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ABSTRACT
Nowadays, enormous amounts of data are continuously gen-
erated not only in massive scale, but also from different,
sometimes conflicting, views. Therefore, it is important to
consolidate different concepts for intelligent decision mak-
ing. For example, to predict the research areas of some
people, the best results are usually achieved by combining
and consolidating predictions obtained from the publication
network, co-authorship network and the textual content of
their publications. Multiple supervised and unsupervised
hypotheses can be drawn from these information sources,
and negotiating their differences and consolidating decisions
usually yields a much more accurate model due to the di-
versity and heterogeneity of these models. In this paper, we
address the problem of “consensus learning” among compet-
ing hypotheses, which either rely on outside knowledge (su-
pervised learning) or internal structure (unsupervised clus-
tering). We argue that consensus learning is an NP-hard
problem and thus propose to solve it by an efficient heuris-
tic method. We construct a belief graph to first propagate
predictions from supervised models to the unsupervised, and
then negotiate and reach consensus among them. Their final
decision is further consolidated by calculating each model’s
weight based on its degree of consistency with other models.
Experiments are conducted on 20 Newsgroups data, Cora
research papers, DBLP author-conference network, and Ya-
hoo! Movies datasets, and the results show that the proposed
method improves the classification accuracy and the cluster-
ing quality measure (NMI) over the best base model by up
to 10%. Furthermore, it runs in time proportional to the
number of instances, which is very efficient for large-scale
data sets.
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1. INTRODUCTION
As information networks become ubiquitous, the same set

of objects can be represented and categorized by different in-
formation sources, which could be either the outside knowl-
edge or the internal information. Example scenarios include
(a) user viewing interest analysis based on their ratings of
movies, movie synopses and movie genres; (b) buyers pro-
filing based on their purchase history and personal informa-
tion in e-commerce; (c) advertisement campaign based on
the click rates, webpage content, advertisement content and
location in the web page; and (d) research paper catego-
rization based on paper content, citations and citation con-
texts. In these applications, we are interested in classifying
a set of objects, and the predictive information comes from
multiple information sources, each of which either transfers
labeled information from relevant domains (supervised clas-
sification), or derives grouping constraints from the unla-
beled target objects (unsupervised clustering). Multiple hy-
potheses can be drawn from these information sources, and
each of them can help derive the target concept. However,
since the individual hypotheses are diversified and heteroge-
neous, their predictions could be at odds. Meanwhile, the
strength of one usually complements the weakness of the
other, and thus maximizing the agreement among them can
significantly boost the performance. Therefore, in this pa-
per, we study the problem of consolidating multiple super-
vised and unsupervised information sources by negotiating
their predictions to form a final superior classification solu-
tion. We first illustrate how multiple information sources
provide “complementary” expertise and why their consensus
produces more accurate results through a real example.

An Example–DBLP information network.
DBLP1 provides bibliographic information on major com-

puter science journals and proceedings, containing 654,628
authors and 4,940 conferences/journals. It is relatively easy
to identify the fields of conferences/journals by their names,
but much harder to label all the authors with their research
interests. Therefore, we can use the conference labels, as well

1http://www.informatik.uni-trier.de/∼ley/db/
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Figure 1: Consensus Learning Example

as, the connections among authors in the DBLP network to
classify authors into different research fields. Specifically,
the following information sources are available:

1) We can infer the area of a researcher from the con-
ferences and journals s/he publishes in. For example, the
researchers in the database community would mostly pub-
lish in the database conferences. However, this information
source is not 100% reliable because it is not rare that people
in the data mining field publish in database, machine learn-
ing, information retrieval or even networking, bioinformatics
and software engineering conferences.

2) The co-authorship network provides useful information
about the research fields of the researchers as well. If two
authors often write papers together, they are more likely to
share the same research field. But for researchers who have
many cross-discipline cooperations, we may not be able to
easily predict their research areas from this network.

3) When the information network fails to predict correctly,
the textual content of the researchers’ publications can play
a role in the classification task. A researcher who concen-
trates on frequent pattern mining, graph mining and feature
selection can be easily categorized into data mining commu-
nity. However, some research fields may share the same
keywords. For example, in papers of both database and
information retrieval areas, we can find the words “query
optimization”, “indexing” and “retrieve”, and thus a simple
text classifier cannot distinguish among such areas.

For such problems, a simple concatenation of all the in-
formation sources may not be possible due to incompati-
ble schemes, or fail because the structural information of
some data sources can be lost. Furthermore, for applications
in distributed computing, privacy preserving or knowledge
reuse, we may only have access to the labeling or grouping
results but not the raw data. Formally, for a classification
task on a set of instances T , we may have rv models that
rely on outside knowledge (e.g., learn the areas of researchers
from the areas of conferences), and ru unsupervised mod-
els that group instances according to their similarity (e.g,
the co-authorship network). We are aiming at consolidating
predictions from all the models to boost the classification
accuracy as well as improve the robustness and stability.

An example drawn from DBLP data is shown in Figure 1
where rv supervised models predict the class labels of seven
authors from information management area to be one of
{Databases, Data Mining, Information Retrieval}, whereas
the other ru unsupervised models cluster the authors into
cohesive groups. The objective is to find the global optimal
labeling for the seven authors so that it agrees with the base

models’ outputs as much as possible. Existing approaches
only pick the most likely label for each instance among su-
pervised models without negotiation with the unsupervised
sources, or combine the unsupervised grouping results ignor-
ing the useful outside knowledge. As discussed above, all the
information sources, no matter supervised or unsupervised,
are important and only a global consolidation provides the
optimal label assignments. To the best of our knowledge,
this problem has not been studied before.

