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ABSTRACT
In data mining applications such as crowdsourcing and privacy-
preserving data mining, one may wish to obtain consol-
idated predictions out of multiple models without access
to features of the data. Besides, multiple models usually
carry complementary predictive information, model combi-
nation can potentially provide more robust and accurate
predictions by correcting independent errors from individ-
ual models. Various methods have been proposed to com-
bine predictions such that the final predictions are maxi-
mally agreed upon by multiple base models. Though this
maximum consensus principle has been shown to be suc-
cessful, simply maximizing consensus can lead to less dis-
criminative predictions and overfit the inevitable noise due
to imperfect base models. We argue that proper regulariza-
tion for model combination approaches is needed to allevi-
ate such overfitting effect. Specifically, we analyze the hy-
pothesis spaces of several model combination methods and
identify the trade-off between model consensus and general-
ization ability. We propose a novel model called Regularized
Consensus Maximization (RCM), which is formulated as an
optimization problem to combine the maximum consensus
and large margin principles. We theoretically show that
RCM has a smaller upper bound on generalization error
compared to the version without regularization. Experi-
ments show that the proposed algorithm outperforms a wide
spectrum of state-of-the-art model combination methods on
11 tasks.
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1. INTRODUCTION
Combining multiple supervised and unsupervised models

can be desirable and beneficial, or sometimes even a must.
For example, in crowdsourcing, privacy-preserving data min-
ing or big data applications, there could be only predictions
from multiple models available, with raw features of the data
being withheld or discarded. One has to merge the output
of these models to obtain the final classification or clustering
results. On the one hand, there are various new consensus-
based solutions, such as those proposed in [16, 34, 30, 13,
18, 27, 37]. One common idea that these algorithms share
is to learn a model that has highest prediction consensus
among base models. On the other hand, simple model com-
bination algorithms, such as majority voting [15], that do
not pursue model consensus are portrayed as baselines infe-
rior to the algorithms seeking consensus. These comparisons
give the illusion that the more consensus one can achieve,
the more likely the consolidated predictions will be accurate.
One might ask: are the consolidated predictions that achieve
maximal consensus the best choice? Could these consensus-
based methods overfit the noisy and limited observed data,
leading to results inconsistent with the true data distribu-
tion? After all, the goal of classification/clustering is to
produce discriminative predictions [4, 29].

In this paper, we study the above questions based on the
Consensus Maximization framework [16] (CM for short in
the sequel), due to its generality and effectiveness. We first
present a running example of CM in Table 1 to demonstrate
that solely maximizing the consensus can lead to undesir-
able results. Suppose we have 5 instances in 2 classes, whose
ground truth labels are shown in the first column of the ta-
ble. There are 2 supervised models (M1 and M2) and 2
unsupervised model (M3 and M4). A supervised (resp. un-
supervised) model predicts the class (resp. cluster) labels
of all instances. The predictions from a model are shown
under the header with the model’s name. Note that neither
the correspondence between class labels and cluster labels,
nor the correspondence between cluster labels from different
clustering models is known. We describe the details of CM
later and for the moment, one can think of CM as a black
box that consolidates the predictions of base models and
outputs predictive posteriors p(y = 1|x) that achieve maxi-
mal consensus among base models. For majority voting (MV
for short in the sequel), it simply averages the predictions
from supervised models (predictions of unsupervised models
cannot be used by MV because the correspondence between
classes and cluster labels is unknown). The consolidated



predictions produced by CM and MV are shown in the last
two columns of the table.

From this running example, one can see that CM makes
more correct predictions than MV does. However, the pos-
teriors p(y = 1|x) produced by CM tend to be closer to
the decision boundary and the margins between p(y = 1|x)
and p(y = 0|x) are quite small. We have two observations.
First, according to the margin-based generalization error
analysis [24], a smaller margin of posterior class distribu-
tions between different classes leads to a higher empirical
margin risk, which contributes to the overall generalization
error. If one can produce consolidated predictions with a
large posterior margin, a tighter upper bound on the gen-
eralization error can be obtained. Second, if the hypothesis
space for a model combination algorithm has large capacity
(measured by VC-dimension, growth function or covering
number, etc.), then the upper bound of generalization error
is also higher. One may incorporate certain relevant prior
knowledge of the data to shrink the size of the hypothesis
space. For example, for multi-class single-label classifica-
tion, desirable consensus predictions should be discrimina-
tive in the sense that an instance belongs to one and only
one class. Our goal is to reduce empirical margin risk and
the capacity of the hypothesis space of model combination
methods such as CM, and obtain a smaller upper bound on
the generalization error.

We propose a family of regularization objectives over class
distribution to reduce generalization errors. As a solid in-
stance, we add regularization objectives to CM to obtain
Regularized Consensus Maximization (RCM). In terms of al-
gorithmic effectiveness, though the regularization introduces
many tuning parameters and makes the optimization prob-
lem not jointly convex, we develop a simple yet efficient ap-
proximation to the regularization term without introducing
additional parameters. An alternative optimization proce-
dure is developed to find a local minimum with reasonably
good empirical results. In terms of theoretical effectiveness
of learning, we give a detailed analysis of the algorithm and
formally prove that, comparing to the original version, RCM
achieves a smaller upper bound on generalization error. In
summary, we make the following contributions:

• To the best of our knowledge, this is the first work
to consider, address and theoretically analyze (Sec-
tion 2.2 and 4) the overfitting issue in model combina-
tion methods.

