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ABSTRACT
The effectiveness of knowledge transfer using classification
algorithms depends on the difference between the distribu-
tion that generates the training examples and the one from
which test examples are to be drawn. The task can be es-
pecially difficult when the training examples are from one
or several domains different from the test domain. In this
paper, we propose a locally weighted ensemble framework
to combine multiple models for transfer learning, where the
weights are dynamically assigned according to a model’s pre-
dictive power on each test example. It can integrate the
advantages of various learning algorithms and the labeled
information from multiple training domains into one unified
classification model, which can then be applied on a different
domain. Importantly, different from many previously pro-
posed methods, none of the base learning method is required
to be specifically designed for transfer learning. We show
the optimality of a locally weighted ensemble framework as
a general approach to combine multiple models for domain
transfer. We then propose an implementation of the local
weight assignments by mapping the structures of a model
onto the structures of the test domain, and then weight-
ing each model locally according to its consistency with the
neighborhood structure around the test example. Experi-
mental results on text classification, spam filtering and in-
trusion detection data sets demonstrate significant improve-
ments in classification accuracy gained by the framework.
On a transfer learning task of newsgroup message catego-
rization, the proposed locally weighted ensemble framework
achieves 97% accuracy when the best single model predicts
correctly only on 73% of the test examples. In summary, the
improvement in accuracy is over 10% and up to 30% across
different problems.
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1. INTRODUCTION
We are interested in transfer learning scenarios where we

learn from one or several training domains and make predic-
tions in a different but related test domain. Such knowledge
transfer is possible when the training domain(s) and the test
domain have the same set of categories or class labels. We
further assume that we are only exposed to some labeled
examples from the training domains but do not have any la-
beled example from the test domain. The study of transfer
learning is motivated by the fact that people often exploit
knowledge gained from related domains where labeled data
are abundant to classify examples in a new domain. Unfor-
tunately, traditional supervised learning techniques usually
fail to transfer knowledge in this scenario because it requires
the training and the test data to be i.i.d. samples from the
same distribution.

There are a few important observations about this prob-
lem. We notice that there are usually several classification
models available from the training domains. For example,
the classifiers can be trained from several relevant domains
or built using different learning algorithms on the same do-
main. Different models usually contain different knowledge
and thus have different advantages, due to the inductive bias
of the specific learning technique as well as the distributional
differences among the training domains. Therefore, differ-
ent models may be effective at different regions or structures
in the new and different test domain, and no single model
can perform well in all regions. We refer to these different
models as base models. Ideally, we may wish to combine
the knowledge from these base models rather than using
any single model alone to more effectively transfer the use-
ful knowledge to the new domain. For this task, one would
naturally consider model averaging that additively combines
the predictions of multiple models. However, the existing
model averaging methods in traditional supervised learning
usually assign global weights to models, which are either uni-
form (e.g., in Bagging), or proportional to the training accu-
racy (e.g., in Boosting), or fixed by favoring certain model
(e.g., in single-model classification). Such a global weight-
ing scheme may not perform well in transfer learning because



different test examples may favor predictions from different
base models. For example, when the base models carry con-
flicting concepts at a test example, it is essential to select
the model that better represents the true target distribution
underlying the example. In fact, based on principles of risk
minimization, we can derive that there exists a solution to
assign per model and per example weights to combine multi-
ple base models to maximize their combined accuracy on the
new domain, and the combined accuracy is higher than any
single model acting alone. However, it is impossible to dy-
namically assign the optimal model weights for each example
precisely because P (y|x), the true conditional probability of
class label y given a test example x, is not known a priori.
Past practice of cross-validation based weight assignment is
inapplicable since the weights would be assigned based on
labels in the given training domain(s) whose P (y|x) could
be different from that of the test domain. Therefore the fo-
cus of this paper is to find an approximation to this optimal
local weight assignment for each test example.

We propose a graph-based approach to approximate the
optimal model weights where the local weight for a base
model is computed by first mapping and then measuring
the similarity between the model and the test domain’s lo-
cal structure around the test example. This similarity is
measured by comparing neighborhood graphs, and quanti-
fied in the weight assignment equation. Intuitively, it favors
classifiers whose mapped local structure is similar to the
local structure around the test example. For a particular
example, if none of the mapped local structures is similar
to the original local structure in the target domain, the pre-
dicted label will be obtained by voting among its neighbors
inside the same local structure of the test set. This strat-
egy ensures that the maximum amount of predictive powers
of the labeled information are extracted and transferred to
the test domain to make the predictions consistent with its
underlying manifold structure.

Our main contributions to the task of transfer learning
include the following: (1) We propose a locally weighted en-
semble framework to address the transfer learning problem,
and demonstrate its superiority over single models in terms
of risk minimization when the weights are set optimally. (2)
None of the base models is required to be specifically de-
signed for transfer learning, thus providing great flexibility
and freedom on what models to use. (3) We propose to ap-
proximate the model weights based on the local manifold
structures in the test domain, and provide neighborhood
graph-based estimation. (4) We provide a prediction adjust-
ment step to propagate labels from nearby examples when
all base models are inconsistent with certain test examples.

We evaluated the proposed framework on three real tasks:
spam filtering, text categorization, and network intrusion
detection. In each task, the test examples come from a dif-
ferent domain than the training set. Our experiment results
show that the locally weighted ensemble framework signifi-
cantly improved the performance over a number of baseline
methods on all three data sets, which shows the effectiveness
of the proposed framework for transfer learning.

