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ABSTRACT

In crowdsourced data aggregation task, there exist conflicts in the
answers provided by large numbers of sources on the same set of
questions. The most important challenge for this task is to esti-
mate source reliability and select answers that are provided by high-
quality sources. Existing work solves this problem by simultane-
ously estimating sources’ reliability and inferring questions’ true
answers (i.e., the truths). However, these methods assume that a
source has the same reliability degree on all the questions, but ig-
nore the fact that sources’ reliability may vary significantly among
different topics. To capture various expertise levels on different
topics, we propose FaitCrowd, a fine grained truth discovery model
for the task of aggregating conflicting data collected from multiple
users/sources. FaitCrowd jointly models the process of generating
question content and sources’ provided answers in a probabilistic
model to estimate both topical expertise and true answers simulta-
neously. This leads to a more precise estimation of source reliabil-
ity. Therefore, FaitCrowd demonstrates better ability to obtain true
answers for the questions compared with existing approaches. Ex-
perimental results on two real-world datasets show that FaitCrowd
can significantly reduce the error rate of aggregation compared with
the state-of-the-art multi-source aggregation approaches due to its
ability of learning topical expertise from question content and col-
lected answers.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data min-

ing
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1. INTRODUCTION

Crowdsourcing becomes increasingly popular in recent decades,
as people believe that the wisdom of the crowd can be superior
to the judgements of individuals. Moreover, the development of
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crowdsourcing platforms, such as Amazon Mechanical Turk' and
CrowdFlower?, makes it more convenient to get crowdsourced data
in a cheaper price. However, as the normal workers in crowdsourc-
ing tasks are non-experts, errors are inevitable. As a result, con-
flicting information may be given to the same question. To obtain
the final answers, one of the most important issues is how to aggre-
gate the crowdsourced data from multiple sources so that the most
trustworthy information (i.e., the truths) can be detected.

To discover the truths from conflicting data, the most intuitive
approach is majority voting, which selects the majority answers
from all sources as the final output. However, this approach fails
to take the reliability levels of different sources into consideration,
which may lead to poor performance when the number of low qual-
ity sources is large. To solve this problem, techniques for multi-
source aggregation, which consider the estimation of source relia-
bility, have been proposed to derive true answers from a collection
of sources [2, 3,4, 5,6, 10, 11, 12, 14, 17, 18, 19, 22, 26, 28]. De-
spite the difference in their models, the same principle applies: The
more reliable a source is, the more likely this source would provide
trustworthy information, and vice versa. Based on this principle,
the existing methods are trying to assign larger weights to reliable
sources such that they can play a more important role when infer-
ring the truths.

However, a common drawback of those approaches is that only
one reliability degree is estimated for each source, which may not
properly reflect the variation in reliability among topics in the real
world. In fact, no one could be an expert in every field, and source
expertise’® usually vary among different topics. For example, Albert
FEinstein is a guru on physics but not on drawing. Therefore, it is
crucial to estimate fine grained source reliability in multi-source
aggregation.

Intuitively, we can directly employ topic models on question
content to divide questions into topical-level groups. Then, accord-
ing to source answering behavior, the aforementioned methods in
multi-source aggregation are applied to estimate topical expertise
for sources on each topical-level group. However, this naive ap-
proach reduces the number of answers dramatically on each topic,
which may lead to an incorrect estimation of source expertise due
to the fact that data is insufficient. Hence, the performance on each
topic may drop, as a result, the overall performance on all the topics
would drop significantly.

To tackle the aforementioned challenges, in this paper, we pro-
pose Fine Grained Truth Discovery model for Crowdsourced data

"nttps://www.mturk.com/
http://www.crowdflower.com

*Note that the term “expertise” and “reliability” are used inter-
changeably in this paper.



aggregation (FaitCrowd), which can automatically assign topics to
questions, estimate topic-specific expertise for each source, and
learn true answers simultaneously. To the best of our knowledge,
we are the first to propose such an unsupervised probabilistic model
to learn fine grained source reliability for multi-source aggregation.
One important feature of FaitCrowd is the employment of latent
topics, which allows us to define a distribution on source exper-
tise for each topic. The proposed method jointly models question
content and source answering behavior to learn latent topics and es-
timate the topical source expertise. Therefore, the proposed model
can simultaneously learn topics, source expertise and true answers.
We jointly sample topics and the estimated truths using Gibbs sam-
pling and learn source expertise based on each topic using gradient
descent. Compared with existing methods in multi-source data ag-
gregation, the benefit of the proposed FaitCrowd is its ability to in-
fer different expertise based on topics and adjust source reliability
via both question content and sources’ answering behavior.

The advantage of applying the proposed FaitCrowd to aggregate
crowdsourced data is threefold: First, FaitCrowd can automatically
learn source expertise on different topics. For crowdsourcing ap-
plications, when posting similar tasks in the future, requester can
select high-quality workers on each topic, which will improve data
quality and budget efficiency. Second, FaitCrowd can handle dif-
ficult tasks better using the estimated topical expertise of sources.
Because FaitCrowd is capable of assigning higher topical expertise
to sources who often provide correct answers on the topic, the true
answers of hard questions can be correctly determined by sources
with higher topical expertise. Finally, FaitCrowd can find the mi-
nority in the crowd who are truly knowledgeable in a given field.

The experiments on real world datasets show that the proposed
FaitCrowd can significantly reduce the error rate comparing with
the state-of-the-art approaches in multi-source aggregation. The
proposed model can correctly estimate topical expertise for each
source. Experiments are conducted to validate the advantage of
combining topic modeling techniques and data aggregation meth-
ods. Meanwhile, we illustrate that the learned source expertise is
consistent with ground truth. In summary, our main contributions
are as follows:

e We recognize the difference in source reliability among top-
ics on the truth discovery task and propose to incorporate the
estimation of fine grained reliability into truth discovery.

e We propose a probabilistic model that simultaneously learns
the topic-specific expertise for each source, aggregates true
answers, and assigns topic labels to questions.

e We empirically show that the proposed model outperforms
existing methods in multi-source aggregation with two real
world datasets.

