. Suppose we have a

batch of traffic data X = {x1, . . . , xn}, a collection of s clus-

ters obtained from s/2 anomaly detectors C = {c1, . . . , cs}
and the affinity matrix W which contains their links. Suppose

we have estimated the probabilities of each object (or cluster)

being anomalous and normal by the consensus combina-

tion algorithm. Now given some continuously arriving traffic

records xn+1, xn+2, . . ., we aim at calculating the anomalous

probability of each new record as well as updating the weights

of detectors based on the new information.

From Eq. (4), we can see that the proposed algorithm can

be adapted to the stream scenario. We can rewrite the update

equation for �vj· as follows:

�vj· =
(
∑n−1

i=1 wij�ui· + α�fj·) + wnj�un·
(
∑n−1

i=1 wij + α) + wnj

(5)

where both the numerator and the denominator can be split

into two parts: the summation over the n − 1 records, and

the information carried by xn. Therefore, the update can be

done incrementally by storing the summation over the existing

records. When each new record xm arrives, we first let the base

detectors make predictions, and the links from xm to the clus-

ters C are represented by the vector �wm· = (wm1, . . . , wms)T .

The probability vector of xm, i.e., �um·, is computed as the

average of the probability vectors of the clusters it links to.
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TABLE I
AREA UNDER ROC CURVE

IDN DARPA LBNL
1 2 3 1 2 3 1

WB 0.5269 0.2832 0.3745 0.5804 0.5930 0.5851 0.5005
BB 0.6671 0.8059 0.8266 0.6068 0.6137 0.6150 0.8230
AB 0.5904 0.5731 0.6654 0.5981 0.6021 0.6022 0.7101

MV 0.7089 0.6854 0.8871 0.7765 0.7865 0.7739 0.8165

UC 0.7255 0.7711 0.9076 0.7812 0.7938 0.7796 0.8180
SC 0.7204 0.8048 0.9089 0.8005 0.8173 0.7985 0.8324
IC 0.7270 0.7552 0.9090 0.7730 0.7836 0.7727 0.8160

Then we add wmj�um· and wmj to the numerator and the

denominator respectively in the updating equation of �vj· (Eq.

(5)). After that, we update the probabilities of clusters, and in

turn, update the probabilities of the previous records based on

the new probabilities of the clusters according to Eq. (4).

Semi-supervised Consensus Combination. Suppose we

now know the labels of a few traffic records, i.e., whether

they are normal or anomalous. We can incorporate such

labeled information into the consensus combination process

to gain better performance. Suppose the labeled information

is encoded in an n × 2 matrix Z:

�zi· =

⎧⎨
⎩

(1, 0) xi is observed as an anomaly,

(0, 1) xi is observed as a normal record,

(0, 0) xi is unlabeled.

We add an additional term β
∑n

i=1 qi||�ui· − �zi·||2 to the

objective function in Eq. (1) to penalize the deviation of the

probabilities from the observed labels where qi = zi1 + zi2.

When xi is labeled, qi = 1, so we impose the constraint that

a record xi’s estimated label should be close to its observed

label. The cost paid for violating the constraint is β, which

represents our confidence in the correctness of known labels.

To update the conditional probabilities of each record, we

incorporate its prior labeled information, which in turn affect

the probabilities of clusters:

�u
(t)
i· =

∑s
j=1 wij�v

(t)
j· + βqi�zi·∑s

j=1 wij + βqi
(6)

In this way, the labeled information will be propagated over

the graph iteratively.

IV. EXPERIMENTS

We evaluate the performance of the proposed algorithm on

three network anomaly detection data sets.

IDN. We have employed an intrusion detection network

(IDN) at IBM to empirically test the performance of the

proposed approach. IDN provides security services to the

network infrastructure by analyzing raw traffic packets and

outputting a large number of events, such as DOS flooding,

SYN flooding and port scanning, etc. We use two high level

measures to describe the probability of observing events during

each interval. An atomic detector can be defined based on each

of the measures by setting a threshold. In the experiments, we

collect three data sets, each of which has 1000 intervals, and

combine six anomaly detectors.

DARPA. MIT Lincoln Labs set up an environment to

acquire nine weeks of raw TCP dump data for a local-area

network. The raw data were processed into about several

million connection records, where each contains a sequence

of TCP packets transmitted during a time interval. Each

connection is labeled as either a normal record, or an attack.

The original data set is from DARPA 1998 intrusion detection

program and some high level features are defined to help

distinguish normal connections from attacks2. We randomly

extract three subsets of executive records, each with size

1832. To generate diversified detectors, we randomly select 2-

5 features each time, apply LOF anomaly detection algorithm

[7] on the selected subset of features, and repeat 20 times.