2. LOCALLY WEIGHTED ENSEMBLE
Let us first look at a toy learning problem with two train-

ing sets and a test set shown in Figure 1. The two training
sets have partially conflicting concepts and their decision
boundaries are the straight lines. For the test set, however,

Training Set 1 Training Set 2 Test Set

R1 R2

R3

Figure 1: A Motivating Example

the optimal decision boundary is the V-shape solid line. As
can be seen, the regions R1 and R2 are “uncertain,” because
the two training sets are conflicting there. If we either sim-
ply collapse the two data sets and try to train a classifier on
the merged examples, or combine the two linear classifiers
M1 and M2 trained from the training set 1 and set 2 respec-
tively, then those negative examples in R1 and R2 will be
hard to predict. Those semi-supervised learning algorithms
do not work either because they only propagate the labels
of the training examples to the unlabeled examples. In this
case, there are conflicting labels in R1 and R2, causing am-
biguous and incorrect information to be propagated. But it
is obvious that, if M1 is used for predicting test examples in
R1 and M2 used for examples in R2, then we can label all
test examples correctly. Therefore, ideally, one wish to have
a “locally weighted” ensemble framework that combines the
two models, and weighs M1 higher at R1 and M2 higher
at R2. We also observe that this data set has a property
that neighbors along the same “clustering-manifold struc-
ture” share the same class labels, which is a commonly-held
assumption for reasonable problems. Below, we first intro-
duce a locally weighted ensemble framework with weights
dynamically adjusted according to the model behaviors at
each test example. We then present an effective way of ap-
proximating the model weights via local structure mapping
around each example. The success of the proposed method
on this toy data set is demonstrated in Section 4.2.

2.1 Optimal Domain Transfer Weights
Let x be the feature vector and y be the class label where

x and y are drawn from feature space X and label space Y
respectively. For a set of k models M1, . . . , Mk, the general
Bayesian model averaging approach computes the posterior
distribution of y as P (y|x) =

∑k
i=1 P (y|x, D, Mi)P (Mi|D),

where P (y|x, D, Mi) = P (y|x, Mi) is the prediction made
by each model and P (Mi|D) is the posterior of model Mi

after observing the training set D. However, in transfer
learning, since training and test domains are different, we
may wish to incorporate information about the test domain
and update the model prior for P (Mi|T ), where T is the
test set. So P (Mi|D) should be replaced by P (Mi|T ) in
the weighted combination of model predictions. By this re-
placement, we take the difference between training and test
domains into consideration during learning. If the true dis-
tribution P (y|x) is known, then for predictions on x, the
other examples in the test set are irrelevant to the model per-
formance at x. In other words, the model weight P (Mi|T )
is actually P (Mi|x) at x when P (y|x) is available. Different
from traditional ensemble approaches, this locally weighted
model averaging method weights individual models accord-
ing to their local behaviors at each test example. The final



prediction for x is:

P (y|x) =

k∑
i=1

wMi,xP (y|x, Mi), (1)

where wMi,x = P (Mi|x) is the true model weight that is
locally adjusted for x representing the model’s effectiveness
on the test domain.

The benefits of this locally weighted model averaging ap-
proach can be shown as follows. To simplify the problem, we
map the label space Y to {1, . . . , c} where c is the number
of classes. We then use a c × 1 vector f to denote the true
conditional probability in the test domain where the i-th el-
ement is fi = P (y = i|x). Supervised learning can output a
c×1 vector h that is close to f for x. Let wi = wMi,x denote
the weight for model Mi at test example x, and let w denote
the k× 1 weight vector. hi represents the predictions made
by model Mi at x and is again a c× 1 vector where the j-th
element is hi

j = P (y = j|x, Mi). H is used to represent a
c×k matrix with all the model predictions made for x where
the ij entry is model Mi’s predicted P (y = j|x, Mi), i.e., hi

j .
Then the output of the model averaging framework for x is a
vector he = Hw. Note that w satisfies the constraints that
wi ∈ [0, 1] and

∑k
i=1 wi = 1, and thus the output vector hi

from a single model Mi is a special case of he when wi = 1
and other weights are zero. But we wish to find a weight
vector w which minimizes the distance between f and he.
Under squared-error loss, the following objective function
should be minimized to obtain the optimal w:

w∗ = arg min
w

(f −Hw)T (f −Hw) + λ(wT I− 1), (2)

where I is a k × 1 vector of 1 and λ is the regularization
term. It is obvious that Eq. (2) represents a least-square
linear regression problem and the optimal solution is

w∗ = (HT H)−1(HT f − 1

2
λI). (3)

λ can be further calculated by substituting the above w∗ to
the constraint (w∗)T I = 1. Usually w∗i is a value between
0 and 1 so the weight vector of the optimal ensemble is
different from that of the single model. Therefore, the error
of the model averaging framework on each test example x
will not be greater than that of any single model:

(f −Hw∗)T (f −Hw∗) ≤ (f − hi)T (f − hi) ∀i (4)

Thus, for each test example, there is a smaller chance to
make a mistake if we combine the predictions from different
models using the optimal weight vector. It is important to
note that the optimal weight vectors are different for differ-
ent test examples, so weights should be decided locally.

This locally weighted ensemble framework differs from tra-
ditional model averaging methods in the following ways: 1)
In transfer learning problems, the traditional methods of
assigning model weights based on training set or assigning
fixed prior weights are undesirable. Instead, we do not as-
sume that training and test domains follow same distribu-
tions but rather focus on the test set when deriving the
best model weights to transfer knowledge across domains.
2) Existing work usually weights each model globally, but
the proposed method assigns per example weights to each
model to identify variations in model performance for dif-
ferent test examples. As discussed, there may not exist one
model globally optimal for all the test examples. Usually,

different test examples favor different models and therefore
the per example weighting scheme is better than the global
weighting scheme in terms of classification accuracy.