2. PROBLEM FORMULATION

In this section, we first introduce some basic terminologies used
in this paper and then formally define our problem.
Input

The inputs of the proposed model are questions {q}Q, sources
{u}¥ and answers {aqu}qu’lljm:l, where () is the number of ques-
tions and U is the number of sources.
. . . M,
Definition 1. A question ¢ contains My words {wqm },,,%; and
can be answered by sources.

Definition 2. aq. denotes the answer given by source u to ques-
tion q.

Output

The goal is to derive true answers {t,}<

q=1
and topic labels for each question {zq}qQ:1 .

topical expertise e,

Definition 3. The estimated truth ¢,* for question ¢ is the most
trustworthy answer provided by sources.
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Definition 4. Topical expertise e € is referred to as the

level of reliability for sources on K topics.

Definition 5. A topic indicator z, is the topic label of question
q.

Based on these definitions, we can formally define our problem
as follows:

Problem 1. Given a question set {¢}<, source set {u}{, answer
set {aqu }qQ:’[{,u:p and the number of topics K , our goal is to learn
topic-specific expertise e for all sources on each topic k, the true
answers T' = {tq}qQ:1 and questions’ topic labels {zq}qul.

3. FAITCROWD MODEL

The basic idea of the proposed model is to build a joint prob-
abilistic model, which contains two integral components: (1) the
modeling of question content, and (2) the modeling of answers
given by sources. We first summarize the proposed joint model,
describe the generative process, and finally demonstrate the two
integral components of the proposed model in detail.

3.1 Model Overview

In contrast to existing methods in multi-source aggregation, we
jointly model question content and source answering behavior us-
ing latent topics. The advantage of the proposed joint model is that
modeling question content can help estimate reasonable source re-
liability, and in turn, modeling answers leads to the discovery of
meaningful topics. In other words, the two integral components
simultaneously help each other.

Figure 1 shows the proposed fine grained truth discovery model
for crowdsourced data aggregation. The inputs are () questions, K
topics, M, words {wqm}fnfil for each question ¢, and N, answers
{aqu}fjil provided by sources to question ¢q. The shaded circles
represent hyper-parameters® except wqm., aqv and u, which are in-
puts. The outputs are source expertise e, estimated true answers
{lfq}q(”?:1 and topic labels {zq}qul. The remaining ones, ¢, y, ¢',
¢, 0 and b, are the intermediate variables learned by the proposed
model.

The generative process of the proposed model is as follows:

e Draw 0 ~ Dir(a), ¢’ ~ Dir(8'),p ~ Dir(n)
e For the k-th topic (k =1,2,--- , K)

— Draw a word distribution on topic k, ¢r ~ Dir(53)
— For the u-th source (v =1,2,--- ,U)

* Draw source-topic specific expertise, ex,, ~ N(p, o?)

“Note that tq 1s learned by the proposed model as the estimated
truth instead of the real answer of question g. Real true answers are
only used in evaluation.

5n, B’, B and o are hyper-parameters of Dirichlet distribution, s

. . . . ! .
denotes the mean of Gaussian distribution, o2 and o’ are vari-
ances of Gaussian distribution, and -y, is the parameter of Uniform
distribution.
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Figure 1: Fine Grained Truth Discovery Model for Crowd-
sourced Data Aggregation.

e For the g-th question (¢ = 1,2,--- ,Q)

— Draw a topic zq ~ Multi(6)
For the m-th word (n = 1,2,--- , M)
* Draw a word category yqm ~ Bernoulli(p)

* Draw a word wgm ~ Multi(¢z,) if ygm = 1,
otherwise draw wgm ~ Multi(¢’)

— Draw a true answer tg ~ U(7q)
Draw a bias by, ~ N (0,02
For the u-th source (v = 1,2, -, Ng)

* Draw an answer aqu[tq ~ logistic(ez,u, bg)

Given a topic distribution 6 on a dataset, we can draw a topic
zq from Multinomial distribution 6 for each question g. Next, we
introduce the following generative processes, including word gen-
eration and answer generation which are all based on topic z4 = k.
Word generation. We assume that topic-specific words on each
topic k have a distribution ¢, and background words have a dis-
tribution ¢’. There is a switch 3 drawn from Bernoulli distribution
with parameter ¢ to select words’ distribution. If y4,,, = 1, then the
word wqm is drawn from topical word distribution ¢y; otherwise,
it is drawn from background word distribution ¢’. Based on the
above assumption, we can generate words based on topic z,. An-
swer generation. We assume that a source’s answer on a question
is associated with the source’s expertise and the question’s bias. We
use a logistic function to model the answer provided by a source.
According to the drawn topic z,, the expertise of the source «© who
provided an answer to question g can be matched to e, QU More-
over, we use t, to denote the estimated true answer to question q.
Finally, we use source u’s expertise e, On topic z4, question bias
bg, and the estimated truth ¢, to model the probability of a4, using
the logistic function.

The proposed model alternates between modeling question com-
ponent and modeling answer component to learn the source’s topi-
cal expertise and to estimate the true answers. The detailed genera-
tive processes of the two integral components are introduced in the
following subsections.

