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ABSTRACT
Predicting the future health information of patients from the histor-
ical Electronic Health Records (EHR) is a core research task in the
development of personalized healthcare. Patient EHR data consist
of sequences of visits over time, where each visit contains multi-
ple medical codes, including diagnosis, medication, and procedure
codes. �e most important challenges for this task are to model
the temporality and high dimensionality of sequential EHR data
and to interpret the prediction results. Existing work solves this
problem by employing recurrent neural networks (RNNs) to model
EHR data and utilizing simple a�ention mechanism to interpret the
results. However, RNN-based approaches su�er from the problem
that the performance of RNNs drops when the length of sequences
is large, and the relationships between subsequent visits are ignored
by current RNN-based approaches. To address these issues, we pro-
pose Dipole, an end-to-end, simple and robust model for predicting
patients’ future health information. Dipole employs bidirectional
recurrent neural networks to remember all the information of both
the past visits and the future visits, and it introduces three a�ention
mechanisms to measure the relationships of di�erent visits for the
prediction. With the a�ention mechanisms, Dipole can interpret
the prediction results e�ectively. Dipole also allows us to inter-
pret the learned medical code representations which are con�rmed
positively by medical experts. Experimental results on two real
world EHR datasets show that the proposed Dipole can signi�cantly
improve the prediction accuracy compared with the state-of-the-art
diagnosis prediction approaches and provide clinically meaningful
interpretation.
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1 INTRODUCTION
Electronic Health Records (EHR), consisting of longitudinal patient
health data, including demographics, diagnoses, procedures, and
medications, have been utilized successfully in several predictive
modeling tasks in healthcare [9–11, 31]. EHR data are temporally
sequenced by patient medical visits that are represented by a set of
high dimensional clinical variables (i.e., medical codes). One critical
task is to predict the future diagnoses based on patient’s historical
EHR data, i.e., diagnosis prediction. When predicting diagnoses,
each patient’s visit and the medical codes in each visit may have
varying importance. �us, the most important and challenging
issues in diagnosis prediction are:

• How to correctly model such temporal and high dimen-
sional EHR data to signi�cantly improve the performance
of prediction;

• How to reasonably interpret the importance of visits and
medical codes in the prediction results.

In order to model sequential EHR data, recurrent neural net-
works (RNNs) have been employed in the literature for deriving
accurate and robust representations of patient visits in diagnosis
prediction task [10, 11]. RETAIN [11] and GRAM [10] are two state-
of-the-art models utilizing RNNs for predicting the future diagnoses.
RETAIN applies an RNN with reverse time ordered EHR sequences,
while GRAM uses an RNN when modeling time ordered patient
visits. Both models achieve good prediction accuracy. However,
they are constrained by the forgetfulness associated with models
using RNNs, i.e. RNNs cannot handle long sequences e�ectively.
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�e predictive power of these models drops signi�cantly when the
length of the patient visit sequences is large. Bidirectional recur-
rent neural networks (BRNNs) [24], which can be trained using all
available input information in the past and future, have been used
to alleviate the e�ect of the long sequence problem, and improve
the predictive performance.

However, it is infeasible to interpret the outputs of models incor-
porating either RNNs or BRNNs. Interpretability is crucial in the
healthcare domain, as it can lead to the identi�cation of potential
risk factors and the design of suitable intervention mechanisms.
Non-temporal models such as Med2Vec [9] generate easily inter-
pretable low-dimensional representations of the medical codes, but
do not account for the temporal nature of the EHR data.

To model the temporal EHR data and interpret the prediction
results simultaneously, a�ention-based neural networks can be
applied, which aim to learn the relevance of the data samples to the
task. For example, RETAIN [11] employs location-based a�ention
to predict the future diagnosis. It calculates the a�ention weights
for a visit at time t , using the medical information in the current
visit and the hidden state of the recurrent neural network at time t ,
to predict the visit at time t +1. It ignores the relationships between
all the visits from time 1 to time t . We believe that accounting for
all the past visit information may help the predictive models to
improve the accuracy and provide be�er interpretation.

To tackle all the aforementioned issues and challenges, we pro-
pose an e�cient and accurate diagnosis prediction model (Dipole)
using a�ention-based bidirectional recurrent neural networks for
learning low-dimensional representations of the patient visits, and
employ the learned representations for future diagnosis prediction.
�e learned representations are easily interpretable, and can also
be used to learn how important each visit is to the future diagno-
sis prediction. Speci�cally, it �rst embeds the high dimensional
medical codes (i.e., clinical variables) into a low code-level space,
and then feeds the code representations into an a�ention-based
bidirectional recurrent neural network to generate the hidden state
representation. �e hidden representation is fed through a so�max
layer to predict the medical codes in future visits. We experiment
with three types of a�ention mechansims: (i) location-based, (ii)
general, and (iii) concatenation-based, to calculate the a�ention
weights for all the prior visits for each patient. �ese mechanisms
model the inter-visit relationships, where the a�ention weights
represent the importance of each visit.