One challenge is that the optimal per example weight vec-
tors cannot be computed exactly in reality, since the true
target vector f for each test example x is not known a pri-
ori. Importantly however, from its solution in Eq. (3), a
model will have a higher weight if its prediction on x is
closer to the true P (y|x). In the rest of this paper, we pro-
pose a graph-based approach to approximate the optimal per
example weight wMi,x under the “clustering-manifold” as-
sumption that P (x) is related to P (y|x). Other approxima-
tion heuristics can be developed under this locally weighted
framework as long as the weights reasonably approximate
the model performance for given test examples.

3. GRAPH-BASED WEIGHT ESTIMATION
As discussed in Section 2.1, the optimal weights can be

approximated by assigning a higher weight to a model that
produces a more accurate label prediction for x. So the
main task is to formulate similarity between the model pre-
dictions and the unknown true target function. To achieve
this goal, we can model the underlying P (x) from the un-
labeled test set in order to infer P (y|x). Specifically, we
make a“clustering-manifold” assumption, as commonly held
in semi-supervised learning, that P (y|x) is not expected to
change much when the marginal density P (x) is high. In
other words, the decision boundary should lie in areas where
P (x) is low. Under such an assumption, we can compare the
difference in P (y|x) between the training and the test data
locally with only unlabeled test data. However, probabil-
ity density estimates are hard to obtain precisely, especially
when x is high-dimensional. Instead, we propose to clus-
ter the test data and assume that the boundaries between
the clusters represent the low density areas. As a result,
if the local cluster boundaries agree with the classification
boundary of M around x, then we assume that P (y|x, M) is
similar to the true P (y|x) around x, and thus the weight for
model M ought to be high at x. In the following, we formally
give a procedure of computing the weight and illustrate the
procedure with an example.

For a test example x and a base model M to be com-
bined, we first construct two graphs: GT = (V, ET ) and
GM = (V, EM ). In both graphs, the vertex set V contains
all the test examples. For GM , there is an edge connecting
two test examples if and only if the examples are classified
into the same class by M . On the other hand, to construct
GT , we cluster the test examples into c′ clusters and again,
connect two test examples with an edge if and only if the
two examples are in the same cluster. Then we can approx-
imate the model weight as the similarity between the local
structures around x in GT and GM . Specifically, under the
clustering assumption, it is probable that two examples are
in the same class if they belong to the same cluster in GT .
So we could use the percentage of common neighbors of x
found in GM and GT to approximate the model accuracy on
x and set the weight. Suppose the sets of neighbors for x in
GM and GT are VM and VT respectively. The model weight
at x is proportional to the similarity of its local structures
between GM and GT :

wM,x ∝ s(GM , GT ;x) =

∑
v1∈VM

∑
v2∈VT

1{v1 = v2}
|VM |+ |VT | (5)
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Figure 2: Local Neighborhood Graphs around x

According to its definition, s(GM , GT ;x) reflects the degree
of consistency in labeling the test examples. If x has similar
sets of neighbors in GM and GT , it is likely that the model M
is consistent with the underlying structure around x. As an
example, Figure 2 shows the neighborhood graphs of a test
example x constructed from two supervised models and the
clustering algorithm on the test set. According to Eq. (5),
the similarity between model 1 and the clustering structure
is 0.75 at x, but that between model 2 and the structure is
0.5. Therefore, for x, model 1’s weight will be set higher
since it is more consistent with the local structure around
x. This is a simple and effective method to compute the
similarity.

The weight approximation is based on the clustering as-
sumption which requires that the manifold structure of the
data is related to the conditional probability P (y|x). Though
this is a reasonable assumption for many problems, it may
not always hold. Without knowing P (y|x) a priori, it is
impossible to verify the assumption. But this property is
usually determined by the nature of the learning tasks. An
example where the assumption does not hold is sentiment
classification, where the clustering structure of a set of prod-
uct reviews reveals the topics but may have nothing to do
with whether the users like or dislike the product. Therefore,
we propose to check the validity of the clustering assump-
tion by evaluating the clustering quality on the training set
using purity, entropy or F measure. If the task fails the test,
we will ignore the weight approximation step, but simply
combine the models using uniform weights. This strategy
restricts the use of the graph-based weight estimation only
to the cases where the clustering assumption is satisfied on
both training and test sets. However, the strict checking
criteria could guarantee the high accuracy of the proposed
method. For the cases where the clustering assumption does
not hold, other techniques need to be explored.

When the condition holds, we compute the per-example
model weights based on Eq. (5) with a normalization term:

wMi,x =
s(GMi , GT ;x)∑k

i=1 s(GMi , GT ;x)
, (6)

where Mi is one of the k models. Then the final prediction
of the weighted ensemble E for x is:

P (y|E,x) =

k∑
i=1

wMi,xP (y|Mi,x), (7)

where P (y|Mi,x) is the prediction made by model Mi. Then
the predicted label for x goes to y∗ which minimizes the risk:

y∗ = arg min
y

∫

y′∈Y

λ(y′, y)P (y|E,x)dy′ (8)

where λ(y′, y) is the cost incurred when the true class label

is y′ but the prediction goes to y. With the most commonly
used zero-one loss function, y∗ = arg maxy P (y|E,x).