3.2 Modeling Question Content

For modeling question content, we first draw the corpus topic
distribution 6, the parameter of Bernoulli distribution ¢, background
word distribution ¢’ and topical word distribution (qbk)kK:l. Be-
cause the length of each question is short, we follow the idea of
Twitter-LDA [30] for word generation. We assume that each ques-
tion is about a single topic. Then, we draw a topic indicator z,

to question g. Let ng,—; be the frequency of w (i.e., wgm) as
topical words in question g, ng ,—¢ be the frequency of w as back-
ground words, 0, be the probability of question g on topic k, and
¢rw = p(w|k) be the probability of topical word w generated by
topic k. Then the probability of topical word w appearing ng’,—1
times in question q is defined as (6 ¢kw)n;“,y=1, and the probabil-
ity of background word w is (qﬁﬁﬂ)"&y:o. We assume words are
independent, and the probability of all the words in question g un-
der topic k and word category y is

\%4

pwglk,y) = [T (60)" 0= (Brpru)"00=1,
w=1
where V' is the number of all the unique words in corpus and M, =
S (n¥,—1 +n¥,—o). We also assume questions are indepen-

dent, and the probability of observing the question set {q}? is:

k=1

Q v . P }
p(H}|0, d)a ¢/) = H H (d)iu)’ﬂq,y:() <Z (ekd)kw)nq’yl) (1)
g=1w=1

3.3 Modeling Answers

Intuitively, most sources have the ability to provide correct an-
swers for most questions, yet only a few sources are gurus or novices
on the topic. Thus, we assume that sources’ expertise is drawn from
a Gaussian distribution for each topic, i.e., ey, ~ N(u,02). The
value of ey, is from —oo to +oc0. For each answer provided by
source u to question g, it depends on several factors: (1) The topic
of the question. Since different sources are familiar with different
topics, the question’s topic influences each source’s answer. (2)
The expertise of the source on this topic. If source  is very skilled
on this topic, « may give a correct answer to question q. (3) The
number of correct answers provided by the source on the topic. If
source u provides many correct answers on this topic, u may be
an expert of the topic. (4) The bias on this question. A lower bias
means that the question is easy. Then every source is more likely
to give a correct answer.

Based on the above analysis, we give the process of generating
source u’s answer aq,, for question g and assume that there are v,
different choices {1, ..., v4 } for each question g. We draw a true an-
swer t, from a Uniform distribution U (4 ), a topic indictor z, = k
from Multinomial distribution Mwulti(6), and the question’s bias
by from Gaussian distribution N (0, 02/)6. Using the logistic func-
tion, given the topic z, = k, the correct answer given by source u
to question g is denoted as a4, which is generated as follows:

p (a’qu = C‘tq = C7 an pzqu’ ezqu7 bq) = w(ipzquequlfi»bq) (2)
1
1+exp(7pzquezqu+bq
estimated contribution ratio’ of source u on topic z,, and by is a
bias on question q. From Eq.(2), we can see that as the topical ex-
pertise and the contribution ratio of source u increase and the bias
of the question g decreases (i.e., a more knowledge user answers
a easier question), the probability that u’s answer to ¢ is the final
true answer increases. In contrast, when the expertise and the con-
tribution ratio of source u decrease and the bias b, increases, the

probability drops.

where w(—pz,u€zgu + bg) = ik Pzqu is the

Because the difficulty of most questions is moderate and only a
small part of questions are very easy or hard, we use a Gaussian
distribution on biases.

"The estimated contribution ratio pg, is equal to the number of
correct answers provided by source w on topic k divided by the
number of questions on this topic.



Here we consider the “one-coin model”, i.e., for all ¢’ # ¢,

1 —w (7pzqu€zqu + bq)
Vg — 1

p (aqu = C,‘tq =G Zq,quu,ezquybq) =
3)
Combining Eq.(2) and Eq.(3), the probability of ag., is:
p (aqu|tq = C, 2qy Pzqus €zqu, bq)

1 — w(=pzqu€zqu + bq) ) 1-5(agu.c)
g — 1

:w(_pzquezqu + bq)6(aqu76) <

where 0(x,y) is the Kronecker delta function.
Given the topic 24, the joint probability of agu, tg, Pzqus €z4u
and by is:

- b 2 2/
p(aqu7 q—C:quuvezqw Q|ZQ7M7O' , T 7'-Y¢1)

’
=p(ezuli, 0*)p(bglo™ )p(ty = clyq) @
p (aqu|tq =G, 2q, pzq“? ezqu7 bQ)
For all the observed answers A = {ag, }< ppl v .u=1> the probability

is:

U 7q
A‘T e, b = H H Hp (aqu‘tq ) levpzqmezq“’bq)

g=lu=1lc=1
(%)

4. INFERENCE AND LEARNING

In this section, we present the objective function of the proposed
model and discuss how to infer parameters using Gibbs-EM [21].

4.1 Objective Function

The objective of the proposed model is to learn the hidden top-
ics, sources’ topical expertise and questions’ true answers based on
jointly modeling question content and answers. Hence, the objec-
tive function builds on Eq.(1) and Eq.(5). More precisely, it is the
negative log posterior of w and A shown as follows:

J = —logp(wl|a, B, 8,n) —logp (AW’ a7, "2/) ©

where the first term denotes the likelihood of generating the ques-
tion content, and the latter denotes the likelihood of generating an-
swers.

It is intractable to perform exact inference on the posterior distri-
bution of all the hidden variables. Therefore, we employ a hybrid
inference method combining sampling and variational optimiza-
tion, named Gibbs-EM [21] which is an inference method alter-
nating between Gibbs sampling and gradient descent. We employ
Gibbs sampling to learn the hidden variables by fixing the values
of pru, eru and by, and we use gradient descent to learn hidden
factors.