In this paper, we first formulate consensus learning into
an optimization problem and argue that it is NP-hard. So
we propose to solve the problem using an effective two-step
heuristic method involving global decision propagation and
local negotiation. In global propagation (Section 3.1), we
first collapse test instances into groups based on the pre-
dictions of each model. We construct a belief graph where
nodes represent the groups, and edge weights denote the
percentage of common members they share, and start with
the initial label assignments obtained from the supervised
models. Each node iteratively propagates its prediction to
its neighbors, and when it stabilizes, the groups that con-
tain approximately the same set of instances would share
the same predictions. In the second step (Section 3.2), to
predict the class label of an instance, we make adjustments
by negotiating among models locally with model weights re-
flecting the degree of consistency with others. We evaluated
the proposed framework on four real learning tasks includ-
ing 20 newsgroups categorization, Cora research paper clas-
sification, DBLP authors research areas categorization and
Yahoo! movie-rating user grouping, where various learning
models or information sources are available2. Experimental
results show that the proposed method improves the classifi-
cation accuracy as well as the clustering quality measure by
up to 10% compared with the best base models. Moreover,
both analysis and experimental results demonstrate that the
running time of the solution is linear in the number of test
instances, and thus it can be easily scaled to very large data
sets without running into combinatorial explosions.

2. PROBLEM FORMULATION
We have a set T = {x1, . . . , xn} where x is the object

ID and each object is represented in different information
sources. We wish to predict the label of each example x in T :
y ∈ Y = {1, . . . , c}, where c is the number of classes. Sup-
pose we have rv classification models trained on the labeled
sources, and ru clustering methods relying on the internal
structure of the test set, which can be obtained from differ-
ent sources or using different algorithms. Let r = rv + ru,
then we have r models: Λ = {λ1, . . . , λrv , λrv+1 , . . . , λr},
where the first rv of them are supervised and the remaining
ones are unsupervised. A supervised model λa (1 ≤ a ≤ rv)
maps an instance x to a specific category λa(x) ∈ Y , whereas
an unsupervised model maps it to a cluster and cluster ID
does not directly carry any category information. In this
paper, we focus on “hard” classification and clustering, i.e.,
x is predicted to be in exactly one class or cluster. Our aim
is to use each model in Λ to find a “consolidated” solution
λ∗ on T , which maps x ∈ T to one of the classes. It should
agree with both the supervised and the unsupervised models
as much as possible. Note that the true labels of examples

2At http://ews.uiuc.edu/∼jinggao3/kdd09clsu.htm, there
are experimental details, codes, data sets and additional ex-
periment results.



in T are unknown, and thus the defined consensus learning
problem is “unsupervised”. The final predictions are derived
based on the assumption that “consensus is the best”, which
proves to be valid in the experimental study in Section 4.

First, we favor the solution which maximizes the consen-
sus. To define consensus, we need to first define the similar-
ity or distance between two models’ predictions on T . For
the sake of simplicity, we use the following simple distance
function. Consider two points xi and xt in T , and we define
the disagreement between models λa and λb regarding their
predictions on the two points as:

dxi,xt(λ
a, λb) =





0 if λa(xi) = λa(xt) and λb(xi) = λb(xt)
or λa(xi) 6= λa(xt) and λb(xi) 6= λb(xt)

1 otherwise

If λa and λb agree on xi and xt’s cluster or class assignment,
the distance is set to 0, otherwise to 1. Then we define the
distance between λa and λb on T as the number of object
pairs on which the two models disagree:

d(λa, λb) =
∑

xi,xt∈T,i6=t

dxi,xt(λ
a, λb)

Therefore, one of our objectives is to minimize the disagree-
ment with all the models: minλ

∑r
a=1 d(λ, λa).

Secondly, the consolidated solution should be consistent
with the predictions made by the supervised models. In
other words, we need to minimize the difference between
the consolidated solution and {λ1, . . . , λrv} on each x’s la-
bel. Therefore, we add a penalizing term to the objective
function and the consolidated solution λ∗ satisfies:

λ∗ = arg min
λ

(
r∑

a=1

d(λ, λa) + ρ

rv∑
a=1

n∑
i=1

L(λ(xi), λ
a(xi))

)

(1)
where 0 ≤ ρ < ∞ is the parameter to tune the contribu-
tions of the two parts, and L(λ(xi), λ

a(xi)) is the difference
between the predictions made by λ and λa on xi.

It can be seen that clustering consensus is a special case of
the proposed framework with ρ = 0. Clustering consensus is
shown to be NP-complete [8] based on the results of median
partition problem [1]. We assume that there is at least one
classifier and one clustering algorithm, and ρ is a finite num-
ber. So if the problem proposed in Eq. (1) can be solved in
polynomial time, the clustering consensus problem will also
be solved in polynomial time, which leads to contradiction.
Hence the proposed optimization in this paper is NP-hard.
Because we are tackling classification problems, the search
space would be cn, so an exhaustive search is formidable,
and a greedy search would still have exponential time com-
plexity and result in poor local maximum. For example, we
would have to search 37 possibilities for the simple example
shown in Figure 1 with 7 objects and 3 classes. Due to NP-
completeness, we propose an effective heuristic in Section 3
to predict the class labels of examples in T with a linear
scan of T . The solution represents the negotiation results
among all the supervised and unsupervised models.

3. METHODOLOGY
We solve the problem through two steps:

• estimate P (y|x, λa) (1 ≤ a ≤ r), the probability of x
belonging to class y according to one of the supervised
or unsupervised models λa.

Table 1: Membership Vectors of Groups

Class/Cluster ID Group Vectors
λ1 λ2 λ3 λ4

λ1 λ2 λ3 λ4 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12
x1 1 1 2 1 1 0 0 1 0 0 0 1 0 1 0 0
x2 1 1 2 2 1 0 0 1 0 0 0 1 0 0 1 0
x3 1 2 1 3 1 0 0 0 1 0 1 0 0 0 0 1
x4 2 2 3 1 0 1 0 0 1 0 0 0 1 1 0 0
x5 3 2 3 2 0 0 1 0 1 0 0 0 1 0 1 0
x6 3 3 1 1 0 0 1 0 0 1 1 0 0 1 0 0
x7 2 1 3 1 0 1 0 1 0 0 0 0 1 1 0 0

• estimate P (λa|x), the local weight of λa, which is pro-
portional to the prediction accuracy of λa on x.