3.1 Local Structure Based Adjustment
The weighting scheme shown in Eq. (7) works on the ba-

sis that at least some of the models do reasonably well on
predicting the label for x. However, if the concepts carried
by all the models conflict with the actual concept at x, the
similarity measure s(GM , GT ;x) is expected to be low for
each model M . But after the normalization in Eq. (6), the
locally weighted ensemble framework would still make de-
cisions based on these models for x and it is probable that
the combined output is still in conflict with the true one.
In such a scenario, it is reasonable to abandon the labeled
information conveyed by the supervised models but rather
rely on the local structure around x only.

Since the similarity measure s(GM , GT ;x) reflects the de-
gree of consistency between model M ’s prediction and x’s
neighborhood structure, we can use the average s(GM , GT ;x)
over all M to judge whether the labeled information is reli-
able or not. In fact, s(GM , GT ;x), representing the average
percentage of common neighbors shared by supervised mod-
els and clustering results, is within [0, 1]. To be exact, when
a test example shares the same neighbors in two graphs,
their similarity is 1, whereas if no common neighbor is found,
it is 0. So for example, if only two models are used and
their s(GM , GT ;x) are both 0.01 at x, then we should avoid
normalizing the weights into 0.5 since both models should
rather be discarded. Let savg(x) = 1

k

∑k
i=1 s(GMi , GT ; v)

be the average similarity between the base models’ predic-
tions on x and the clustering structure around x. Then if
savg(x) ≥ δ, where δ is the threshold, we believe in the
prediction obtained from Eq. (7); otherwise, we discard all
the supervised classifiers and construct an “unsupervised”
classifier based on the neighborhood of x.

The “unsupervised” classifier U is not trained on any la-
beled training set. Its prediction on x is mainly determined
by the neighbors of x with labels predicted by the combined
classifier. Specifically, P (y|U,x) can be decomposed as:

P (y|U,x) =
∑
C

P (y|U,x ∈ C)P (x ∈ C|x). (9)

Here, C is one of the clusters in the test set. We assume that
the cluster membership is deterministic, then P (x ∈ C|x) is
approximated as follows:

P (x ∈ C|x) =

{
1 x ∈ C
0 otherwise

(10)

Hence, P (y|U,x) is approximately the same as P (y|U,x ∈
C) when x belongs to cluster C. We can further approx-
imate P (y|U,x ∈ C) as the average P (y|E,x) for x ∈ C′

where C′ contains test examples which satisfy both x ∈ C
and savg(x) ≥ δ. In other words, only examples that have
reliable predictions from the weighted ensemble will count
in this procedure. Therefore,

P (y|U,x ∈ C) ≈ 1

|C′|
∑

x∈C′
P (y|E,x) (11)

where |C′| is the size of C′. The above strategy can be
simplified if we set P (y|E,x) = 1 when y is the label for x
predicted by E. So P (y|U,x ∈ C) can be estimated by a



Algorithm: Locally Weighted Ensemble (LWE)
Input: (1)A training set D or k training sets D1, . . . , Dk

(2)k classification models M1, . . . , Mk (k > 1)
(3)A test set T which comes from a different domain
but the classification task is the same.
(4)A threshold δ and cluster number c′.

Output: The set of predicted labels Y for examples in T .
Algorithm:

1. Perform clustering on the training set(s), IF the average

purity of clustering is less than 0.5, set wMi,x = 1
k

for

all Mi and x, and compute the posterior using Eq.(7)
for each x ∈ T . RETURN.

2. Group test examples into c′ clusters and construct
neighborhood graphs based on the clustering results and
all the k models. Set T ′ = Φ.

3. FOR each x ∈ T ,

• FOR each model Mi, compute the model weight
wMi,x according to Eq.(5).

• IF savg(x) ≥ δ, decide x’s label based on the
weighted ensemble’s output P (y|E,x) obtained us-
ing Eq.(7), ELSE put x into T ′.

4. FOR each x ∈ T ′, predict x’s label from the “unsuper-
vised” classifier U , i.e., estimate P (y|U,x) using Eq.(11)
or Eq.(12). RETURN.

Figure 3: Locally Weighted Ensemble Framework

majority vote among examples in C′:

P (y|U,x ∈ C) ≈ P (y,x ∈ C′|E)

P (x ∈ C′)
≈ c(y, C′|E)

|C′| (12)

where c(y, C′|E) is the number of examples with label y pre-
dicted by ensemble E in C′. So the probability of x having
label y is the percentage of examples in the cluster C′ that
have y as their class labels, where C′ is the cluster that x
belongs to and contains test examples with predicted labels.
The final predicted label for x is determined by Eq. (8) with
P (y|E,x) replaced by P (y|U,x). If zero-one loss function
is applied, the class label for x whose cluster is C should
be the majority label prediction among the test examples
which satisfy both x ∈ C and savg(x) ≥ δ.

3.2 Algorithm Description
The framework is summarized in Figure 3. We first verify

whether the clustering structure is relevant to the classifica-
tion task by performing clustering on the training set. If the
purity of clustering on the training set is below 0.5, we sim-
ply combine models using uniform weights. Otherwise, if the
clustering quality is satisfactory, in step 2, we construct the
neighborhood graphs for both the supervised models and
the clustering results. Then in step 3, the weight of each
model at each test example is computed, which reflects the
consistency of model predictions among the test example’s
neighborhood. We then separate the test examples by check-
ing if its average model weight is greater than a confidence
threshold. For those test examples on which cross domain
models can make sufficiently accurate predictions, the final
label predictions are decided by the locally weighted ensem-
ble. But, for the test examples that the models are not
expected to classify correctly, the labels are determined by
majority voting among those neighbors with highly confi-
dent predictions within the same cluster structure.