We demonstrate that the proposed Dipole achieves signi�cantly
higher prediction accuracy when compared to the state-of-the-art
approaches in diagnosis prediction, using two datasets derived from
Medicaid claims data. A case study is conducted to show that the
proposed model accurately assigns varying a�ention weights to
past visits. We evaluate the interpretability of the learned repre-
sentations through qualitative analysis. Finally, we illustrate the
reasonableness of employing bidirectional recurrent neural net-
works to model temporal patient visits. In summary, our main
contributions are as follows:

• We proposeDipole, an end-to-end, simple and robust model
to accurately predict the future visit information and rea-
sonably interpret the prediction results, without depending
on any expert medical knowledge.

• Dipole models patient visit information in a time-ordered
and reverse time-ordered way and employs three a�ention
mechanisms to calculate the weights for previous visits.

• We empirically show that the proposed Dipole outperforms
existing methods in diagnosis prediction on two large real
world EHR datasets.
• We analyze the experimental results with clinical experts

to validate the interpretability of the learned medical code
representations.

�e rest of this paper is organized as follows: In Section 2, we
discuss the connection of the proposed approaches to related work.
Section 3 presents the details of the proposed Dipole. �e experi-
mental results are presented in Section 4. Section 5 concludes the
paper.

2 RELATEDWORK
�is section reviews the existing work for mining Electronic Health-
care Records (EHR) data. In particular, we focus on the state-of-the-
art models on diagnosis prediction task. We also introduce some
work using a�ention mechanisms.

2.1 EHR Data Mining
Mining EHR data is a hot research topic in healthcare informat-
ics. �e tackled tasks include electronic genotyping and pheno-
typing [5, 16, 19, 32], disease progression [12, 26, 27, 33], adverse
drug event detection [21], diagnosis prediction [9–11, 25, 31], and
so on. In most tasks, deep learning models can signi�cantly im-
prove the performance. Recurrent neural networks (RNNs) can be
used for modeling multivariate time series data in healthcare with
missing values [6, 18]. Convolutional neural networks (CNNs) are
used to predict unplanned readmission [23] and risk [7] with EHR.
Stacked denoising autoencoders (SDAs) are employed to detect the
characteristic pa�erns of physiology in clinical time series data [5].

Diagnosis prediction is an important and di�cult task in health-
care. Med2Vec [9] aims to learn the representations of medical
codes, which can be used to predict the future visit information. �is
method ignores long-term dependencies of medical codes among
visits. RETAIN [11] is an interpretable predictive model, which
employs reverse time a�ention mechanism in an RNN for binary
prediction task. GRAM [10] is a graph-based a�ention model for
healthcare representation learning, which uses medical ontologies
to learn robust representations and an RNN to model patient visits.
Both RETAIN and GRAM apply a�ention mechanisms and improve
the prediction performance.

Compared with the aforementioned predictive models, the pro-
posed approaches not only employ bidirectional neural networks
when modeling visit information but also design di�erent a�ention
mechanisms to assign di�erent weights for the past visits. Rely-
ing on these two properties, the proposed Dipole can improve the
prediction performance signi�cantly and interpret the meanings of
medical codes reasonably.

2.2 Attention-based Neural Networks
A�ention-based neural networks have been successfully used in
many tasks [1, 2, 13, 14, 17, 20, 28, 29]. Speci�cally for neural ma-
chine translation [2, 20], given a sentence in the original language
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(i.e., original space), RNNs were adopted to generate the word rep-
resentations in the sentence h1, · · · ,h |S | , where |S | is the number
of words in this sentence. In order to �nd the t-th word in the
target language (or target space), a weight αt i , i.e., a�ention score,
is assigned to each word in the original language. �en, a context
vector ct =

∑ |S |
i=1 αt ihi is calculated to predict the t-th word in the

target language. However, diagnosis prediction task is di�erent
from the language translation task as all the visits for each patient
are in the same space.

3 METHODOLOGY
In this section, we �rst introduce the structure of EHR data and
some basic notations. �en we describe the details of the proposed
Dipole neural network. Finally, we describe the interpretation for
the learned code representations and visit representations.

3.1 Basic Notations
We denote all the unique medical codes from the EHR data as
c1, c2, · · · , c |C | ∈ C, where |C| is the number of unique medical
codes. Assuming there are N patients, the n-th patient has T (n)
visit records in the EHR data. �e patient can be represented by
a sequence of visits V1,V2, · · · ,VT (n) . Each visit Vt , containing a
subset of medical codes (Vt ⊆ C), is denoted by a binary vector
xt ∈ {0, 1} |C | , where the i-th element is 1 ifVt contains the code ci .
Each diagnosis code can be mapped to a node of the International
Classi�cation of Diseases (ICD-9)1, and each procedure code can be
mapped to a node in the Current Procedural Terminology (CPT)2.
Below we use a simple example to illustrate the problem.