• We propose a class distribution regularization frame-
work and formulate it as an optimization problem to
trade-off between maximal consensus and large margin
principles. The optimization problem can be solved
conveniently using gradient descent.

• We compare the performance of the proposed algo-
rithm to a wide range of state-of-the-art model com-
bination methods. Extensive experiments on 11 date-
sets demonstrate the theory and the effectiveness of
the proposed framework.

2. OVERFITTED CONSENSUS MAXIMIZA-
TION

In this section, we recapitulate some basic concepts used
in the CM framework, which is followed by an analysis of
why it tends to overfit the data.

Table 1: Running CM Example

y
Predictions MV Results CM Results

M1 M2 M3 M4 P (y = +|x) P (y = +|x)
+ + + C1 R0 1 0.5073
+ + + C0 R0 1 0.5097
+ − + C0 R0 .5 0.5024
− + − C1 R1 .5 0.4946
− − − C1 R1 0 0.4873

Table 2: Notations

xi ∈ X = Rd An instance of data
D = {x1, . . . ,xn} Collection of instances
Y = [y1, . . . , yn]⊤ Ground truth labels of D

Un×c Membership indicators of data
Qv×c Membership indicators of groups
An×v Affinity matrix

c Number of classes
ui The i-th row of matrix U
uj The j-th column of matrix U

2.1 Preliminaries
CM combines the output of multiple supervised and un-

supervised base models (as shown in Table 1). Let the set
of instances be D = {x1, . . . ,xn}, each of which belongs
to one of c classes {1, . . . , c}. Suppose we have m models
{M1, . . . ,Mm}. Without loss of generality, we assume that
the first 0 ≤ r ≤ m models are supervised models, and the
rest are unsupervised models. A supervised model predicts
the class label of each instance, while an unsupervised model
predicts the cluster label and partitions D into c clusters.
Given the predictions of m models, without access to the
data D, CM computes consolidated predictions to achieve
maximal consensus among base models.

We use the example in Table 1 to demonstrate how CM
constructs a bipartite graph and obtains consensus predic-
tions. The bipartite graph contains group nodes and in-
stance nodes, where a group node represent a class or clus-
ter from a supervised or unsupervised model, and an in-
stance node represent a data instance. Therefore, there are
c × m group nodes and n instance nodes. We number the
group nodes such that class/cluster ℓ from the j-th model
is labeled as the ((j − 1) × c + ℓ)-th group. The bipartite
graph constructed using the toy example is shown in Fig-
ure 1. An instance node is connected to a group node iff
the corresponding instance is classified or clustered into the
corresponding class or cluster of a model. A group node of a
supervised model is also connected to an external node rep-
resenting its ground truth label (the left-most nodes in the
figure). As x1 is predicted to have label 1 by M1, instance
node x1 is linked to the group nodes g1 representing class 1
of M1. Similarly, x5 is linked to group node g8 to indicate
that the instance belongs to the second group (R1) by M4.

CM consolidates these base models into a single model
whose predictions achieve maximal consensus among the
predictions of base models. Formally, we denote the mem-
bership distribution of an instance node for xi by a row
probabilistic vector ui = [ui

1, . . . , u
i
c]. Similarly, the mem-

bership distribution of a group node is given by a row proba-
bilistic vector qj = [qj1, . . . , q

j
c ]. These vectors can be collec-

tively denoted by two matrices: U = [u1⊤, . . . ,un⊤]⊤ and



Figure 1: Bipartite graph representation in CM

Q = [q1⊤, . . . ,qv⊤]⊤ where v = c × m. CM seeks smooth
probability distributions U and Q, such that any connected
nodes in the graph have similar probabilistic distributions.
CM solves the following optimization problem:

min
U,Q

n∑

i=1

v∑

j=1

ai
j∥ui − qj∥2 + α

v∑

j=1

bj∥qj − ȳj∥2

s.t. ui
ℓ ≥ 0,

∑c
ℓ=1 u

i
ℓ = 1, i = 1, . . . , n

qjℓ ≥ 0,
∑c

ℓ=1 q
j
ℓ = 1, j = 1, . . . , v

where ai
j = 1 if the i-th instance node is connected to the

j-th group nodes, and is equal to 0 otherwise. bj indicates if
the j-th group node is from a classification model (bj = 1)
or a clustering model (bj = 0). ȳj is a vector indicating the
class label of the j-th group node from a classification model.
For example, ȳ1 = [1, 0] and ȳ2 = [0, 1] in the above running
example. ȳj is an all zero vector if the corresponding group
node is from a clustering model.

We denote the objective by L(U,Q) and is defined as con-
sensus loss. It measures the level of disagreement between
the consolidated predictions and the outputs of base mod-
els. By minimizing L(U,Q), consensus among base models
is maximized. The second term accounts for the initial pre-
dictions of supervised models, and does not play a role if all
base models are unsupervised. The whole optimization is
solved via block coordinate descent:

Q = (Dv + αKv)
−1(A⊤U + αKvY ) (1)

U = D−1
n AQ (2)

Here A = (ai
j)n×v, Dv = diag(A⊤× n) and Dn = diag(A×

v), Kv = diag(Ȳ × c). Here k is an all one column
vector of length k. Upon convergence, the final posterior
distributions are given in the rows of U and one can use
Bayes’ optimal decision rule to decide the most likely label.