4.2 Hidden Variable Inference

We perform Gibbs sampling to learn the hidden variables z; and
tq by fixing the values of e and b updated in the gradient descent
step. Dirichlet-Multinomial conjugacy allows Gibbs sampling to
work by sampling on the topic indicator zg4, collapsing out ¢ and
¢'. Since it is a conventional step, we omit the detailed derivations
and present the derived Gibbs sampling update rules. Interested
readers are referred to [7] for details.

When sampling a topic z4, two independent parts, i.e., question
content part and answer part, are considered. For the estimated
true answers, we only take the answer part into consideration. We

jointly sample z, and t, as follows:

p(zq = k7tl] = C|Z—\q7pzquaezqu7bq7a /67’7(1)
Hw 1H dy=1” ( ﬂq,k7y=l+5+i)

x (nf, +a)-

i (o +VB+5) )
N‘I
: H p(agule, k, preus €xu, be) - plclvq),
u=1
where n” 4 denotes the number of times that topic k is sampled

in the questlon set without considering the current question g, and
nY, k=1 denotes the number of times that w is sampled as a topic-
specific word in topic k without considering the current word as-
signment.

4.3 Parameter Estimation

Though we fix 2z, and t, at this step, it is difficult to directly
calculate e, ., and b, by maximizing the probability of posterior
distribution. Therefore, we employ gradient descent to learn e,
and b,. Based on Eq.(4) and Eq.(6), the objective is modified as

!
Jqu = 7logp(aquvtqaqupzquvezquvbqllu‘a 02702 a’YQ)
= —logp(aqulte, 2q, Pzqus €zq4us bg) — 10g p(tqe|vq)

—log p(ezyulp, 0%) — log p(bglo™)

(ezgu —)* by
X 7logp(aqu‘tqv247p2qu762quabq) + q20,2 20_q2/
Then we can differentiate .J4,, to obtain its gradients:
8J u €zqu — M
S (8 (s ©) = (= prguesgu + b)) + L
un
aJ, b
abqqu = —w(—pzquezqu +bq) + 6 (agu,c) + 0_7;1,

Then gradient descent method is used to update e. ., and b, based
on the gradients:

new old aJ. u
Czqu = €zqu — )‘ae; N )
q
new O aJ u
bre o= bt — Aa—bqq )

We can derive intermediate parameters and make the following
parameter estimations:

b St a0

P = Z—i (1

Prw = —7 ng’yjf i (12)
D=1 N y=1 T VB

g, = im0+ P (13)

S+ VB

where n” is the number of times topic k is sampled, n” is the num-
ber of times source u provides (estimated) correct answers on topic
k, nj; ,—1 is the number of times word w sampled as a topical word
specific to topic k, and ny— is the number of times word w sam-
pled as background words.



4.4 Algorithm Flow

The model inference and parameter learning process are described
in Algorithm 1. We first jointly sample a pair of 2z, and ¢4, i.e.,
assign a topic and select an answer as the truth to question g, by
fixing source expertise e and bias b. Then, fixing z; and ¢4, we up-
date e, ., according to Eq.(8) and b, according to Eq.(9). Finally,
we estimate pg, Ok, Prw and ¢,.

Algorithm 1 FaitCrowd Learning Algorithm.

Input: Question set {q}?; Source set {u}{: Answers
{aqu}qQ:’[{,u:l; Topic number K; Parameters: 71, o, 3, 8, u,

’
a2, 0%\

1: while not convergence do
2 for the g-th question (¢ = 1,2,--- ,Q)
3 Joint sample (z4, tq) according to Eq.(7);
4 for the u-th source (u = 1,2,---, Ng)
S: Update e, ., according to Eq.(8);
6 Update b, according to Eq.(9);
7 end for
8:  end for
9:  for the k-th topic (k = 1,2,--- , K)
10: Update 0}, according to Eq.(10);
11: for the u-th source (u =1,2,--- ,U)
12: Update py,, accprding to Eq.(11);
13: end for
14: for the w-th word (w =1,2,---,V)
15: Update ¢, according to Eq.(12);
16: end for
17:  end for
18:  for the w-th word (w = 1,2,--- ,V)
19: Update ¢, according to Eq.(13);
20:  end for
21: end while

Output:  Source expertise e; True answers {tq}?zl; Question
topic labels {24}, (2 € (1, , K)).

Algorithm 1 shows that FaitCrowd needs O(QN,+ KU+ KV +
V'), which is dominated by O(QN,), where Q N, is the number of
answers. Therefore, FaitCrowd has linear running time.

5. EXPERIMENTS

In this section, we first describe the two real world datasets in
Section 5.1 and introduce baselines and parameter settings in Sec-
tion 5.2. In Section 5.3, the results of experiments show that the
proposed method can significantly reduce the error rate compared
with the state-of-the-art approaches in multi-source aggregation.
We test the proposed FaitCrowd method against conducting topic
modeling and true answer inference to show the importance of in-
tegrating question content and answers. In Section 5.4, the correct-
ness of topical expertise is analyzed using ranking methods, and
some examples are given to demonstrate that the topic expertise
learned by the proposed model is reasonable. Finally, we analyze
parameters’ sensitivity in Section 5.5. The proposed method shows
the power of learning source topical expertise accurately and re-
ducing the error rate dramatically.

5.1 Data Description
5.1.1 The Game Dataset

The Game dataset [1] is collected from a crowdsourcing platform
via an Android App based on a TV game show “Who Wants to

Be a Millionaire”. Here each user is a source. Users receive each
question’s content and its four corresponding candidate answers via
the Android App. Then they can provide answers which would be
collected by the App. For each question, the game show provides
the correct answer, as well as its difficulty level drawn from 1 to
10. Level 1 questions are the easiest and Level 10 means extremely
difficult. Note that correct answers and difficulty levels are not
used by the proposed approach and baselines. They are only used
for evaluation. The Game dataset contains 2,103 questions, 37,029
sources, 214,849 answers and 12,995 unique words.