Based on results of the two steps, we compute P (y|x, E)
representing the consensus as:

P (y|x, E) =

r∑
a=1

P (y|x, λa)P (λa|x) (2)

The predicted label for x goes to ŷ which minimizes the risk:
ŷ = arg miny

∫
y′∈Y

L(y′, y)P (y|x, E)dy′, where L(y′, y) is

the cost incurred when the true class label is y′ but the
prediction goes to y. With the most commonly used zero-
one loss function, ŷ = arg maxy P (y|x, E).

We hope that the final prediction P (y|x, E) is close enough
to the true but unknown P (y|x), which we assume can be
reached by consolidating the base model predictions. The
challenges include: 1) When λa is an unsupervised model,
it simply assigns x to one of the clusters but does not pre-
dict the category of x, so P (y|x, λa) cannot be directly ob-
tained. On the other hand, when λa is a classifier, we can
set P (y|x, λa) = 1 when λa(x) = y and 0 for all other y.
However, this estimation is quite biased and we may want
to modify it based on the negotiation with other models.
2) We expect that the weighting scheme can help reach the
best consensus among all models. So ideally, P (λa|x) should
reflect the consistency of λa with other models on predicting
x’s label. We develop the following two heuristics that can
solve the above problems effectively.

3.1 Model Predictions
Each model λa partitions T into ca groups, and in the

“hard” scenarios, an example x is a member of exactly one
group if one of the supervised or unsupervised models λa is
applied on T . Then P (ga

h|x, λa) = 1 if x belongs to group
ga

h and 0 for all the other groups in λa. Therefore,

P (y|x, λa) =

ca∑

l=1

P (y|x, ga
l , λa)P (ga

l |x, λa) = P (y|x, ga
h)

Initially, there is a one-to-one mapping between each group
ga

h from a classifier λa (1 ≤ a ≤ rv, 1 ≤ h ≤ ca) and each
class label y ∈ Y , i.e., if λa predicts the label of the examples
in group ga

h to be y (λa(x ∈ ga
h) = y), then P̃ (y|x, ga

h) = 1.
We treat the label information of groups from supervised
models as initial labeling and estimate P (y|x, ga

h) for all the
groups from all the models (1 ≤ a ≤ r, 1 ≤ h ≤ ca).

Altogether we have s =
∑r

a=1 ca groups: {g1, . . . , gs}.
Each group g can be represented by a length-n binary vector:
{vi}n

i=1 where vi is xi’s membership indicator [26]. For xi ∈
T , its membership with respect to group g is 1 if x ∈ g and
0 otherwise. The problem shown in Figure 1 is illustrated
in the first four columns in Table 1 with two classifiers and
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Figure 2: Illustration of the Label Propagation

two clustering methods, and {DB, DM, IR} is mapped to
{1, 2, 3}. The binary membership vector of each group is
shown in one of the 12 columns at the right side of Table 1.
For example, the second group in λ1 contains two examples
x4 and x7, so the corresponding entries in g2 are 1. Now we
can measure the similarity between any two groups gk and
gj . One commonly used measure is Jaccard coefficient:

J(gk, gj) =
nk,j

nk + nj − nk,j
(3)

where nk and nj are the number of examples in gk and gj

respectively, and nk,j is the number of examples in both
gk and gj . For example, in Table 1, J(g4, g8) = 2/3 and
J(g4, g9) = 1/5. Clearly, g4 and g8 are more similar with
each other since they share more of the common members.

Now we can show the groups and their similarities using a
belief graph G = (V, E). Each node in V is a group gk from
a model λa. Each edge in E connecting two nodes gk and
gj is weighted by the similarity between these two groups.
If a group g is from a classifier λa (1 ≤ a ≤ rv), it has its
initial class label predicted by λa. The labels of the groups
from clustering models λa (rv +1 ≤ a ≤ r) are not assigned.
The graph constructed for the example in Table 1 is shown
in Figure 2. For the sake of simplicity, we did not connect
all the edges. Each of the six groups from λ1 and λ2 has its
initial label (the black nodes). For example, g1 is mapped
to class 1 since the examples in g1 are all predicted to be in
class 1. So P̃ (y = 1|x, g1) = 1, whereas P̃ (y = 2|x, g1) and

P̃ (y = 3|x, g1) are both 0. On the other hand, the groups
from λ3 and λ4 are unlabeled (the white nodes), and we set
their conditional distribution to [0 0 0] at first. Through
this graph, we can propagate the conditional probability in-
formation from the groups in λ1 and λ2 (labeled nodes) to
the groups in λ3 and λ4 (unlabeled nodes). The unlabeled
nodes in turn change the predictions of their neighbors, la-
beled or unlabeled. When the propagation becomes stable,
the groups with similar members would share similar P̂ (y|x).

We now introduce the propagation method and analyze
its optimality. Let Qs×c be the matrix of conditional prob-
ability estimates we are aiming for, with each entry Qkz =
P̂ (y = z|x, gk). We set all the entries in Q to be zero ini-
tially. We define another s × c matrix F corresponding to
the initial labeling from supervised models, where Fkz = 1
if P̃ (y = z|x, gk) = 1 and 0 otherwise. In other words, if gk

is from a supervised model, it will have 1 at the entry cor-
responding to its class label z. For unsupervised models, all
the corresponding entries in F are 0. We construct the sim-
ilarity matrix Ws×s with each entry Wkj equal to J(gk, gj)
as defined in Eq. (3), and compute a diagonal matrix D with
its (k, k)-element equal to the sum of the k-th row of W . Let

H = D−1/2WD−1/2 which normalizes W . Then we iterate

Q = αHQ+(1−α)F until convergence, where α is a param-
eter controlling the importance of the initial labeling. After
the propagation stabilizes, we normalize Q so that each row
of Q sums up to 1.