LBNL. Another dataset is an enterprise traffic dataset3 col-

lected at the edge routers of the Lawrence Berkeley National

Lab (LBNL). The traffic in this dataset comprises background

traffic (normal) and scanner traffic (malicious). The labels of

the packets are provided by the data collector [8]. We aggre-

gate the packet traces by intervals spanning 1 minute (3704

intervals in total), and the anomalous score of each interval is

computed as the percentage of anomalous packets among all

the packets of the interval. We calculate the following metrics

for each interval: 1) number of TCP SYN packets, 2) number

of distinct IPs in the source, 3) number of distinct IPs in the

destination, 4) maximum number of distinct IPs an IP in the

source has contacted, 5) maximum number of distinct IPs an

IP in the destination has contacted, and 6) maximum pairwise

distance between distinct IPs an IP has contacted. An atomic

detector is applied on each metric to predict the records with

highest or lowest values (around 20%) as anomalies. We then

combine the six detectors and compare the performance.

Evaluation Measures and Baselines. The ROC curve,

which represents the trade-off between detection rate and false

alarm rate, is widely used for anomaly detection evaluation.

The area under ROC curve (AUC), which is in the range [0,1],

is a good evaluation metric. A good algorithm would produce

an ROC curve as close to the left-top corner as possible, which

has an AUC value close to 1. We show the following baseline

performance: 1) the worst, best and average AUC values of

the base detectors, denoted as WB, BB, and AB respectively;

and 2) the AUC obtained by majority voting among detectors

(MV). Accordingly, we evaluate the unsupervised (UC), semi-

supervised (SC) and incremental (IC) consensus combination

algorithms. On each data set, we run the experiments 100 times

and compute the average AUC of all the baseline methods and

the proposed algorithms. At each run, 2% records are selected

to be labeled records, which work as additional input to the

semi-supervised algorithm. The remaining records are used

as the test bed for all the methods. For incremental consensus

combination algorithm, we select 30% of the unlabeled records

as batch data for initialization, and the remaining 70% of the

unlabeled records are processed incrementally.

Detection Accuracy As shown in Table I, the proposed

consensus combination algorithm improves the anomaly detec-

tion performance. It can be observed that the base detectors

usually have large variabilities in their abilities of detecting

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3http://www.icir.org/enterprise-tracing/
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anomalies. Majority voting, which leverages the decisions of

the atomic detectors, beats the individual detectors most of the

time. However, more improvement can be achieved by using

the probabilistic consensus combination among all the atomic

detectors. Instead of considering each base detector to be

equally capable of detecting anomalies as in majority voting,

the consensus combination approach computes the weighted

combination of the detectors’ decisions, where a detector has a

higher weight if it agrees with the other detectors more often.

Using the proposed algorithm, consistent improvements can

be obtained. For example, on one of the DARPA datasets, the

AUC of the best base detector is only 0.6137, whereas the

consensus combination approach improves it to 0.7938. By

incorporating only 2% labeled records, the semi-supervised

consensus combination further improves the anomaly detection

accuracy. Due to lack of global information, the incremental

algorithm usually is not as good as the batch consensus

combination, but is still much better than the atomic detectors.

V. RELATED WORK

Anomaly detection [1] has received considerable attention

in the field of network traffic analysis. Existing methods

include statistical modeling [9, 10], Principle Component

Analysis (PCA) [11], information-theoretic measures [12],

wavelet methods [13], Kalman filtering [10], and data mining

approaches [14, 15]. Ensemble methods have emerged as

a powerful tool for improving robustness and accuracy of

both supervised and unsupervised solutions [5, 16, 17]. The

basic idea is to combine multiple competing models into a

committee to reduce uncorrelated errors. Researchers have

studied how to combine multiple intrusion detection systems

into a general system. The developed methods mainly fall into

two categories: alert correlation and alert fusion. First, alert

correlation has a different objective, which aims at creating a

general view of the attacks, e.g., attack scenarios or graphs,

based on the various types of low-level alerts generated from

multiple intrusion detection systems [18, 19]. Second, alert

fusion methods deal with combination of alerts, each of

which represents independent detection of the same attack

occurrence. Specifically, earlier approaches adopt the idea of

multi-sensor data fusion [20] and later, alert fusion is mainly

solved through ensemble of classifiers [2, 3]. Note that in the

machine learning and statistical inference community, many

algorithms, including bagging, boosting, Bayesian averaging

and random forests, have been developed to build ensemble

classifiers [5, 21]. However, these approaches require labeled

data for training, and it is usually unrealistic to obtain plenty

of training data for network anomaly detection tasks. In

such scenarios, combining classifiers is infeasible, whereas

the proposed consensus combination method can combine the

detectors in an unsupervised way.

VI. CONCLUSIONS

Network anomaly detection is a challenging task due to

heterogeneous nature of the network. Automatically extracting

and analyzing network anomalies from immense amount of

traffic data is difficult, and thus atomic anomaly detectors

could have very low detection rate. This paper has demon-

strated the advantages of combining various anomaly detectors

through consensus optimization. We summarize the decisions

of base detectors in a graph, and maximize the consensus by

promoting smoothness of label assignment over the graph. The

problem is solved by propagating information between cluster

and record nodes iteratively. We also extend the algorithm to

semi-supervised learning and incremental learning cases. On

three real network anomaly detection datasets, the proposed

algorithm improves the detection accuracy of the base detec-

tors by 10% to 20%.
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