5.1.2 The SFV Dataset

The SFV dataset [8] is extracted from Slot Filling Validation
(SFV) task of the NITS Text Analysis Conference Knowledge Base
Population (TAC-KBP) track. The SFV task aims at collecting “slot
fillers” (answers) from a large-scale multi-source corpus for certain
attributes of a query entity, such as a person or an organization. As-
suming “Albert Einstein” is a query entity and the birthday is an
attribute, the task of extracting Albert Einstein’s birthday is sub-
mitted to 18 different information extraction systems. Next, 18
systems return the answers and provide sentences to support the
answers. We can aggregate answers from systems’ returns. This is
indeed a crowdsourced data aggregation task, i.e. aggregating con-
flicting answers to obtain the estimate truths. TAC-KBP provides
ground truth data corresponding to each query entity.

The sentence set for each pair of query entity and attribute re-
turned by different systems is defined as the question, and a system
is regarded as a source. For each question, answers from different
sources may have conflicts among them.

We use KBP 2013 dataset. Since systems can resubmit their an-
swers, we only select answers that systems submitted at the first
time. The dataset contains 328 questions, 18 sources, 2,538 an-
swers and 5,587 unique words.

5.2 Experiment Setup

We compare the proposed FaitCrowd model against several ex-
isting unsupervised algorithms commonly employed in multi-source
aggregation. A naive baseline is MV (majority voting), which
estimates true answers as the ones given by the majority of the
sources. This approach regards all the sources equally in true an-
swer estimation. We also compare the proposed method with some
state-of-the-art methods that estimate source reliability, including:
TruthFinder [26], AccuPr [4], Investment [14], 3-Estimates [6],
CRH [11], CATD [10], D&S [2] and ZenCrowd [3]. Details of
these methods are discussed in related work.

We further compare two variants of FaitCrowd to show the bene-
fit of considering biases and background words. Fait-Crowd-b is a
variant of FaitCrowd without taking bias information into consider-
ation. FaitCrowd-g-b is based on FaitCrowd-b by further remov-
ing the modeling of background words. Comparison with these two
baselines can show that: (1) Question’s bias is important. The bias
captures the difficulty of each question. If the question is easy, any
source can provide a correct answer. Thus, this will affect source
expertise. (2) The number of background words is larger than the
number of topical words for each question. Removing the model-
ing of background words will affect the accuracy of topic modeling
thereby increasing the error rate of estimating true answers.

We perform 200 runs of Gibbs-EM and use grid search to se-
lect the number of topics K for the two datasets: 12 for the Game
dataset and 8 for the SFV dataset. For question content modeling
part, we set p = 20, 8’ = 8 = 0.01 and o = 50/K. For answer
modeling, we set Gaussian priors to e, with mean y as 45 and 35,
variances o2 as 70 and 30 for the Game and SFV dataset respec-



tively, and set the variance o2 = 50 of biases b and the learning
rate A = 0.01. We also conduct experiments to evaluate the perfor-
mance of FaitCrowd using different settings for x and o2

5.3 Performance Validation

The experimental results show that the proposed method can sig-
nificantly reduce the error rate compared with baselines, perform
well on difficult questions, and find knowledgeable sources even if
their answers are minority. The comparison between separate mod-
els (conducting topic modeling and true answer estimation sepa-
rately) and FaitCrowd show that FaitCrowd is more effective on
estimating true answers by jointly modeling questions and answers.

5.3.1 Performance Metric

To evaluate the performance of each method, Error Rate is used
as evaluation metric, which is defined as the number of incorrectly
answered questions divided by the total number of questions Q). A
lower error rate means that the method’s estimation is closer to the
ground truth, and the method is better than those with higher error
rates.

5.3.2 Results on the Game and SFV Datasets

Table 1 shows experimental results of the proposed FaitCrowd
and baseline methods on the Game dataset. We list the number of
questions in each difficulty level in the parentheses.

From Table 1, we can see that the proposed FaitCrowd is bet-
ter than all the baselines in terms of Error Rate. The error rates
of the proposed methods, including FaitCrowd, FaitCrowd-b and
FaitCrowd-g-b, are lower than those of baselines’ on all question
levels, especially on more difficult questions. For easy questions
(from Level 1 to Level 7), all the methods can estimate most an-
swers correctly. Most baselines make mistakes on the same few
hard questions, which leads to the ties among several methods as
the best. However, the error rates increase dramatically for all base-
line methods on difficult questions. The error rates of FaitCrowd on
difficult questions (from Level 8 to Level 10) increases slightly, but
the performance is much better than that of the baseline methods.
For the most difficult level (Level 10), the error rate of the proposed
FaitCrowd is 11.36%, while all the baseline methods have error
rates over 20.45%. The reason is that majority answers provided
by sources are usually wrong for difficult questions, and baselines
cannot estimate correctly because their estimation of source relia-
bility is not accurate. However, the proposed method can estimate
topic expertise accurately.

Compared with FaitCrowd-b and FaitCrowd-g-b, FaitCrowd ac-
hieves a lower error rate by adding biases on questions and model-
ing background words. If we do not consider biases when model-
ing answers, source expertise will be wrongly estimated on difficult
questions. Without taking background words information into ac-
count, the overall error rate increases further. That is because the
length of each question is short but duplicate words exist among
questions, which would affect the results of modeling topics as
well as topical expertise of sources. Therefore, adding background
words information and biases is reasonable.