2.2 CM overfits
The hypothesis space of a learning algorithm is the set

of all feasible solutions of the algorithm. A larger hypothe-
sis space has more expressive power comparing to a smaller
one, leading to less training errors. However, models with
a larger hypothesis space is more complicated and can lead
to less generalization ability and more predicting errors [29].
Therefore, one needs to trade-off between minimizing train-
ing error and model complexity. We compare the hypothe-

sis spaces of two model combination methods, MV and CM,
leading to some insights into the overfitting issue of CM.

Suppose there are m base models (for ease of presentation,
assume all models are supervised models). For each instance
and each class, a model outputs 1 (a vote) or 0 (no vote).
A model combination method is a function f that maps
predictions of base models to posterior distributions on the
probabilistic simplex:

f : X → S (3)

S = {p ⊂ Rℓ|p =
c∑

ℓ=1

θℓeℓ = [θ1, . . . , θℓ],
c∑

ℓ=1

θℓ = 1, θℓ ≥ 0}

where we abuse the notation X, such that X is the collection
of base model predictions. eℓ is the standard basis having
1 in its ℓ-th position and 0 anywhere else, representing the
distribution of class ℓ, θℓ is the probability that an instance
belongs to class ℓ. When c = 3, an example of 2-simplex is
shown in Figure 2(a). Various model combination methods
can be seen as ways of searching a suitable mapping f in
the hypothesis space F of all such mappings, to optimize
certain objectives. Existing methods differ in their hypoth-
esis spaces F and the way they searches, but the capacity
of the hypothesis space is directly related to the generaliza-
tion ability of a method. Note that the domain of all model
combination methods are the same, so the capacities of their
hypothesis spaces are completely determined by the images
of the maps f(X) ⊂ S.

Majority voting simply sums up the number of votes
for each class and assigns an instance to the class having
the most votes. Formally, given the output of r models for
an instance, say, [ŷ1, . . . , ŷr], ŷk ∈ {1, . . . , c}, the decision of
majority voting is made based on the the vector:

1
r

[
r∑

k=1

[ŷk = 1], . . . ,
r∑

k=1

[ŷk = c]

]
∈ S (4)

Note that majority voting maps the predictions of base mod-
els to rational vectors on the simplex, with denominators
equal to the number of models. For example, if an instance
receives two votes for class 1, one votes for class 2 and 0 vote
for class 3, from a total of three classifiers, then the output
of f is [2/3, 1/3, 0], shown as the square with an arrow in
Figure 2(b).

CM maps predictions of base models of an instance to
a posterior distribution in S, and the image of the map is
the whole simplex S. The relaxation from rational vectors
to real vectors allows a larger hypothesis space such that
CM can find an f to attain low consensus loss (see Sec-
tion 5.2). However, it also allows CM to pick an f that
outputs predictions close to uniform distribution with small
margin (like the diamond in Figure 2(c)), leading to higher
empirical margin risk (see Section 4) It is verified in Sec-
tion 5 that CM does tend to output predictions that have
small consensus losses and small margins. Here we define
“overfitting” in model combination in a vague sense, and de-
fer the formal analysis to Section 4.

Definition 1 (Overfitting in model combination).
A model combination method consolidates predictions of base
models to achieve a high degree of model consensus but with
higher generalization error upper bound.



(a) 2-Simplex (b) Hypothesis spaces of MV
(only part of the output
space is shown)

(c) Hypothesis space of CM (d) Hypothesis space of
RCM

Figure 2: Hypothesis space of various methods: the tips of the triangles represent the bases eℓ

3. CLASS-DISTRIBUTION REGULARIZED
CONSENSUS MAXIMIZATION

3.1 Regularization over class distributions
According to the above analysis, if we adopt a reason-

ably small but rich enough hypothesis space for CM, then
we could avoid over-fitting and achieve better performance.
How can we specify a suitable hypothesis space for CM?
Note that the predictions lying near the corners of the sim-
plex (shadows in Figure 2(d)) have a more dominating com-
ponent θℓ0 for some class ℓ0. On the one hand, when the
difference between p(y = ℓ0|x) and any other p(y = ℓ|x) is
larger, the prediction is more discriminative to reflect the
true class distribution. On the other hand, if the number
of dominating entries in p(y|x) is greater than 1, then those
dominating classes are correlated since they co-occur, con-
flicting the multi-class distribution assumption. This ob-
servation indicates that when searching for solutions in the
hypothesis space, CM should penalize solutions that lie too
far away from any corner of the simplex and encourage so-
lutions that lie close to the corners. For CM to reduce the
penalized consensus loss L(U,Q), it must move its predic-
tions towards one of the corners on the simplex, as shown
by the arrows in Figure 2(d). The above intuition suggests
that the consolidated predictions should exhibit some sort of
independence between classes, given the problem is a multi-
class single label problem.

Specifically, recall that U is the consolidated prediction,
with the ℓ−th column being the posterior probabilities p(y =
ℓ|x), we can compute the empirical class correlation matrix
Σ = U⊤U . We want the matrix Σ to be close to a c×cmatrix
D, which represents the ideal class correlations. For exam-
ple, to enforce independence between classes in multi-class
classification problems, we can set the diagonal elements of
D to a positive number whose scale is comparable to the
empirical correlations, and set the off-diagonal elements to
a positive number much smaller than the diagonal elements.