In fact, Q obtained from the propagation represents the
minimum of the following objective function:

1

2

s∑

k,j=1

Wkj

c∑
z=1

(
1√
Dkk

Qkz− 1√
Djj

Qjz)
2+µ

s∑

k=1

c∑
z=1

(Qkz−Fkz)
2

In this objective function, we hope that the difference be-
tween the labels of two groups, gk and gj , would be as close
as possible if their similarity Wkj is high. The second term
penalizes the deviation from the initial label assignments for
the groups from supervised models. We define the normal-
ized graph laplacian as L = D−1/2(D −W )D−1/2 = I −H.
Due to the properties of graph laplacians, the above objec-
tive function equals to:

QT LQ + µ(Q− F )T (Q− F ) (4)

Differentiating the objective function in Eq. (4) with respect
to Q to derive the optimal solution, we can get: Q∗−HQ∗+
µ(Q∗ − F ) = 0. By defining α = 1

1+µ
, we have Q∗ = (1 −

α)(I − αH)−1F . To avoid computing a matrix inverse, we
compute Q in an iterative way where Q = 1

1+µ
(HQ+µF ) =

αHQ + (1 − α)F . It converges to Q∗, which is consistent
with the initial labeling, and smoothes over the belief graph
with nearby nodes sharing similar predictions.

The essence of this propagation method is that at each it-
eration, the conditional probability of each group g from the
supervised model is the average of its close neighbors’ prob-
ability estimates and the initial labeling. For example, the
third group in λ1’s initial conditional probability [0 0 1] is
smoothed to [0 0.06 0.94] because it is affected by the neigh-
boring node with conditional probability [0 1 0]. On the
other hand, the conditional probability of a group from the
unsupervised models is only the weighted average of those
from its neighbors since its initial label assignment is [0 0 0].
The propagation continues until all the nodes’ predictions
are stable, and then P̂ (y|x, gk) represents the results of ne-
gotiation among all the models with prior knowledge from
the supervised models.

3.2 Model Weights
As introduced in the above section, we compute the con-

ditional probability estimate at the group level, and we wish
to adjust it using a local weight P (λa|x) in the final solution.
The optimal P (λa|x) should reflect the prediction ability of
λa on x where λa gets a higher weight if its prediction on x
is closer to the true P (y|x). The challenge is that the true
P (y|x) is not known a priori, so the optimal weights cannot
be obtained. In this work, we only have access to predictions
made by multiple models, but no groundtruth labels for the
examples. So traditional cross-validation approaches cannot
be used to compute the weights. From the “consensus” as-
sumption, we know that the model that is more consistent
with others on x’s label tends to generate a more accurate
prediction for x.

Therefore, we characterize the consistencies among models
to approximate the model weight:

P (λa|x) ∝ 1

r

r∑

b=1,b6=a

S(λa, λb|x)



S(λa, λb|x) denotes the pair-wise similarity between λa and
λb regarding x’s label prediction, which represents the de-
gree of consistencies between the two models. In other words,
1
r

∑r
b=1,b6=a S(λa, λb|x) is the average model accuracy of λa

on x when we assume that λ1, . . . , λa−1, λa+1, . . . , λr is the
correct model respectively. For models λa and λb, we rely
on the local neighborhood structures around x with respect
to the two models to compute S(λa, λb|x). Suppose the sets
of the examples that are in the same group with x in λa

and λb are Xa and Xb respectively. If many examples are
common among Xa and Xb, it is quite probable that λa and
λb agree with each other on x’s label. Hence the measure
for the pair-wise local consistency can be defined as:

S(λa, λb|x) ∝ |Xa ∩Xb|
|Xa ∪Xb| (5)

In this computation, it doesn’t matter whether λa and λb

are supervised or unsupervised. We infer the label consis-
tencies from x’s neighbors according to the grouping results
of λa and λb. As an example, let’s compute S(λ1, λ2|x1) and
S(λ1, λ4|x1) for the problem in Table 1. The neighbors of
x1 in λ1, λ2 and λ4 are {x2, x3}, {x2, x7} and {x4, x6, x7}
respectively. So S(λ1, λ2|x1) ∝ 1/3 and S(λ1, λ4|x1) ∝ 0/5,
which indicates that λ1 agrees with λ2 better on x. P (λ1|x)
is then calculated as the average pairwise similarity between
λ1 and the other three models on x. According to the defi-
nition of P (λa|x), it is obvious that when λa is more consis-
tent with most of the other models on classifying x, its local
weight is higher.

However, making the best local selection not always leads
to global consensus. For certain examples, the most accurate
label prediction may be attributed to the minority predic-
tions. Therefore, we add a smoothing term to the model
weight definition:

P (λa|x) ∝ (1− β)
1

r

r∑

b=1,b6=a

S(λa, λb) + β
1

r
(6)

Here, we assume that the model weight P (λa|x) follows a
mixture model of two components, where the “consensus
model selector” values the local consensus among models,
but the “random model selector” shows no preference to any
model so that the majority and minority predictions have
equal chances. β reflects our belief in this random selec-
tor compared with the consensus model selector. Finally,
from Eq. (6) and the constraints that

∑r
a=1 P (λa|x) = 1,

we can calculate the local weight of each model indicating
its prediction power on x.

3.3 Time Complexity
In this part, we examine the method’s time complexity.

In the first step, the conditional probability of each group
is learnt through propagation over the belief graph. The
total number of groups is s, and each group can be repre-
sented using a binary vector, so the time to construct and
normalize the similarity matrix W is simply O(s2). Sup-
pose we have f iterations, then the propagation time is
O(fcs2) where c is the number of classes. The normaliza-
tion on the prediction results takes O(s). The time of the
second step is mainly attributed to the computation of pair-
wise local consistency S(λa, λb|x), which can be computed
in an efficient way. From Eq. (5), it can be derived that
S(λa, λb|x) = S(λa, λb|x′) if x and x′ are predicted to be

Algorithm: Consensus Learning Algorithm
Input: (1) The classification or clustering results on a set T
made by rv classification models and ru clustering models.