Table 1: Data Sets Description

Task Data Sets Training Test
Email User1(U00)
Spam User2(U01)

Public Each user’s

Filtering User3(U02)
messages emails

Comp vs Sci (C vs S)
Rec vs Talk (R vs T)

Documents Documents
20

Rec vs Sci (R vs S)
from from a

News-
Sci vs Talk (S vs T)

a set of different set
group

Comp vs Rec (C vs R)
sub of sub

Comp vs Talk (C vs T)
categories categories

Orgs vs People
(O vs Pe)

Documents Documents

Orgs vs Place
from from a

Reuters
(O vs Pl)

a set of different set

People vs Place
sub of sub

(Pe vs Pl)
categories categories

Probing & R2L DOSDOS
Intrusions Intrusions

Intrusion DOS & R2L Probing
Detection

Probing
Intrusions Intrusions

DOS & Probing R2LR2L
Intrusions Intrusions

4. EXPERIMENTS
In this part, we demonstrate the effectiveness of the locally

weighted ensemble framework. The algorithms are evaluated
on various data sets covering many application domains. Re-
sults show that the proposed framework could combine the
predictive powers obtained from multiple sources and gain
great improvements in classification accuracy. The software,
datasets and more details about the experiments are avail-
able at http://ews.uiuc.edu/∼jinggao3/kdd08transfer.htm.

4.1 Data Sets and Experiment Setup
We conduct experiments on one synthetic and four real

data sets, where training and test distributions are different.

Synthetic Data.
The two training sets and the test set as shown in Figure 1

are generated from several Gaussian distributions with the
same variance. In each training set, there are 40 positive
and 20 negative examples and in the test set, the number of
positive and negative examples are 20 and 40 respectively.

Email spam filtering.
The email spam data set, released by ECML/PKDD 2006

discovery challenge, contains a training set of publicly avail-
able messages and three sets of email messages from indi-
vidual users as test sets. The 4000 labeled examples in the
training set and the 2500 test examples for each of the three
different users differ in the word distribution. The aim is to
design a server-based spam filter learned from public sources
and transfer it to individual users.

Document classification.
The 20 newsgroups data set contains approximately 20,000

newsgroup documents, partitioned across 20 different news-
groups nearly evenly. The Reuters-21758 corpus contains
Reuters news articles from 1987. From the two text collec-
tions, we generate nine cross-domain learning tasks. Both
text collections have a two-level hierarchy so that each learn-
ing task involves a top category classification problem but
the training and test data are drawn from different sub cat-
egories. For example, the goal is to distinguish documents
from two top newsgroup categories: rec and talk. So a train-



ing set involves documents from“rec.autos,”“rec.motorcycles,”
“talk.politics” and “talk.politics.misc,” whereas the test set
includes sub-categories“rec.sport.baseball,”“rec.sport.hockey,”
“talk.politics.mideast” and “talk.religions.misc”. The strat-
egy is to split the sub-categories among the training and the
test sets so that the distributions of the two sets are similar
but not exactly the same. The tasks are generated in the
same way as in [9] and more details can be found there.

Intrusion detection.
The KDD cup’99 data set consists of a series of TCP

connection records for a local area network. Each exam-
ple in the data set corresponds to a connection, which is
labeled as either normal or an attack, with exactly one spe-
cific attack type. Some high level features are used to distin-
guish normal connections from attacks, including host, ser-
vice and traffic features. In the experiments, we use the 34
continuous features. Attacks fall into four main categories:
DOS(denial-of-service), R2L(unauthorized access from a re-
mote machine), U2R(unauthorized access to local superuser
privileges), Probing(surveillance and other probing). Since
in reality, we usually encounter the problem of detecting the
variants of known attacks, it is realistic to have one type of
intrusions in the training set but another type in the test set.
We create three data sets, each contains a set of randomly
selected normal examples and a set of attacks from one cat-
egory. Since the number of U2R attacks is small, we only
use examples from DOS, R2L and Probing categories. Then
three cross-domain learning tasks are generated by training
from two types of attacks to detect another type of attack.
The details of the four real tasks are presented in Table 1.

Baseline methods.
We compare the weighted ensemble framework with dif-

ferent learning algorithms. In particular, since most data
sets are high-dimensional, the following commonly used al-
gorithms are appropriate choices: 1) Winnow (WNN) from
learning package SNoW [6], 2) Logistic Regression (LR)
implemented in BBR package [16]; and 3) Support Vec-
tor Machines (SVM) implemented in LibSVM [8]. When
we only have a single source domain in the training, three
single classifiers are trained using the above learning algo-
rithms and combined according to the proposed weighted
ensemble framework. But note that the proposed method
is a general framework so that any kind of models could
be plugged in and transferred to the test domain. Since
semi-supervised learning (transductive learning) is closely
related to the problem, we compare the proposed method
with Transductive Support Vector Machines (TSVM) im-
plemented in SVM light [20]. Furthermore, in the pro-
posed framework, the two main steps are, predicting labels
using weighted classifiers if the classifiers are sufficiently
accurate in terms of alignment with clustering structures;
and propagating the labels of predicted test examples to
the unpredicted ones through the clustering structure. To
demonstrate the effectiveness of both steps, we include the
following three methods in the comparison: 1) A simple
model averaging framework (SMA) where all model pre-
dictions are combined using uniform weights; 2) The lo-
cally weighted ensemble framework without the adjustment
step, which simply adopts the weighted prediction for each
test example. We call it partial locally weighted ensemble
method (pLWE); 3) The locally weighted ensemble frame-

M1 M2 ALL

TSVM SMA LWE

R1
R2

R3

Figure 4: Performance on Synthetic Data

work (LWE) involving both classifier combination and local
structure based adjustment. Note that SMA is one of the
global ensemble methods where the model weights are set
the same for all the test examples. Suppose there are k
models, then each model will have a weight 1

k
at every test

example. We use the clustering package CLUTO [21], which
is designed for high-dimensional data clustering, to cluster
the test set. Again, other clustering algorithms could be
used as long as the “clustering” assumption is satisfied.