By adopting the Frobenius norm, we obtain the following
regularization term

∆F =
1
2
∥Σ−D∥F (5)

or by adopting the relative entropy [5]

∆E =
1
2

c∑

i,j=1

Σij log
Σij

Dij
(6)

Adding any of the above regularization terms to the objec-
tive of CM, we obtain the following optimization problem:

min
U,Q

n∑

i=1

v∑

j=1

aij∥ui − qj∥2 + α
v∑

j=1

bj∥qj − ȳj∥2 + λ∆

s.t. ui
ℓ ≥ 0, ∥ui∥1 = 1, i = 1, . . . , n

qjℓ ≥ 0, ∥qj∥1 = 1, j = 1, . . . , v

where ∆ = ∆F or ∆E. The parameter λ controls the trade-
off between model consensus and class independence. We
will see that the regularization helps reduce the capacity of
hypothesis space and also the empirical margin risk.

3.2 Optimization of the Class-distribution Reg-
ularized Model

Our plan for solving the optimization problem Eq.(7) is
to first ignore the constraints that ui and qj are probabil-
ity distributions and solve the unconstrained optimization
problem using gradient descent, then we address the prob-
abilistic constraints on ui and qj in the next section. The
gradient descent steps for the first two terms in the above
objective function are given in Eq.(1) and Eq.(2), the gra-
dients of the regularization term ∆ with respect to column
uj are as follows:

∂∆F

∂uj
=

c∑

i=1

(Σij −Dij)ui

∂∆E

∂uj
=

c∑

i=1

(1 + log
Σij

Dij
)ui

Thus a gradient descent step for the regularization term with
respect to column uj are:

uj ← uj − ηt

c∑

i=1

(Σij −Dij)ui (7)

uj ← uj − ηt

c∑

i=1

(1 + log
Σij

Dij
)ui (8)

where← indicates the assignment of an updated uj to itself.
ηt is the learning rate in the t-th iteration with ηt = η0/

√
t

and η0 is the initial learning rate. We let the trade-off pa-
rameter λ in the RCM objective be absorbed in η0. Eq.(7)
and Eq.(8) have a quite intuitive meaning: for each column
ui representing the i-th class, depending on whether the
empirical class correlation Σij exceeds the ideal class corre-
lation Dij , uj is moved away from (Σij > Dij) or towards



(Σij < Dij) ui, and the amount of displacement is pro-
portional to the distance between the empirical and ideal
class correlation. In practice, it is not easy to specify the
ideal class correlation matrix D, and the scaling parameters
βij = Σij − Dij (or 1 + log

Σij

Dij
) may be sensitive to the

choice of D. Simply setting all the βij to be 1 will actually
hurt the performance, as we ignore the information about
the class correlations.

We propose an approximation of Eq.(7) and Eq.(8) to
avoid specifying the parameters D and to maintain the effect
of the regularization, namely, a large margin between class
distributions. Note that in Eq.(8), for i ̸= j, Dij should be
some small number and if Σij ≫ Dij , the scaling parameter

1 + log
Σij

Dij
will be large; on the other hand, if Σij is about

the same as Dij , 1 + log
Σij

Dij
will be close to 1. According

to this observation, when computing the gradient for the
column uj , we can set βij as follows:

βij =

⎧
⎪⎨

⎪⎩

1 if i = argmink ̸=j ∥uk − uj∥2
−1 if i = j

0 otherwise

(9)

The resulting regularization term is

∆A =
1
2

c∑

j=1

∥uj − ud(j)∥22 (10)

where

d(j) = argmin
k ̸=j

∥uj − uk∥2 (11)

Eq.(7) and Eq.(8) become

uj ← uj − ηt(ud(j) − uj) (12)

So far we have specified all necessary gradient descent steps
for RCM. Nonetheless, the original CM gradient descent
steps involve the rows of the matrices U and Q, while to
minimize the regularization term ∆, one has to work with
the columns of U . It is non-trivial to derive gradient descent
steps involving both rows and columns of a matrix. We
adopt an alternative optimization procedure that first mini-
mizes the consensus loss L(U,Q) through Eq.(1) and Eq.(2),
then minimizes ∆A through Eq.(12). These two steps are
alternatively repeated until it converges.

3.3 Projection to the Probabilistic Simplex
The converted unconstrained optimization problem ignores

the constraints:

ui
ℓ ≥ 0, ∥ui∥1 = 1, i = 1, . . . , n

qjℓ ≥ 0, ∥qj∥1 = 1, j = 1, . . . , v
(13)

Although Eq.(1) and (2) maintain rows of U and Q as proba-
bility distributions, Eq.(12) might bring any entry of U to be
greater than 1 or less than 0, and a row in U or Q might not
sum up to 1. We propose to perform probabilistic projection
for all ui after all gradient descent steps in each iteration.
More formally, the following optimization problem finds v,
the projection of ui onto the probabilistic simplex

min
v

∥v − ui∥2

s.t. ∥v∥1 = 1, vℓ ≥ 0, ℓ = 1, . . . , c

The optimal solution v∗ serves as the new ui for the next
iteration, with the probabilistic constraints satisfied. An ef-
ficient algorithm (in O(cn)) with implementation to solve
the above problem can be found in [12]. The complete algo-
rithm is described in Algorithm 1.