(2) Parameters α and β.
Output: Consolidated class label predictions for T .
Algorithm:

1. Construct the belief graph where each node is a group
g from one of the models.

2. For each pair of groups,

• Compute their similarity based on Eq. (3).

• Compute their local consistency based on Eq. (5).

3. Let W be the group similarity matrix where Wkj =
J(gk, gj). Compute D as the diagonal matrix with (k, k)
element equal to the sum of the k-th row of W . Let
H = D−1/2WD−1/2.

4. Set Q = 0. Let F be the initial label matrix where
Fkz = 1 if group gk is predicted to be in class z by one
of the classifiers.

5. Iterate Q = αHQ + (1− α)F until convergence.

6. Normalize the row sums of Q to be 1.

7. For each example x ∈ T ,

• For each model, set P (y|x, λa) = P (y|x, ga
h) = Qky

where ga
h, indexed by k, is the group λa assigns x

to, and compute P (λa|x) based on Eq. (6).

• Compute P (y|x, E) based on Eq. (2).

• Predict x’s label as ŷ = arg maxy P (y|x, E)

Figure 3: Consensus Learning Algorithm

in the same groups according to λa, and according to λb

as well. We have s(s−1)
2

pairs of groups and we only need

to calculate S(λa, λb|x ∈ gk, gj) for these pairs of groups,
so the time is O(s2). Note that till now, we work at the
level of “groups” instead of “examples”, and usually both the
number of models and the number of classes or clusters are
quite small (e.g., less than 10), so the computation can be
very fast and the running time is independent of the num-
ber of examples. After that, we only need to check r models
for each example to calculate the model weights and the
weighted label prediction (combining results of step 1 and
step 2). On the test set T with n examples, the complexity
of this procedure is O(rn), usually n À r. So the method
runs in linear time with respect to the number of examples,
and can scale well to large data sets.

3.4 Algorithm
The proposed algorithm is summarized in Figure 3. As

discussed, the two steps together help reach a consensus
among r models. P (y|x, λa) is calculated at a coarser level,
whereas we further negotiate among models using P (λa|x)
targeted to each example. On the other hand, P (y|x, λa) is
computed globally by propagating the labeled information
among all the groups. In the computation of P (λa|x), only
the local structure around x plays a role. So by combin-
ing different granularity of information and conducting the
consolidation both globally and locally, we effectively solve
the consensus learning problem. We conducted an exhaus-
tive search among 37 possibilities for the problem in Table 1
and found the optimal solution is {DB, DB, DB, DM, DM,
IR, DM}. The proposed method can successfully output the
same solution only by one scan of the 7 instances.



4. EXPERIMENTS
We show that the proposed method is scalable, and can

generate more accurate predictions compared with the base-
lines. Also, we can obtain conditional probability estimates
for the examples even if the base models make “hard” deci-
sions. The outputs can be used to summarize the character-
istics of the underlying groups in the data.

4.1 Experiment Setup
Data Sets. We present results on four real-world applica-

tions. 1) 20 Newsgroups categorization: The 20 newsgroups
data set3 contains approximately 20,000 newsgroup doc-
uments, partitioned across 20 different newsgroups nearly
evenly. We used the version where the newsgroup messages
are sorted by date, and separated into training (60%) and
test sets (40%). From the data sets, we construct 6 learning
problems, each of which has documents from 4 different top-
ics to distinguish. 2) Cora research paper classification [21]:
The data set contains around 37,000 research papers that
are classified into a topic hierarchy with 73 leaves. The cita-
tions among papers are around 75,000 entries. We conduct
experiments on two top-level and two second-level classifi-
cation problems where papers are from three to five differ-
ent research fields. 3) DBLP network: We extracted two
data sets from the DBLP network. The smaller one con-
tains authors and conferences of four closely related areas
in information management domain, whereas the larger one
has seven broader areas. 4) Yahoo! Movies: The dataset is
from the Yahoo! Alliance WebScope program4 and it con-
tains around 10,000 users, 14,000 movies and 220,000 rat-
ings based on data generated by Yahoo! Movies on or before
November 2003. We sampled two subsets from this data
set where movies are from three different genres. We utilize
the movie descriptive information (genre and synopsis) and
movie ratings to derive the user type (which kinds of movies
the user favors). Users are anonymous but the demographic
information (birth-year and gender) of most users are avail-
able. More details about the above classification problems
can be found in Table 2, where |T | is the number of objects.

Baseline Methods. First, the proposed method is based
on multiple single supervised and unsupervised models. We
determine the base models according to each data set’s char-
acteristics. Since 20 Newsgroups data set only has text in-
formation, the base models are two classification (logistic re-
gression and SVM, implemented in [11] and [4], denoted as
SC1 and SC2) and two clustering algorithms (K-means and
min-cut, implemented in [15], denoted as UC1 and UC2).
In Cora, DBLP and Yahoo! Movies data sets, both the la-
beled set and the unlabeled target set T can be represented
in two ways, which correspond to text and link informa-
tion. On each of them, we train a logistic regression classi-
fier on the labeled set and predict on T , as well as apply the
K-means clustering algorithm on T . The two classification
models are denoted as SC1 (link) and SC2 (text), and the
two clustering models are UC1 (link) and UC2 (text). The
two representations of these three data sets are as follows.
Cora has paper abstracts as the text information. The link
information is conveyed by the citation network where two
papers are connected if one cites the other. So we can use
the class labels of the neighboring nodes in the network as