We compare with a set of different baseline methods on the
synthetic and intrusion detection data sets. In each task, we
have two source domains for training and the remaining one
for the testing. The proposed weighted ensemble methods
(pLWE and LWE) are built upon two single models trained
from the two source domains using SVM. First, we compare
pLWE and LWE with the simple averaging method (SMA)
based on the two SVM models. Second, we can choose the
training set as 1) one of the two source data sets, or 2) the
union of the two source data sets. On the three possible
training sets, we study the performance of supervised learn-
ing models (SVM) and semi-supervised models (TSVM) and
compare them with the proposed methods.

Performance measures.
To compare the performance of the classification methods,

we look at a set of standard evaluation metrics. First, we
use classification accuracy, which is simply defined as the
percentage of correct predictions among all test examples.
Second, under squared loss function, the algorithms can be
evaluated using Mean Squared Errors defined as follows:
L = 1

n

∑n
i=1(f(xi) − P(+|xi))

2 where f(xi) is the output
of the classifier, which is the estimated posterior probability
of xi belonging to positive class, P (+|xi) is the true poste-
rior probability and {xi}n

i=1 represents the test set. Another
measure is used in evaluating the intrusion detection task:
the area under ROC curve (AUC), the best of which is 1
corresponding to 100% detection and 0% false alarm. In
the experiments, we focus on binary classification, but the
framework can be easily applied on multi-class tasks.

4.2 Performance Evaluation
In this part, we report the experimental results regarding

the effectiveness of the locally weighted ensemble. The re-
sults clearly demonstrate that on the transfer learning prob-



Table 2: Performance Comparison on a Series of Data Sets
Accuracy

Spam Filtering 20 Newsgroup ReutersMethods
U00 U01 U02 C vs S R vs T R vs S S vs T C vs R C vs T O vs Pe O vs Pl Pe vs Pl

WNN 0.7680 0.7888 0.8696 0.6554 0.5938 0.7942 0.7557 0.8926 0.9341 0.7058 0.6520 0.5685
LR 0.7060 0.7528 0.8500 0.7349 0.7217 0.7885 0.7904 0.8334 0.9176 0.7355 0.7122 0.5565

SVM 0.6604 0.7288 0.7844 0.7118 0.6824 0.7816 0.7577 0.8156 0.9389 0.6934 0.6998 0.5694
SMA 0.7416 0.8012 0.8768 0.7272 0.6845 0.7980 0.7806 0.8563 0.9348 0.7339 0.7008 0.5685

TSVM 0.8352 0.8512 0.9528 0.7697 0.8995 0.8996 0.8559 0.8964 0.8826 0.7380 0.6989 0.5843
pLWE 0.8584 0.8820 0.9520 0.7872 0.7217 0.8845 0.8330 0.9193 0.9664 0.7694 0.7008 0.5972
LWE 0.8908 0.8844 0.9820 0.9744 0.9923 0.9823 0.9692 0.9816 0.9890 0.7967 0.7304 0.6852

Mean Squared Error
Spam Filtering 20 Newsgroup ReutersMethods

U00 U01 U02 C vs S R vs T R vs S S vs T C vs R C vs T O vs Pe O vs Pl Pe vs Pl
WNN 0.1836 0.1713 0.1003 0.2775 0.2968 0.1575 0.1978 0.0851 0.0525 0.2462 0.3055 0.3774

LR 0.1944 0.1672 0.1013 0.2057 0.2036 0.1567 0.1624 0.1340 0.0613 0.2190 0.2444 0.3900
SVM 0.2374 0.1890 0.1489 0.2140 0.2353 0.1644 0.1826 0.1360 0.0453 0.2217 0.2230 0.2827
SMA 0.1556 0.1337 0.0870 0.2030 0.2183 0.1349 0.1614 0.0979 0.0430 0.1987 0.2318 0.3049

TSVM 0.1428 0.1394 0.0814 0.1749 0.1080 0.1128 0.1281 0.1198 0.1061 0.2250 0.2128 0.2688
pLWE 0.1218 0.1012 0.0550 0.1795 0.2027 0.1029 0.1399 0.0699 0.0302 0.1845 0.2333 0.3000
LWE 0.0988 0.1022 0.0333 0.0965 0.1409 0.0384 0.0534 0.0308 0.0140 0.1678 0.2120 0.2091

Table 3: Performance Comparison on Intrusion Detection Data Set
Accuracy

DOS Probing R2L ALLIntrusions
SVM TSVM SVM TSVM SVM TSVM SVM TSVM

SMA pLWE LWE

DOS NA NA 0.9334 0.9352 0.9547 0.9303 0.9294 0.9281 0.9512 0.9609 0.9623
Probing 0.8171 0.7820 NA NA 0.6599 0.8384 0.5808 0.8433 0.5444 0.9627 0.9636

R2L 0.5551 0.7602 0.7873 0.8215 NA NA 0.7615 0.9036 0.5360 0.8020 0.8024
AUC

DOS Probing R2L ALLIntrusions
SVM TSVM SVM TSVM SVM TSVM SVM TSVM

SMA pLWE LWE

DOS NA NA 0.9774 0.9797 0.9287 0.9188 0.9755 0.9543 0.9854 0.9858 0.9862
Probing 0.8877 0.8572 NA NA 0.5001 0.8982 0.8160 0.8866 0.9745 0.9772 0.9793

R2L 0.7114 0.8077 0.9206 0.8727 NA NA 0.8717 0.9435 0.9221 0.9399 0.9418

lems where training and testing data have different distri-
butions, the proposed locally weighted ensemble approach
greatly outperforms supervised, semi-supervised single-model
algorithms, and a simple averaging ensemble.