Algorithm 1 Regularized Consensus Maximization (RCM)

1: Input: Affinity matrix A, initial learning rate η0
2: Set uj to uniform distribution.
3: for t = 1→ MaxIterNum do
4: Q = (Dv + αKv)−1(A⊤U + αKvY )
5: U = D−1

n AQ
6: ηt = η0/

√
t

7: for j = 1→ c do
8: d(j) = argmink ̸=j ∥uk − uj∥
9: uj ← uj − ηt(ud(j) − uj)
10: end for
11: Project ui to the probabilistic simplex.
12: end for

4. GENERALIZATION ERROR OF RCM
In this section, we prove that, compared to CM, the pro-

posed regularization leads to a smaller upper bound on gen-
eralization error. The generalization error bound consists
of two terms: the empirical margin risk on training data
and a term measuring the capacity of the hypothesis space
explored by a learning algorithm. Regarding the empirical
margin risk, we first define the multi-class margin [24].

Definition 2 (Canonical Function). Given a func-
tion f ∈ F that maps predictions of base models to pos-
terior distribution (see Section 2.2). For the instance x,
f(x) = [f1(x), . . . , fc(x)] ∈ S where fℓ(x) is the probabil-
ity that x belongs to class ℓ, according to f . Let M1 be the
smallest index ℓ such that fℓ(x) = maxk fk(x), and M2 be
the smallest index ℓ such that fℓ(x) = maxk ̸=M1 fk(x). The
canonical function ∆f : X → [−1, 1]c, with the ℓ-th compo-
nent being:

∆fℓ(x) =

{
fℓ(x)− fM2(x) if ℓ = M1

fℓ(x)− fM1(x) otherwise
(14)

M1 is the label selected by Bayes decision rule and M2 is the
closest runner-up. ∆fℓ measures how far away the selected
label is from the other competitors. Based on the canonical
function, we define the multi-class empirical margin risk

Definition 3 (Empirical Margin Risk). For γ > 0
and training set s = {xi,yi}mi=1, the empirical margin risk
Rγ

s (f) of the function f is

Rγ
s (f) =

1
m

|{xi|∃ℓ ∈ {1, . . . , c}, yiℓ ·∆fℓ(xi) < γ}| (15)

where yiℓ is the ℓ-th component of the true label vector yi.

Next we define necessary concepts to measure the capacity
of hypothesis spaces.

Definition 4 (Supremum Metric for functions).
[24, 3] Suppose F is the collection of functions mapping
from X to S, and s = {xi}mi=1 ⊂ X is a given set of in-
stances. Define the metric (distance measure) for functions
d(·, ·) : F × F → [0,+∞) on s by

ds(f, f̃) = max
xi∈s

c∑

ℓ=1

|fℓ(xi)− f̃ℓ(xi)| (16)



Note that the metric such defined depends on the set of
instances s.

Definition 5 (Covering number). Let (F , ds) be the
space of functions equipped with the supremum metric, where
s ⊂ X a finite set of instances. Define Bs(f, r) the closed
ball centered at f with radius r:

Bs(f, r) = {g ∈ F|ds(f, g) ≤ r} (17)

The covering number N (ϵ,H, ds) of a set H ⊂ F is defined
as

N (ϵ,H, ds) = inf
T
{|T |} s.t. H ⊂ ∪f∈TBs(f, ϵ) (18)

The set T is called an ϵ-cover of the subset H.

The following bound on generalization error for multi-class
classification is given in [24]:

Theorem 1. Let F be a set of functions from X to S and
∆F be the set of canonical functions ∆f . Let s be a learning
set of size m drawn iid. from a probability distribution P .
Let 0 < γ < 1. With probability 1− δ, ∀f ∈ F,

R(f) ≤ Rγ
s (f) +

√
1
2m

ln

(
2N∞(γ/2,∆Fγ)

δ

)
(19)

where

N∞(γ,F) = sup
s:|s|=2m

N (γ,F , ds) (20)

∆Fγ = {πγ ◦ ∆f : ∆f ∈ ∆F} where πγ is the truncation
function applied to each of the c components of ∆f

πγ(fℓ(x)) =

{
γ · sign(fℓ(x)) if |fℓ(x)| ≥ γ

fℓ(x) otherwise
(21)

Given the bound in Eq.(19), we want to prove that both
terms in the bound for the regularized CM are smaller than
those for the original CM, and obtain the following theorem:

Theorem 2. RCM has a smaller upper bound on gener-
alization error compared with that of CM.

The above theorem is proved in two steps in the following
two lemmas.

Lemma 1. RCM achieves a lower empirical margin risk
if we use ∆E as our regularization term and the matrix D is
such set that the scaling parameters βij = βji and βii = 1.

Proof. Given training data s, 0 < γ < 1, 1 − Rγ
s (f) is

the proportion of correctly classified instances with margin
greater than γ. Suppose f is the prediction function found
by CM and f̃ is that found by RCM. In other words, f̃
is obtained by applying Eq.(8) to f . Note that Rγ

s (f̃) ≤
Rγ

s (f) ⇐⇒ 1 − Rγ
s (f̃) ≥ 1 − Rγ

s (f), we need to prove, for
any correctly classified instance with margin greater than γ,
its margin under f̃ is not smaller than that under f .