3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://research.yahoo.com

Table 2: Data Sets Description

Data ID Category Labels |T |
comp.graphics comp.os.ms-windows.misc1

sci.crypt sci.electronics
1568

rec.autos rec.motorcycles2
rec.sport.baseball rec.sport.hockey

1588

News- 3 sci.cypt sci.electronics sci.med sci.space 1573
group misc.forsale rec.autos4

rec.motorcycles talk.politics.misc
1484

rec.sport.baseball rec.sport.hockey5
sci.crypt sci.electronics

1584

alt.atheism rec.sport.baseball6
rec.sport.hockey soc.religion.christian

1512

Operating Systems Programming1
Data Structures Algorithms and Theory

663

Databases Hardware and Architecture2
Networking Human Computer Interaction

977
Cora

Distributed Memory Management Agents
3 Vision and Pattern Recognition 1468

Graphics and Virtual Reality
Object Oriented Planning Robotics4

Compiler Design Software Development
975

Databases Data Mining1
Machine Learning Information Retrieval

4236
DBLP

Databases Data Mining Networking Theory2
Artificial Intelligence Information Retrieval

21263

Yahoo! 1 Drama Comedy Action and Adventure 7316
Movies 2 Kids and Family Science Fiction Musical 4176

the link features of each paper. For the DBLP data set, we
pool the titles of publications in a conference or by an author
as their text features. On the other hand, we regard each
conference as one dimension, and the number of papers an
author published in the conference is the link feature value.
In the Yahoo! Movies data sets, the movie ratings of the
users act as the link information, and we collect the syn-
opses of the movies a user rates greater than 3 out of 5 as
the text features. In 20 Newsgroups and Cora, for the su-
pervised models, outside knowledge comes from the domain
the set T belongs to, whereas in DBLP and Movie data sets,
supervised models are trained on a different domain (e.g.,
conferences vs. authors, movies vs. users).

Besides the single models, we compare the proposed method
with the following ensemble methods. Note that we assume
the raw data are inaccessible, and the proposed algorithm
only takes outputs from multiple models as input. Therefore
the baseline ensemble methods should also combine multi-
ple models’ outputs without referring to the original fea-
ture values. The output of each model is “hard”, i.e., it
only gives the predicted class label or cluster ID. We first
map the clusters generated in one clustering model to match
with those from the other model with the help of hungarian
method5. Then, we learn two majority-voting based en-
sembles from the set of supervised and unsupervised base
models separately, where ties are broken randomly. We
denote them as Supervised Models Ensemble (SME) and
Unsupervised Models Ensemble (UME) respectively. Also,
we may ignore the class labels in the supervised models,
regard all the base models as unsupervised clustering and
try a clustering ensemble method to integrate all the parti-
tionings. We use the Meta-Clustering Algorithm (MCLA)
introduced in [26], where the final clustering solution is in-
duced from the meta-clusters formed in a hyper-graph. Note
that both UME and MCLA only perform clustering, and do
not predict the class labels for the examples in T . We de-
note the proposed method which consolidates all the mod-

5http://www.cs.umu.se/∼niclas/matlab/assignprob/



Table 3: Performance Comparison on a Series of Data Sets
Accuracy

20 Newsgroups Cora DBLPMethods
1 2 3 4 5 6 1 2 3 4 1

SC1 0.7966 0.8860 0.8557 0.8821 0.8756 0.8882 0.7738 0.8854 0.8617 0.8769 0.9325
SC2 0.7730 0.8615 0.8131 0.8666 0.8346 0.8571 0.7813 0.8588 0.8488 0.8821 0.8756
UC1 0.8061 0.8797 0.8652 0.8989 0.8718 0.9028 0.7647 0.8823 0.8535 0.8728 0.9379
UC2 0.7774 0.8571 0.8144 0.8477 0.8542 0.8565 0.7360 0.8598 0.7786 0.8923 0.7949
SME 0.7841 0.8739 0.8340 0.8742 0.8543 0.8727 0.7770 0.8707 0.8536 0.8792 0.9038
UME 0.7928 0.8680 0.8401 0.8736 0.8617 0.8798 0.7487 0.8713 0.8162 0.8832 0.8661

MCLA 0.7769 0.8755 0.8199 0.8619 0.8759 0.8532 0.8612 0.8724 0.8765 0.8584 0.9049
CLSU 0.8469 0.9364 0.8856 0.9346 0.9034 0.9160 0.8854 0.9202 0.9012 0.9210 0.9525

NMI
20 Newsgroups Cora DBLPMethods

1 2 3 4 5 6 1 2 3 4 1
SC1 0.4857 0.6736 0.6067 0.6666 0.6447 0.6898 0.3878 0.6623 0.7018 0.7021 0.7804
SC2 0.4494 0.6274 0.5270 0.6282 0.5652 0.6257 0.4241 0.6130 0.6914 0.7027 0.6306
UC1 0.5319 0.7114 0.6624 0.7270 0.7011 0.7388 0.4058 0.6541 0.7111 0.7071 0.7977
UC2 0.5028 0.7103 0.5845 0.6658 0.7016 0.6978 0.5115 0.6267 0.6927 0.7304 0.5019
SME 0.4661 0.6502 0.5646 0.6463 0.6018 0.6562 0.4021 0.6330 0.6912 0.7006 0.6979
UME 0.5010 0.6868 0.5943 0.6713 0.6725 0.7078 0.4041 0.6373 0.6504 0.7097 0.6253

MCLA 0.5267 0.7282 0.6385 0.6996 0.6943 0.7083 0.5639 0.7070 0.7384 0.7388 0.7407
CLSU 0.5849 0.8028 0.6900 0.7856 0.7235 0.7618 0.6149 0.7488 0.7731 0.7856 0.8337

els as Consensus Learning on Supervised and Unsupervised
Models (CLSU). In the experiments, default parameters are
used in the base packages and we set α = 0.4, β around 0.5,
and the number of iterations in the first step to be 20.