Performance Study.
The results of the toy problem introduced in Figure 1 are

summarized in Figure 4. The results of linear SVM on the
training sets from two domains are the top two on the left,
denoted as M1 and M2. Due to the difference between train-
ing and test distributions, both make incorrect predictions
at “mirrored” areas. After merging the training sets, the
SVM model (“ALL” on top right) still does not work and
the constructed hyperplane is obviously a horizontal line.
This is due to the fact that there exist conflicting concepts
in the merged training set. On the other hand, transduc-
tive SVM (TSVM bottom left) trained on merged training
sets fails as well since the label propagation is confused by
the conflicting training examples. Simple averaging of M1

and M2, shown as “SMA” (bottom middle) also makes mis-
takes in the uncertain areas. However, examples incorrectly
classified by these methods are now correctly predicted by
the locally weighted ensemble approach (LWE) and the de-
cision boundary matches the V-shape well. To see how this
works, first, the clustering algorithm discovers the two clus-
ters above and below the V-shape. For any example x ∈ R1,
its neighbors in the cluster contain the examples in all three
regions R1, R2 and R3. At the same time, its neighbors
predicted by M1 are those examples ∈ R1 and R3. Im-
portantly, its neighbors predicted by M2 are only examples
∈ R1. Since there are more common neighbors between the
clustering structure and M1, M1 will be given higher weight

at x. Thus, according to M1, the examples in R1 are classi-
fied to be negative. Similarly, M2 will be chosen to predict
examples ∈ R2 as negative. In summary, by weighting the
two models locally according to the degree of consistency
between models and clusters, the examples at the uncertain
areas are predicted correctly.

Results of all the methods on the Email Spam Filtering,
20 Newsgroup and Reuters sets are summarized in Table 2
with best results shown in bold font. Refer to Table 1 for the
details of each task. It is clearly seen that, for all tasks and
using any performance measure, the locally weighted ensem-
ble method (LWE) significantly improves the transfer learn-
ing performance compared with other baseline methods. We
can observe that most of the transfer learning problems are
tough due to the unknown discrepancy between the train-
ing and the test distributions. The single-model methods
(WNN, LR, SVM) usually have poor performance with accu-
racy around 0.7 and mean squared error greater than 0.1 on
most of the tasks. The simple model averaging algorithm us-
ing uniform weights can help reduce the expected error com-
pared with single models. However, its performance is not
quite satisfactory since they only rely on the labeled informa-
tion from the source domain and make no efforts in selecting
useful information and transferring the knowledge into the
test domain. By incorporating the structure information of
the test set into learning, the transductive learning approach
can beat the supervised learning methods most of the times.
But we can see more improvement achieved by using the pro-
posed locally weighted ensemble framework. After the first
step of combining classifiers by weighting them judiciously,
both accuracy and mean squared error are improved over all
the baselines. Then propagating confident predictions along
the clustering structure in the test set can significantly boost
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Figure 5: Parameter Sensitivity

the performance further. As an example, on the “C vs S”
data set in the 20 newsgroup collection, the worst single
model only achieves around 66% accuracy whereas the best
single model makes correct predictions for 73% of the test
examples. The tranductive SVM improves the accuracy to
around 77% and LWE outperforms all the other methods by
an impressive 97% accuracy. In most of the experiments, the
improvement in accuracy after utilizing weighted ensemble
is over 10% and up to 30% for some problems. The experi-
mental results on these transfer learning tasks demonstrate
the benefits of the empirical approximation of the optimal
locally weighted ensemble framework. Both per-example
weighting scheme and the adjustment step in the framework
can successfully filter out the “harmful” labeled information,
and thus help make the most reliable predictions.

Table 3 presents the performance of all methods on the
three tasks of intrusion detection. Each row corresponds to
a learning problem characterized by the test domain and
the other two domains act as training, as discussed in Sec-
tion 4.1. Besides the two training domains, a simple com-
bination of examples from the two domains (represented
as “ALL”) could be another source of training. Based on
each training source, we test the performance of SVM and
TSVM on the test domain. We also build two single models
from each training domain and combine them using uniform
weights, which corresponds to SMA. The proposed pLWE
and LWE are shown in the last two columns. For the first
two learning tasks, it is obvious that the proposed LWE
shows dominance for both accuracy and AUC. Especially on
the test set of “Probing”, the two training domains seem to
be conflicting with each other, thus both the models trained
from a union of the two domains and the simple averaging
of the two models result in an accuracy around 50% to 60%.
LWE achieves 96.36% accuracy by choosing the useful in-
formation from the two models. On the last learning task,
the algorithm TSVM trained on the combination of training
domains wins over the proposed method, which may be due
to the fact that one of the single models we are combining
has insufficient amount of examples to be relied on. We note
that the worst single model’s accuracy is around 56% and
the simple averaging method even degrades to having 54%
accuracy. Based on such weak classifiers, we could still im-
prove the accuracy to 80%. In the future, we will explore
more strategies to detect the cases when we should combine
the source domains rather than building individual models.