Let u = [f1, . . . , fc] and ũ = [f̃1, . . . , f̃c] be the evaluations
of f and f̃ at some point x that is correctly classified with
margin larger than γ (we ignore the arguments of f and
f̃). Assume 1 = argmaxℓ fℓ and 2 = argmaxℓ ̸=1 fℓ. Then
y1 · ∆f1 ≥ γ. But y1 = 1, so ∆f1 = f1 − f2 ≥ γ. The
gradients Eq.(8) at x be

gj = ηt

c∑

i=1

(1 + log
Σij

Dij
)fi > 0, j = 1, 2 (22)

Assume that proper values are set to matrix D, such that
Σii = Dii but Σij ≫ Dij for i ̸= j. Then the gradients are

gj = ηt

c∑

i=1

βijfi, j = 1, 2 (23)

where βii ≪ βij , i ̸= j. That is, for a given j, fi has a much
larger weight than fj in gj for i ̸= j. If βij = βji, then by
f1 > f2, we have g2 > g1,

∆f̃1 = f̃1−f̃2 = (f1−g1)−(f2−g2) = ∆f1−(g1−g2) > ∆f1
(24)

Lemma 2. The hypothesis space of RCM has smaller cov-
ering number than the hypothesis space of CM.

Proof. Let ∆Fγ = {πγ ◦ ∆f : ∆f ∈ ∆F} and ∆F̃γ =
{πγ ◦∆f̃ : ∆f ∈ ∆F̃} where F is the collection of functions
f : X → S and F̃ are their large margin version as defined
in Lemma 1, ∆f is the canonical function and πγ is the
truncation function Eq.(21). Then ∆F̃γ ⊂ ∆F since for
any f ∈ F , its large margin version f̃ ∈ F , thus we have
∆F̃ ⊂ ∆F . After truncation, ∆F̃γ ⊂ ∆Fγ .

Given any training data s of size 2m, any γ/2-cover of
∆Fγ is also a γ/2-cover of ∆F̃γ . Therefore by definition
Eq.(18),

N (γ/2,∆Fγ , s) = inf{|T |} ≥ inf{|T ′|} = N (γ/2,∆F̃γ , s)
(25)

where T ∈ {γ/2-covers of ∆Fγ} and T ′ ∈ {γ/2-covers of ∆F̃γ}.
By the definition Eq.(20), we conclude that

N∞(γ/2,∆Fγ) = sup
s

N (γ/2,∆Fγ)

≥ sup
s

N (γ/2,∆F̃γ) = N∞(γ/2,∆F̃γ)

5. EXPERIMENTAL RESULTS
In this section, we first summarize the experimental set-

tings, including evaluation benchmarks and model combina-
tion baselines. Then we demonstrate how CM overfits the
data and how the proposed RCM resolves the issue.

5.1 Experimental Settings
Benchmarks A model consolidation method consol-

idates the predictions of multiple supervised and/or unsu-
pervised models to come up with improved predictive per-
formance. Therefore, to evaluate the performance, we need
the predictions from multiple base models for the datasets,
whose information are summarized in Table 3. The dataset1

contains 11 text classification tasks. Each task contains the
predictions given by the output of 2 classification and 2 clus-
tering models. For details of how they processed the data,
please refer to [16].

We compare RCM with CM in order to verify the effec-
tiveness of the large margin constraint. CM and RCM share
most of the parameters such as number of iterations, impor-
tance of supervised models, etc.. For the shared parameters,
we adopt the parameter settings of CM [16]. In addition, we
set the initial learning rate η0 to be 0.1. We also compare
RCM with other state-of-the-art cluster ensemble methods:

1available at http://www.cse.buffalo.edu/~jing/



Table 4: Overall Performance on Text Classification Tasks

Methods
Newsgroups Cora DBLP

1 2 3 4 5 6 1 2 3 4 1
MCLA 0.7574 0.8345 0.7816 0.8225 0.8039 0.8332 0.8522 0.8009 0.8442 0.8262 0.8604
HBGF 0.721 0.636 0.7677 0.6885 0.6421 0.7482 0.7966 0.6574 0.7655 0.7912 0.8146
SNNMF 0.5980 0.6904 0.6384 0.5733 0.6245 0.6753 0.7407 0.6492 0.7051 0.6989 0.6307
BCE 0.6639 0.2544 0.7082 0.7230 0.7247 0.7474 0.6546 0.8915 0.5565 0.2482 0.2887

ECMC 0.5599 0.6215 0.6294 0.6759 0.6338 0.4530 0.5973 0.6428 0.5252 0.8513 0.7771
CM 0.8131 0.9106 0.8608 0.9117 0.8857 0.9094 0.8688 0.9151 0.8951 0.9036 0.9412
RCM 0.8131 0.9030 0.8735 0.9232 0.8927 0.9134 0.8703 0.9222 0.9203 0.9128 0.9429

Table 3: Datasets and Base Models

Datasets # Instances # Classes Predictors

20NG

1 1568 4
Apply SVM, Logis-
tic Regression, K-
means and mini-cut
to texts. 4 Predic-
tors in total.

2 1588 4
3 1573 4
4 1484 4
5 1584 4
6 1512 4

Cora

1 663 3 Apply Logistic Re-
gression K-means to
citation/publication
network and texts. 4
Predictors in total.

2 977 4
3 1468 5
4 975 5

DBLP 4236 4

MCLA [27], HBGF [27], SNNMF [18], BCE [30] ECMC [37].
MCLA and HBGF are graph partition based approaches,
which use spectral clustering [23, 11] to partition the bipar-
tite or hyper graph constructed from the predictions of base
models. There is no parameter to tune for these two meth-
ods. SNNMF is a matrix factorization based method, which
derives clustering of instances using the similarity matrix
constructed from base models’ predictions. We run SNNMF
to its convergence to obtain the final predictions. BCE is a
Bayesian approach to consensus maximization. We set its
parameters as follows: LDA parameters α = 0.5, β = 0.1,
number of iterations for Gibbs sampling is set to 50,000, the
topic distributions of the words in documents are randomly
initialized. We observe that performance the Gibbs sam-
pling for BCE is sensitive to the initialization of the param-
eters and unstable, we run the BCE for 10 times and report
its best performance. We also implemented BCE using vari-
ational inference, but the procedure did not converge after
long runs, so we do not report the corresponding results.
ECMC is a matrix factorization method with a de-noising
step, we adopt the implementations of robust PCA and ma-
trix completion packages2, with d0 = 0.4, d1 = 0.6 and other
parameters being the default values (see [37] for details).