Measures. The instances in 20 Newsgroups and Cora
data sets have their class labels. Moreover, we manually la-
bel the research fields of the authors in the first task of DBLP
data set. For the purpose of evaluation, we restrict the num-
ber of clusters from the clustering algorithms to be the same
as the number of classes. On these data sets, we evaluate the
proposed method and the baselines from the following two
perspectives: 1) We map the outputs of all the clustering
algorithms to the best possible class predictions using hun-
garian method where cluster ids are matched with the class
labels. Now all the methods have class label predictions for
the examples in T , and thus we can evaluate their classifi-
cation accuracy. Actually, this procedure on the clustering
methods is “cheating” since the true class labels are used to
do the mapping, and thus it should be able to generate the
best accuracy from these unsupervised models. 2) All the
methods, no matter classification or clustering, can group
the test instances into c groups, so we can evaluate the clus-
tering quality using the external measure–normalized mu-
tual information (NMI) [26], averaged by the test set size.
We construct a “true” model from the groundtruth labels,
and compute the amount of information shared by the al-
gorithms and the true model. A higher NMI indicates that
the algorithm performs better on the data set. Due to the
scale of the second DBLP data set and the anonymity of the
Yahoo! Movies users, we cannot label these two test sets but
simply show some examples or statistics of each group.

4.2 Empirical Results
In this section, we assess the performances of the proposed

method in terms of accuracy and scalability.
Prediction Accuracy . Table 3 presents the experimen-

tal results on the 20 Newsgroups, Cora and DBLP data sets
using accuracy or NMI as the performance measure. For the
baseline ensemble methods (SME, UME, MCLA), the ties
are randomly broken so we obtain their performance mea-
sures by averaging 50 runs. From the comparisons, we ob-
serve that: 1) On different data sets, the best single model,
with respect to accuracy and NMI, can be different, which

indicates that there exists large variability in the single mod-
els’ predictions. 2) If only part of the information sources
are used to construct an ensemble (SME, UME, MCLA),
the performance may not always be improved due to the
information loss. 3) The proposed CLSU method always
outperforms all the base models and the baseline ensemble
methods with a large margin in terms of both classification
accuracy and clustering quality. We can see the consistent
and often dramatic increase in performance measures on the
20 Newsgroups and Cora data sets (baselines’ accuracy is
mostly around 85%, but CLSU increases it to above 90%),
as well as the DBLP data sets (the single models’ accuracy
is from 79% to 93%, and CLSU improves it to over 95%).
It demonstrates the generalization accuracy and robustness
of the proposed method. The success is attributed to the
proposed method’s wise negotiation among multiple infor-
mation sources, which jointly make the accurate predictions.

Conditional Probability Estimates . The proposed con-
sensus learning algorithm is also able to transform “hard”
predictions of the base models to estimates of conditional
probabilities. We selected some authors randomly sampled
from the two DBLP tasks, and presented the probability of
each author doing research in different areas in Table 4. The
results are conducted on the subset of authors who publish
in selected top conferences. The details about the research
areas in the two tasks are shown in Table 2. These examples
reveal that many authors are conducting research in multiple
areas. It is very likely that the base models make different
predictions about their areas, and thus the probability es-
timates generated by the proposed method are distributed
among the areas they contribute to. For example, Jeffrey
D. Ullman contributes to both databases and theory com-
munities, and Andrew W. Moore’s research is devoted to
both data mining and machine learning areas. On the other
hand, there are authors who mainly focus on one area, and
the proposed method will assign a high probability to the
area on which most of the models agree. Examples include
Donald F. Towsley in networking and Michael Stonebraker
in databases.

Group Summarization . In this experiment, we pre-
dict the distribution of a user’s interests among the different
movie genres in Yahoo! Movies data sets. Both the synopses
and the ratings of the movies a user has watched provide use-



Table 4: Examples of P (y|x) Estimates

Authors in DBLP1
NAME DB DM ML IR
Michael Stonebraker 0.9473 0.0107 0.0075 0.0345
Kian-Lee Tan 0.7525 0.1920 0.0372 0.0183
Nilesh Bansal 0.5081 0.1931 0.0375 0.2613
Ke Wang 0.0294 0.8946 0.0553 0.0207
Salvatore J. Stolfo 0.0280 0.6583 0.2937 0.0200
Evimaria Terzi 0.2687 0.6558 0.0549 0.0206
Andrew W. Moore 0.0288 0.4128 0.5386 0.0198
Boris Chidlovskii 0.2640 0.1931 0.2817 0.2612
Craig Boutilier 0.0129 0.0133 0.9559 0.0179
Sridhar Mahadevan 0.0299 0.1900 0.7629 0.0172
Barry Smyth 0.0136 0.0274 0.4924 0.4666
Akshay Java 0.0308 0.1896 0.5209 0.2587
W. Bruce Croft 0.0166 0.0284 0.0146 0.9404
S. K. Michael Wong 0.0155 0.0135 0.4786 0.4924
Xiaofei He 0.0329 0.1926 0.2844 0.4901

Authors in DBLP2
NAME DB/DM Network AI Theory IR
Donald F. Towsley 0.0516 0.8782 0.0178 0.0257 0.0267
ChengXiang Zhai 0.0537 0.0140 0.2093 0.0048 0.7182
Richard M. Karp 0.0202 0.0141 0.0649 0.8654 0.0354
Jeffrey D. Ullman 0.4974 0.0134 0.0655 0.3805 0.0432
Ding-Zhu Du 0.0423 0.2152 0.0600 0.6720 0.0105
Hendrik Blockeel 0.3795 0.0120 0.4778 0.0108 0.1199
Gregory Chockler 0.0291 0.4369 0.0227 0.4604 0.0509
Lise Getoor 0.6179 0.0132 0.2371 0.0107 0.1211
Chidanand Apte 0.3779 0.0133 0.4791 0.0116 0.1181
Serge Abiteboul 0.7531 0.0201 0.0457 0.0074 0.1737
Raymond J. Mooney 0.1400 0.0121 0.7206 0.0116 0.1157
Judea Pearl 0.0355 0.0109 0.7306 0.1863 0.0367
Clement T. Yu 0.5208 0.0201 0.0472 0.0068 0.4051
Andrew McCallum 0.3828 0.0132 0.2387 0.0101 0.3552
Rong Jin 0.1478 0.0142 0.2390 0.0098 0.5892
Bharat K. Bhargava 0.4192 0.4395 0.0193 0.0210 0.1010