Parameter Sensitivity.
There are two important parameters in the proposed al-

gorithm, the number of clusters c′ in the test set and the
selection threshold δ to filter the predictions with low con-
fidence. The traditional way of setting parameters through
cross-validation cannot work when the training and test dis-
tributions are different. Again, since the true target function
of the test domain is not known, there may not have effective

methods to find the optimal values of the parameters. So
here, we just give some sensitivity experimental results and
state some basic principles in setting the parameters. We
choose one cross-domain learning problem from each of the
three data sets: email spam filtering, and 20 newsgroup and
Reuters set, and the results are shown in Figure 5. We vary
c′ from 2 to 10 and δ from 0.1 to 0.9, and put both of them
on the x-axis. We compare the accuracy of LWE approach
when the parameters vary, with that of the best accuracy
achieved by the baseline methods. We fix δ = 0.7 when
changing c′, and let c′ = 2 when tuning δ. It is clearly seen
that when the threshold rises from 0.1 to 0.5, the learning
performances on all three sets are gradually improving. Af-
ter the point of 0.5, the performances maintain stable. This
suggests that a low threshold is not desirable since many
inaccurate predictions from the supervised models would be
used in the adjustment step. Therefore 0.5 up to 1 could be
a reasonable range to select the threshold δ. However, the
users could choose to lower down or raise the threshold to
match their beliefs in the abilities of the supervised models.
As for the number of clusters c′, the best performances in
the experiments are achieved when c′ = 2. When c′ goes up,
the over-fitting could occur when the number of examples
in each cluster is not sufficient enough to give an accurate
estimate of the model weights, and thus we could observe
a drop in accuracy. We could also note that in spite of the
changes caused by parameter variation, the proposed LWE
improves over the best baseline method most of the time.

5. RELATED WORK
The problem with different training and test distributions

started gaining much attention very recently. When it is as-
sumed that the two distributions differ only in P (x) but not
in P (y|x), the problem is referred to as covariate shift [25,
18] or sample selection bias [14]. The instance weighting ap-
proaches [25, 18, 5] try to re-weight each training example

with Ptest(x)
Ptrain(x)

and maximize the re-weighted log likelihood.

Another line of work tries to change the representation of
the observation x hoping that the distributions of the train-
ing and the test examples will become very similar after the
transformation [3, 24]. [22] transforms the model learned
from the training examples into a Bayesian prior to be ap-
plied to the learning process on the test domain. The major
difference between our work and these studies is that they
depend on a single source of information and try to learn a
global single model that adapts well to the test set.

Constructing a good ensemble of classifiers has been an
active research area in supervised learning [12]. By com-
bining decisions from individual classifiers, ensembles can
usually reduce variance and achieve higher accuracy than
individual classifiers. Such methods include Bayesian av-
eraging [17], bagging, boosting and many variants of en-
semble approaches [2, 27, 13, 15]. Some ensemble methods
assign weights locally [1, 19], but such weights are deter-
mined based on training data only. There has not been
much work on ensemble methods to address the transfer
learning problem. In [11, 26], it is assumed that the train-
ing and the test examples are generated from a mixture of
different models, and the test distribution has different mix-
ture coefficients than the training distribution. In [23], a
Dirichlet Process prior is used to couple the parameters of
several models from the same parameterized family of dis-



tributions. [10] extends the boosting method to perform
transfer learning. Bennett et al. [4] proposed a methodol-
ogy for building a meta-classifier which combines multiple
distinct classifiers through the use of reliability indicators.
The proposed weighted ensemble provides a more general
framework for transfer learning because 1) the base models
can be heterogeneous and can be any generative or discrim-
inative models, and 2) the method does not depend on spe-
cific applications and makes no assumption about the form
of distributions generating the training or the test data.

Multi-task learning(MTL) [7], which learns several related
tasks at the same time with a shared representation, consid-
ers single P (x) and multiple output variables, so the basic
setting is different from our problem. The “clustering” as-
sumption in our work is exploited in some transfer learning
and semi-supervised learning works [9, 28], where clustering
structure is utilized in smoothing predictions among neigh-
bors. Our paper differs from these papers by utilizing the
assumption in weighting different models locally to combine
all sources of labeled information for knowledge transfer.

6. CONCLUSION
Knowledge transfer across domains with different distri-

butions is an important problem in data mining that has not
been fully investigated. In this work, we take advantage of
the different predictive powers of several models trained on
different domains or using different learning algorithms. We
propose a locally weighted ensemble framework to transfer
the combined knowledge to a new domain that is different
from all the training domains. Importantly, the base mod-
els can be constructed by traditional learning algorithms
not specifically designed for transfer learning. We analyze
the optimality on expected error reduction by utilizing the
locally weighted ensemble framework as compared to both
single models and globally weighted ensembles. Based on
the “clustering” assumption that the local structure of the
test set is related to P (y|x), we design an effective weighting
scheme to approximate the optimal model weights. This is
formulated by comparing the neighborhood graphs of each
model with those from clustering. The experimental results
on four real transfer learning data sets show that the pro-
posed method improves over each base model 10% to 30%
in accuracy and is more accurate than both semi-supervised
learning and simple model averaging models. These results
indicate that: 1) the locally weighted ensemble could suc-
cessfully identify the knowledge from each model that is
useful to predict in the test domain and transfer such infor-
mation from all available base models; and 2) the proposed
graph-based weight estimation method makes the framework
practical by effectively approximating the optimal model
weights. In the future, we plan to compare LWE with exist-
ing single-model based transfer learning algorithms, as well
as to explore effective methods to set parameter values.
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