5.2 Overfitting in Consensus Maximization
In Section 2.1 and 2.2 we theoretically showed that, CM

produces predictions that minimize the consensus loss but
overfit the data, and therefore might not generalize well,
and in Section 3.1, we proposed RCM to solve the issues.
By comparing CM and RCM in consensus loss, prediction
margins and accuracy (next section), we verify that CM does
have the overfitting issue and RCM can effectively mitigate
overfitting.

On the one hand, one can see from Figure 3 that CM has
a lower consensus loss than RCM does across all datasets.

2http://perception.csl.illinois.edu/matrix-rank/
sample_code.html
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Figure 3: Consensus Loss

This is because CM solely minimizes the consensus loss while
RCMminimizes a regularized consensus loss and has a smaller
hypothesis space. On the other hand, we use entropy of ui

(hi = −
∑c

ℓ=1 u
i
ℓ log u

i
ℓ) as a measure of prediction margin:

the higher the entropy, the smaller the margin ui has and
the less discriminative ui is. We show the averaged entropy
1
n

∑n
i=1 h

i for each dataset in Figure 4(a), 4(b), 4(c). From
the figures, we can see that the entropy is higher in the pre-
dictions of CM across all datasets except on the dblp dataset.
(the result on the cora1 dataset is not shown due to the
scale). Therefore on average, the predictions of CM have
smaller margins than those of RCM. Since margin is used
as an indicator of generalization performance of a learning
algorithm [4], CM might overfit the data while RCM should
improve the generalization ability and accuracy of CM.

5.3 Accuracy
In Table 4, we compare the accuracies of RCM and the

baselines on 11 text classification tasks. From the table, we
can see that BCE is very unstable and there are two main
reasons for this. First, similar to LDA, BCE needs a lot
of observed data to infer the consolidated labels, yet usu-
ally we have only a couple of base models. Second, Gibbs
sampling is too sensitive to initial conditions while varia-
tional inference does not converge given only a handful of
data. ECMC and SNNMF sometimes give reasonable per-
formance, such as ECMC on the cora4 task. However, their
optimization are also sensitive to initialization, and their so-
lutions are unstable. Both MCLA and HBGF in general
have better performance than ECMC and SNNMF, though
they are still outperformed by both CM and RCM.

The comparison between CM and RCM is more interest-
ing. Using the proposed regularization over the class distri-
butions, RCM controls the size of its hypothesis space and
focuses on the more discriminative predictions. As we can
see from the table, RCM outperforms CM on 10 out of 11
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Figure 4: Consensus loss and entropy of CM and RCM
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Figure 5: Convergence of RCM

datasets. These evidences, together with the comparisons
of consensus loss and entropy in Section 5.2, clearly demon-
strate that CM overfits the data to produce highly consensus
predictions, while RCM is able to trade-off between two ob-
jectives and achieves better accuracy.

Statistical significance of the results We verify that
the improvements brought by the proposed method is sta-
tistically significant. According to [10], one can compare
the effectiveness of different algorithms based on their per-
formance on multiple datasets. Since among all baselines,
CM has the closest performance to RCM, we compare these
two methods using the Wilcoxon signed-ranks test. For the
details of how to carry out the test, please refer to [10]. The
test shows that RCM is statistically significantly superior to
CM with α = 0.05, where α is the probability that RCM is
not better than CM.

5.4 Convergence Study
For each of the text classification tasks, we record the ac-

curacy at the end of each iteration of RCM. In Figure 5, we
plot the accuracies against the number of iterations. From
the figure, we can see that, except for the news3 and dblp
tasks, RCM converges to some fixed accuracies. Even for
those two exceptions where there are some zigzag’s at the
tails of the curves, we notice that the lowest accuracies ob-
tained after the 25th iteration are at least the same as the
best baseline (CM in both cases). Therefore, we conclude
that given a big enough number of iterations, the algorithm
performs better than or comparable with the baselines.

6. RELATED WORK
Graph partition based methods [27, 14]. In the pio-

neering work of [27], they presented three methods for clus-
ter ensemble. For example, HGPA in [27] constructs a hy-
pergraph consisting of membership indicators from cluster-
ing models as hyperedges, then a hypergraph partition algo-
rithm partitions the hypergraph. Another method in [27],
MCLA, partitions the hypergraph into k subgraphs, each
of which consists of membership indicators from clustering
models. These subgraphs are then used to calculate the as-
sociation strength of an instance with subgraphs. HBGF is
proposed in [14]. HBGF constructs the same bipartite graph
as that in [16], then it partitions the graph using spectral
clustering or METIS. Since the graph contains both group
nodes and instance nodes (See Section 2.1), the results is a
partition of both types of nodes. The partition of instance
nodes is taken as the aggregated clustering. All these meth-
ods do not take discriminative constraints into account in
their optimization formula.