ful information for this task, and we build both supervised
and unsupervised models over the two types of information
and consolidate their predictions. We compute the proba-
bility of a user belonging to a movie genre group (such as
Comedy). After that, we divide the users according to their
demographic information: female or male, and age < 20, age
between 20 and 40, and age > 40, and average the condi-
tional probability estimates over the users of the same gen-
der or age. Figure 4 reveals some interesting patterns we find
in the user interest distributions. We can see that females
love Drama and Comedy, whereas males’ main interests are
on Action movies. When people grow older, their interests
gradually shift from Comedy to Drama. Regarding the dis-
tributions among Kids/Family, Science Fiction and Musical,
females like the Musical movies much better than males, and
people at ages 20 to 40 fall for Science Fiction movies the
best, whereas teenagers have to watch Kids/Family movies
a lot. Therefore, the proposed method can be applied to
grouping of users for many of such services.

Scalability . As discussed in Section 3.3, the time com-
plexity of the proposed method is quadratic in terms of the
number of clusters and models, but linear with respect to
the test set size. Since we usually deal with large-scale data
sets which can be categorized into small groups, the run-
ning time is mostly determined by the number of instances,
and thus the proposed method scales well to large data
sets. We select four learning tasks, and randomly sample
a subset from each set containing τ of the original instances
(τ ∈ {20%, . . . , 100%}). The results are averaged over 50
runs and demonstrated in Figure 5. As most curves are lin-
ear especially when τ is greater than 60%, we can conclude
that the results are consistent with our analysis that the
proposed method has linear time complexity.

5. RELATED WORK
Many studies have shown that ensembles of multiple clas-

sifiers can usually reduce variance and achieve higher ac-
curacy than individual classifiers [5, 13, 2]. These stud-
ies usually focus on deriving weak classifiers from data and
boosting their performance by model combination. Their
problem setting is different from what we discussed in this
paper because they usually assume the availability of raw
data. In unsupervised learning, study of clustering ensem-
ble [26, 7, 12, 24, 18, 6] has been an active research area,
whose objective is to produce a single clustering that agrees
with multiple clusterings. The success of combining multiple
models has been recognized when ensemble is shown to ben-
efit from individual models as well as improve the accuracy
and robustness. In fact, our method shares the same spirit
as all the ensemble methods, but we extend the scope of
base models to both supervised and unsupervised fields and
try to find the best solution by negotiating their differences.

In recent years, an extensive body of work has crossed
the boundary of supervised and unsupervised information
sources. Semi-supervised or transductive learning [14, 27,
29] explores the use of unlabeled information to achieve bet-
ter generalization on the unlabeled set. Particularly, label
propagation [27] is used in our approach to propagate infor-
mation over the belief graph. Link-based classification (i.e.,
collective inference, relational learning) [20, 22, 25] utilizes
the link structure to classify a set of related instances si-
multaneously. These studies reveal that the unlabeled in-
formation, when used together with labeled instances, can
produce considerable improvement in classification accuracy.
However, they only take one unlabeled information source
into account (e.g., manifold structure or link structure in
unlabeled data set), but ignore the other possible unlabeled
sources. People have investigated the problem of learning
from two complementary views (co-training) [3] or multiple
views (multiple view learning) [9]. Our proposed framework
is more general than these studies in the sense that we do
not require the labeled and unlabeled sources to be symmet-
ric. Furthermore, we do not require access to raw data, but
instead use prediction results from multiple models as input.

Some other types of information combination have also
drawn researchers’ attention, such as transfer learning en-
semble [10, 19], webpages classification based on content
and link information [28], label inference from two unlabeled
data sources [17], and ensemble of relational classifiers [23].
However, all these methods only consider combining mod-
els in some specific formats. In a world with information
explosions, we need a general framework that can take ad-
vantage of heterogeneous information sources. Li et al. [16]
demonstrate that knowledge from the word space can be
transformed to the document space to improve document
clustering, however, the only information source used is the
word co-occurrence matrix. In this paper, we show that for
the task of knowledge transfer among variables of different
types, information sources can be of many folds and a seam-
less consolidation of all the sources can outperforms ad-hoc
combinations of part of the information sources.

6. CONCLUSIONS
In many applications, the class label of the same object

can be inferred from multiple sources in different formats,
such as graphs, text documents, user ratings, and click through
rates. These heterogeneous information sources could be ei-
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Figure 5: Scalability of CLSU

ther supervised that contains labeled information of inter-
est, or unsupervised that only contains structural similarity.
In this work, we take advantage of different but comple-
mentary predictive powers of these heterogeneous sources
to derive consolidated labels for a set of examples. This
work extends the applicability of ensemble-based techniques
to cross the boundary between labeled and unlabeled in-
formation by reaching and negotiating a consensus among
them. This is different from traditional approaches of ma-
jority voting or model-averaging such that a minority label
from supervised models or labels not even predicted by some
supervised models could be the consolidated prediction. We
presented a two-step heuristic method, which first uses a be-
lief graph to propagate labeled information between super-
vised and unsupervised models for groups of examples with
similar properties until stable predictions are reached. The
final prediction is determined by negotiating among multiple
models according to each example’s neighborhood structure,
and weighting models based on their consistencies with other
models. On four data sets including 20 Newsgroups, Cora
research papers, DBLP network and Yahoo! Movies, we have
improved the best base model accuracy by 10%.
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