Overall, the error rate of FaitCrowd reduces 17.73% compared
with the best baseline method CATD. For TruthFinder, the error
rate is larger than other methods’. That is because this method is
dramatically affected by the large number of lower quality claims.
On the Game dataset, lots of sources provide low quality answers
and the number of conflicts is very high, which leads to the poor
performance of TruthFinder. The error rate of Investment is larger
than MV because Investment estimates the probability of each claim
being correct given each source’s reliability without considering

complement vote. Other baseline methods are all better than MV
but worse than FaitCrowd.

Table 2 presents the result comparison on the SFV dataset. Note
that CATD method requires that the number of choices of each
question must be equal, but the SFV dataset does not satisfy this
requirement. Therefore, we did not compare with CATD on this
dataset. The proposed method achieves the best performance com-
paring with all the baseline methods. Similar to what we observe
on the Game dataset, Investment has a higher error rate. How-
ever, TruthFinder performs better than several baselines because
the number of conflicts in the SFV dataset is much lower than that
of the Game dataset. In contrast, the error rate of ZenCrowd is
much higher than MV because the number of sources and answers
in the SFV dataset is so small that there is not sufficient data for
ZenCrowd to learn sources’ confusion matrix.

Table 2: Comparison on the SFV dataset.

Method Error Rate
FaitCrowd 0.0610
FaitCrowd-b 0.0671
FaitCrowd-g-b 0.0701
MV 0.1128
TruthFinder 0.0793
AccuPr 0.0701
Investment 0.2896
3-Estimates 0.1128
CRH 0.0854
D&S 0.1098
ZenCrowd 0.1555

5.3.3 Case Study

We use question 79 in the Game dataset as an example to illus-
trate how the proposed method achieves better results. It contains
four choices — A, B, C and D. There are 25 sources voting A, 12
sources voting B, 4 sources voting C and 7 sources voting D. The
correct answer is D. Obviously, majority voting cannot provide the
correct answer. However, other baselines all provided the answer A
as the correct answer. That is because these methods cannot learn
the accurate expertise. Though the number of sources who provide
A and B are much larger than D’s, the proposed method still learns
the correct answer because the expertise of those sources who give
answer D are higher than others’. In this case, the correct answer
is determined by the sources who are more knowledgeable on this
question. Therefore, the benefit of the proposed method is to derive
topic expertise accurately.

5.3.4 Model Validation

Here we illustrate the importance of joint modeling question con-
tent and answers by comparing with the method that conducts topic
modeling and true answer inference separately.

Firstly, we use TwitterLDA [30] to learn K topics and divide the
dataset into K sub-datasets according to the learned topic labels.
Then, we run all the baseline methods for each topic. Finally, we
collect all the estimated true answers to calculate the Error Rate for
all questions. In order to validate the effectiveness of the proposed
model, we conduct TwitterLDA on the two datasets using the same
values of parameters in FaitCrowd model.

Table 3 shows the results of model validation on the Game dataset
and the SFV dataset. We can see that baselines’ performance is
worse or similar compared to that of the same approaches applied
on the whole dataset. Dividing the whole dataset into sub-topical



Table 1: Comparison on the Game dataset.

Error Rate
Method L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Overall
(303) (295) (290) (276) (253) (218) (187) (138) (99) 44) (2103)
FaitCrowd 0.0132 0.0271 0.0241 0.0254 0.0395 0.0550 0.0481 0.0870 0.1010 0.1136 0.0399
FaitCrowd-b  0.0132 0.0271 0.0276 0.0290 0.0553 0.0596 0.0481 0.0942 0.1111 0.1363  0.0447
FaitCrowd-g-b  0.0132 0.0271 0.0241 0.0290 0.0435 0.0688 0.0535 0.1304 0.1111 0.1818 0.0480
MV 0.0297 0.0305 0.0414 0.0507 0.0672 0.1101 0.1016 0.3043 0.3737 0.5227 0.0980
TruthFinder 0.0693 0.0915 0.1241 0.0942 0.1581 0.2294 0.2674 0.3913 0.5455 0.5455 0.1816
AccuPr 0.0264 0.0305 0.0345 0.0507 0.0632 0.0963 0.0909 0.2826 0.3636 0.5000 0.0913
Investment 0.0330 0.0407 0.0586 0.0761 0.0870 0.1239 0.1283 0.3406 0.3838 0.5455 0.1151
3-Estimates 0.0264 0.0305 0.0310 0.0507 0.0672 0.1055 0.0963 0.2971 0.3737 0.5000 0.0942
CRH 0.0264 0.0271 0.0345 0.0435 0.0593 0.0872 0.0856 0.2609 0.3535 0.4545 0.0866
CATD 0.0132 0.0271 0.0276 0.0290 0.0435 0.0596 0.0481 0.1304 0.1414 0.2045 0.0485
D&S 0.0297 0.0305 0.0483 0.0507 0.0672 0.1101 0.0963 0.2971 0.3636 0.5227 0.0975
ZenCrowd 0.0330 0.0305 0.0345 0.0471 0.0593 0.0872 0.0856 0.2754 0.3636 0.5227 0.0899

Table 3: Results of model validation.

Error Rate
Method  — e SFV

FaitCrowd  0.0399 0.0610
MV 0.1013 0.1144
TruthFinder 0.2049 0.0762
AccuPr 0.1070  0.0678
Investment  0.2477 0.2896
3-Estimates 0.1116  0.1159
CRH 0.0856 0.0762

CATD 0.0504 -
D&S 0.1012 0.1153
ZenCrowd  0.0988 0.1283

datasets will reduce the number of responses per topic, which leads
to insufficient data for baseline approaches. Therefore, these meth-
ods cannot correctly estimate source reliability of each topic. In
contrast, the proposed method jointly conducts question content
modeling part and answering modeling part. Therefore, it can learn
true answers with sufficient data, and consequently performs better
than baselines.