Matrix factorization methods [18, 19]. They solve
the consensus clustering problem through symmetric non-
negative matrix factorization (SNNMF). Using the predic-
tions of base models, a similarity matrix is derived and
factorized into orthonormal cluster membership indicators.
The indicator matrices play the role of the consolidated pre-
dictions in CM. The orthonormality constraint on the in-
dicators acts as the large margin regularization. Note that
the orthonormality and the non-negative constraint are more
restrictive than the large margin regularization proposed in
this paper, as the consolidated predictions can have only



one entry as 1, with all the other entries being 0. We com-
pare the proposed algorithm with the SNNMF formulation
in Section 5.

Probabilistic methods [30, 1, 32, 20]. In [30], they solve
the consensus clustering problem using a LDA like model.
Predictions from base models are treated as documents in
LDA, and the consolidated predictions as the latent topics
of the documents. The method differs from LDA in that
different models are assumed to have different topic-word
distributions. In [1], they extend the above method in order
to combine both supervised and unsupervised predictions
in a transfer learning setting, which is different from the
problem we are addressing here. In [32], they propose a non-
parametric Bayesian method to select the number of clusters
in consensus clustering. This algorithm is best employed
as a parameter selection step before applying the method
proposed in the paper.

In [2], they propose to combine supervised and unsuper-
vised models as a way of knowledge transfer, where unsu-
pervised models in the target domain serve as additional
constraints while supervised models provide initial labeling.
It might be important to give different weights to different
base models, which might have different importance for the
clustering task. In [34], they improve the performance of
CM via functional space sampling. They impose weights
on base models, where the weights are learned iteratively
while seeking consensus results. In [18], weighted consensus
ensemble is formulated as a sparse learning problem where
the most important base models can be selected for con-
solidation. In [13], they provide a general framework for
cluster ensemble called “Generalized Weighted Cluster Ag-
gregation”. Their goal is to find an affinity matrix that is
close to all other affinity matrices derived from predictions
of base models. Note that the proposed large margin formu-
lation can be adopted by the above algorithms as a building
block, and thus is not directly comparable.

Combining structural predictions has also been studied.
For example, in multilabel classification, label correlations
provide important information to achieve better classifica-
tion performance. In [35], they propose a novel consensus
classification algorithm to combine multi-label predictions
from multiple base models, taking both label correlation and
model consensus into account. Learning to rank is an impor-
tant research problem in information retrieval, and recently,
aggregating multiple ranking results is attracting more and
more attention, due to its potential to improve ranking per-
formance over single ranking model. The oldest ranking
aggregation method called “Borda Couting”, which can be
traced back to 1770. The modern statistical ranking ag-
gregation started with the Bradley-Terry (BT) model [7,
6], which infers the underlying ranking via maximum likeli-
hood estimation. There are also many extensions of the BT
model. For example, in [9], they extended the BT model
by adding and learning weights on the base ranking models.
In [33], they propose an online Bayesian learning algorithm
for the BT model. In [25], they study the theoretical aspect
of combining multiple ranking results into one ranking list.
They present conditions under which certain popular rank-
ing aggregation algorithms converge. Aggregating multiple
ranking results has also found its place in gaming, such as
XBox platform [17] In [31], they propose a Bayesian model
to aggregate multiple visual trackers’ output for reliable vi-

sual tracking. The proposed method in the paper focuses on
combining flat predictions instead of structural predictions.

This work is also related to crowdsourcing, which aims at
design mechanisms and algorithms to collect useful informa-
tion from massive human population. Aggregating the data
collected from multiple human beings is similar to combining
the predictions given by multiple base models considered in
this paper. In [26], they use crowdsourcing to obtain cheap
annotations for NLP tasks, such as affect recognition, word
similarity, etc. In [22], they propose to carry out multiple
related crowdsourcing tasks simultaneously to alleviate data
sparsity for a single crowdsourcing task. In [36], they pro-
pose to actively select annotator-instance pairs for human
labeling. The idea is that by identifying the most uncertain
instance and the corresponding most reliable annotator for
the instance, one can learn underlying labels of the instances
more effectively.

The algorithm proposed here is motivated by the maxi-
mum margin principle widely adopted in previous works [38,
28, 39]. In these works, to encourage discriminability, mod-
els are trained with the constraint that the prediction of a la-
beled instance should be closer to its true label than to other
labels by some distance. However, these works focus on su-
pervised learning, which is quite a different setting from the
unsupervised setting here. There are a few works addressing
overfitting in clustering [8, 21]. In [8], they analyze the issue
from a learning theory perspective, and propose a general
algorithm called “nearest neighbor clustering” to restrict the
hypothesis space and avoid overfitting. The algorithm learns
the similarity matrix for better spectral clustering results,
and might be used to construct the affinity matrix in CM.
These algorithms focus on clustering and do not address the
model combination problem directly.

7. CONCLUSIONS
In this paper, we consider the overfitting issue in consen-

sus maximization for model combination. The problem is
analyzed by inspecting the hypothesis space and margin-
based generalization error of CM. To solve the problem,
we develop a model called class-distribution regularized CM
that trades off two objectives, namely, consensus among base
models and margins in predictions. The resulting optimiza-
tion problem is challenging to solve since it involves many
regularization parameters and is not jointly convex. We
propose a simple and efficient approximation of the origi-
nal problem, which can be solved using gradient descent. In
the experiments, we compared the proposed method with
CM and other baselines on 11 datasets, demonstrating the
improvement due to the large margin regularization.
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