5.4 Topical Expertise Validation

The proposed method can learn reasonable source expertise based
on meaningful topics. We employ two measures to validate the
correctness of topical expertise learned by FaitCrowd. Experimen-
tal results show that the topical expertise learned by the proposed
method highly correlates with the ground truth. We show some in-
teresting examples to illustrate the diverse source expertise learned
by FaitCrowd on different topics.

5.4.1 Performance Measures

We adopt two common measures, Pearson® and Kendall’, to
evaluate the topical expertise estimated by the proposed FaitCrowd.
Pearson and Kendall are used to measure the correlation between
two variables — one variable is topical expertise learned by FaitCrowd,
and the other is the percentage of correct answers obtained from

http://en.wikipedia.org/wiki/Pearson_
product-moment_correlation_coefficient
‘http://en.wikipedia.org/wiki/Kendall_tau_
rank_correlation_coefficient

ground truth. The higher values of Pearson and Kendall, the better
performance of the proposed method.

5.4.2 Correlations on the Game and SFV Datasets

Table 4 lists the Pearson and Kendall coefficients on the Game
and SFV datasets. Overall, the average values of Pearson and
Kendall on all the topics are 0.8661 and 0.7072 on the Game dataset,
0.9821 and 0.8989 on the SFV dataset respectively. Consequently,
we can see that the topical expertise estimated by FaitCrowd cor-
relates with the ground truth accuracy greatly. This suggests that
the topical expertise can represent the reliability of sources on the
topic and also the proposed FaitCrowd is reasonable and effective
in learning topical expertise for sources.

Table 4: Correlations on the Game and SFV dataset.

Topic Game SFV

Pearson Kendall Pearson Kendall

1 0.8989  0.7090 0.9818  0.8721

2 0.9030 0.7727 0.9861 0.9471

3 0.8766  0.7102 0.9762  0.8750

4 0.8435  0.6894 0.9929  0.9535

5 0.8984  0.7064 0.9867  0.9373

6 0.8678  0.6970 0.9804  0.9402

7 0.7650  0.6332 0.9745 0.8525

8 0.8827  0.7310 0.9786  0.8131

9 0.8949  0.7417 - -

10 0.8145  0.6651 - -

11 0.8640  0.6890 - -

12 0.8839  0.7415 - -

Because there are 12 topics and 8 topics on the Game and SFV
datasets respectively, we cannot display them all. We select one
topic for each dataset as an example to show the high correlation
between source expertise and ground truth accuracy. Figures 2 and
3 show two example topics of the Game and SFV dataset respec-
tively. Each point denotes a source who answers questions on this
topic. X-axis is the ground truth accuracy and Y-axis is the exper-
tise for each source on this topic. Ideally, the expertise estimated by
the proposed method is consistent with the ground truth accuracy.
Therefore, all the points should lie on a straight line. If the coeffi-
cient values of Pearson and Kendall both equal to 1, the agreement
between the two rankings is perfect, i.e., the two rankings are the



same. For the two datasets, the source expertise (Y) increases when
ground truth accuracy (X) increases, which means that the source
expertise learned by FaitCrowd is highly correlated with the ground
truth accuracy.

Expertise

0 0.2 0.4 0.6 0.8 1
Ground truth accuracy

Figure 2: Correlations of Topic 2 on the Game dataset.
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Figure 3: Correlations of Topic 4 on the SFV dataset.

5.4.3 Expertise Diversity Analysis

We now show two examples to illustrate the diverse topical ex-
pertise learned by the proposed FaitCrowd model. For each source,
we compare the topical expertise obtained by the proposed model
with ground truth accuracy on topics. The topical expertise for
each source may vary on different topics. Ideally, it should corre-
spond to the ground truth accuracy, i.e., the higher source exper-
tise, the higher the ground truth accuracy. Figure 4 and Figure 5
show the statistics of Source 7 on the Game dataset and Source 16
on the SFV dataset. Each point represents a topic, X-axis is the
source’s ground truth accuracy and Y-axis is its expertise on each
topic. From Figure 4, we can see that the topical expertise learned
by the proposed FaitCrowd model is diverse, and the source with
higher ground truth accuracy has higher expertise. Similar to the
Game dataset, the topical expertise of Source 16 varies on differ-
ent topics in Figure 5. From these two examples, we can see that
the proposed FaitCrowd can estimate diverse topical expertise ef-
fectively. The proposed method uses text information to estimate
expertise on different topics.

5.5 Parameter Sensitivity Analysis

To better visualize the effect of parameters, we use accuracy (1
- Error Rate) to validate the performance of the proposed method.
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Figure 4: Source 7 on the Game dataset.

35
8

e3
®5 [ 2
o7 ‘2

Expertise
[N} 2
W (=)

[\
(=)
[
—

—_
N

00

184 0.6 0.8 1
Ground truth accuracy

Figure 5: Source 16 on the SFV dataset.

Figure 6 shows parameter settings on the Game dataset. X-axis
denotes the mean y, Y-axis denotes the variance o of Gaussian
distribution we assumed on source expertise e, Z-axis is the accu-
racy of the proposed method on each pair of 1 and 0. We can see
that when the value of u increases, the accuracy has the increas-
ing tend. When . = 45 and o? = 70, the accuracy reaches the
peak value. Then, the accuracy drops slightly when p increases.
However, the change is typically small, which means the proposed
method is not heavily affected by parameter settings.

6. RELATED WORK

Some existing approaches conduct multi-source data aggregation
by incorporating the estimation of source reliability, and thus they
are relevant to the proposed approach. Yin et. at. [26] formally de-
fined truth discovery problem and used a heuristic method, named
TruthFinder, to compute the probability of each answer being cor-
rect given the estimated user reliability degrees. Pasternack et. al.
[14] introduced a framework, called Investment in which sources
“invest” their reliability uniformly on the observations they pro-
vide, and collect credits back from the confidence of those obser-
vations. In turn, the confidence of observations grows according
to a non-linear function defined based on the sum of invested reli-
ability from their providers. Three fixpoint algorithms (including
3-Estimates) were proposed by [6] corresponding to different lev-
els of complexity of an underlying probabilistic model to estimate
source reliability. AccuPr (a special case of Accu model) was in-
troduced by Dong et. al. in [4]. Li et. al. [11] proposed an opti-
mization framework, CRH, to model different data types jointly,
and estimate source reliability and truth simultaneously. They also
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Figure 6: Performance w.r.t. parameters on the Game dataset.

proposed CATD [10] method to automatically estimate truth from
conflicting data with long-tail phenomenon. Note that FaitCrowd is
quite different from CRH and CATD. CRH and CATD only model
users’ answers, but FaitCrowd jointly models questions’ text and
users’ answers. Also, the outputs are different. CRH and CATD
only provide one reliability per source/user. Differently, FaitCrowd
outputs fine grained users’ expertise as well as questions’ topic.

The following methods are relevant to truth discovery, but have
a different problem setting. Pasternack et. al. used a set of proba-
bilistic model parameters to estimate the source credibility in [15].
Based on the idea of “gain” and “cost”, Dong et. al. [5] focused on
source selection problem in truth finding. Zhao et. al. presented a
probabilistic graphical model to resolve the problem of existence
of multiple truths for a single entity in truth discovery tasks in [28]
and designed a probabilistic graphical model to estimate source re-
liability on numerical data in [27]. Vydiswaran et. al. [20] and
Mukherjee et. at. [13] proposed different models to estimate users’
reliability and discover credible claims on unstructured data.

There are also some work related to crowdsourced data aggre-
gation. The classic approach was named D&S [2], which used a
confusion matrix for each user and a class prior to model user ex-
pertise. ZenCrowd [3] used EM to simultaneously estimate true
labels and user reliability, which assumes that users act indepen-
dently and simplifies the estimation of the full confusion matrix
per user. These two methods have the same problem setting with
the proposed model. They are used as baselines in the experiments.

A different problem setting is used in the following crowdsourced
data aggregation methods. Snow et. al. [17] adopted D&S [2] model
but considered the fully-supervised case of Maximum Likelihood
Estimation with Laplacian smoothing. Venanzi et. al. [19] intro-
duced CommunityBCC (Community-based Bayesian aggregation
model) to estimate each user’s reliability and true labels using the
community’s confusion matrices and employing ground truth to
improve the accuracy. CommunityBCC is a semi-supervised method,
which is different from the proposed unsupervised model.

GLAD [24] used the user expertise and the questions’ difficulty
to estimate the true answer. Raykar et. al. [16] proposed a Bayesian
approach to add work specific priors for each class for binary label-
ing tasks. Similar to [16], Welinder et. al. [23] also added priors to
each parameter used in Bayesian approach. However, this method
cannot generalize to multi-choice scenario. Zhou et. al. [31] de-
fined a separate probabilistic distribution for each user-item pair
and adopted a minimax entropy principle to estimate true labels and
user reliability jointly. These methods are used in binary labeling

tasks, however, the proposed model is to handle on multiple-choice
questions aggregation.

For the estimation of topic-level expertise in community-based
question answering tasks, previous work focused on learning la-
tent topics and topic-level user expertise. Guo et. al. [9] proposed
a generative model for questions and users by using the category
information. Yang et. al. [25] proposed the CQARank model to
estimate both latent topics of questions and topical expertise by ex-
ploiting voting information. Zhao et. al. [29] proposed TEL model
to generate experts and topics simultaneously by using users’ his-
torical contribution. Though these approaches can be used to esti-
mate topic-level expertise, they need extra information in addition
to question content and users’ answers, such as categories, user
votes and users’ historical contributions, to help infer topical ex-
pertise accurately. Therefore, the setting is very different from the
task in this paper. Note that we do not assume the availability of any
other information, but only use question content and user answers
to jointly learn topic-level expertise and true answers.

All the above discussed methods cannot estimate source relia-
bility accurately for each topic when expertise significantly differs
on topics. To the best of our knowledge, we are the first to build a
joint model to consider both question topics and fine grained user
expertise simultaneously. By modeling question content and an-
swers alternatively, the proposed FaitCrowd can fully take advan-
tage of available information and obtain more accurate estimation
of topical expertise.

7. CONCLUSIONS

The estimation of source reliability is crucial for effective multi-
source data aggregation. Many existing works in multi-source data
aggregation propose various ways to estimate source reliability.
These methods usually assume that source reliability is consistent
across different questions. However, the expertise of sources should
be topic dependent in the sense that on different topics their exper-
tise may vary significantly. A naive adaptation of existing work is
to simply split data based on topics and then apply those aggrega-
tion methods on each group defined by a topic separately. This ap-
proach faces a serious challenge that there may be insufficient data
to support a good estimation of source reliability. In this paper, we
propose a novel probabilistic Bayesian model to address the chal-
lenge of inferring fine grained source reliability. By jointly mod-
eling question content and collected answers, the proposed model
learns the topics of questions, topic-specific expertise of sources,
and the true answers simultaneously. Experimental results on two
real crowdsourced datasets prove the effectiveness of the proposed
FaitCrowd model. We demonstrate that FaitCrowd can successfully
detect the true answers from the expert sources on the correspond-
ing topics even when their answers are minority in the answer set.
Analysis shows that the learned topical expertise for sources is con-
sistent with the real topical expertise.
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