�ere are two diagnosis codes: 250 (Diabetes mellitus) and 254
(Diseases of thymus gland), and one procedure code 11720 (Debride
nail, 1-5) in the whole dataset, i.e., |C| = 3. If the medical codes in
the t-th patient visit are 250 and 254, then xt = [1, 1, 0].

Both ICD-9 and CPT systems are coded hierarchically, which
means that each medical code has a “parent”, i.e., category label.
For example, the diagnosis codes 250 and 254 belong to the same
category Diseases of other endocrine glands, and the procedure code
11720 is in the category Surgical procedures on the nails. �us, each
visitVt has a corresponding coarse-grained category representation
yt ∈ {0, 1} |G | , where |G| is the unique number of categories. In
the above example, |G| = 2, and yt = [1, 0]. For simplicity, we
describe the proposed algorithm for a single patient and drop the
superscript (n) when it is unambiguous. �e input of the proposed
Dipole model is a time-ordered sequence of patient visits.

3.2 Model
�e goal of the proposed algorithm is to predict the (t + 1)-th
visit’s category-level medical codes. Figure 1 shows the high-level
overview of the proposed model. Given the visit information from
time 1 to t , the i-th visit’s medical codes xi can be embedded into a
vector representationvi . �e vectorvi is fed into the Bidirectional
Recurrent Neural Network (BRNN) [24], which outputs a hidden
state hi as the representation of the i-th visit. Along with the
set of hidden states {hi }t−1

i=1 , we are able to compute the relative

1h�ps://en.wikipedia.org/wiki/List of ICD-9 codes
2h�ps://en.wikipedia.org/wiki/Current Procedural Terminology

importance vectorαt for the current visit t . Subsequently, a context
state ct is computed from the relative importance αt and {hi }t−1

i=1 .
�is procedure is known as a�ention model [2], which will be
detailed in the following sections. Next, from the context state
ct and the current hidden state ht , we can obtain an a�entional
hidden state h̃t , which is used to predict the category-level medical
codes appearing in the (t + 1)-th visit, i.e., ŷt . �e proposed neural
network can be trained end-to-end.
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Figure 1: �e Proposed Dipole Model.

Visit Embedding
Given a visit xi ∈ {0, 1} |C | , we can obtain its vector representation
vi ∈ Rm as follows:

vi = ReLU(Wvxi + bc ), (1)

wherem is the size of embedding dimension,Wv ∈ Rm×|C | is the
weight matrix of medical codes, and bc ∈ Rm is the bias vector.
ReLU is the recti�ed linear unit de�ned as ReLU(v) = max(v, 0),
where max() applies element-wise to vectors. �e reason we employ
the recti�ed linear unit as the activation function is that ReLU
enables the learned vector representations to be interpretable [9].

Bidirectional Recurrent Neural Networks
Recurrent Neural Networks (RNNs) provide a very elegant way of
modeling sequential healthcare data [10, 11]. However, one draw-
back of RNNs is that the prediction performance will drop when the
length of the sequence is very large [24]. In order to overcome this
drawback, we employ Bidirectional Recurrent Neural Networks
(BRNNs) in the proposed model which can be trained using all the
available input visits’ information from two directions to improve
the prediction performance. Note that we use “RNNs” to denote any
Recurrent Neural Networks variant dealing with the vanishing gra-
dient problem [3], such as Long-Short Term Memory (LSTM) [15]
and Gated Recurrent Unit (GRU) [8]. In our implementation, we
use GRU to adaptively capture dependencies among patient visit
information.

A BRNN consists of a forward and backward RNN. �e forward
RNN

−→
f reads the input visit sequence from x1 to xT and calculates

a sequence of forward hidden states (
−→
h 1, · · · ,

−→
h T ) (

−→
h i ∈ Rp and p

is the dimensionality of hidden states). �e backward RNN
←−
f reads

the visit sequence in the reverse order, i.e., from xT to x1, resulting
in a sequence of backward hidden states (

←−
h 1, · · · ,

←−
h T ) (

←−
h i ∈ Rp ).
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By concatenating the forward hidden state
−→
h i and the backward

one
←−
h i , we can obtain the �nal latent vector representation as

hi = [
−→
h i ;
←−
h i ]> (hi ∈ R2p ). Note that the future visit information is

only used when training the model. Only the past visit information
is provided to predict the future visits during the testing phase.

Attention Mechanism
In diagnosis prediction task, the �nal goal is to predict the category-
level medical codes of the (t + 1)-th visit, i.e., yt , according to
the visits from x1 to xt . �e output of the t-th visit xt (ht ) is the
estimated vector representation of the (t + 1)-th visit. However, it
may contain partial visit information to be predicted. �us, how
to derive a context vector ct that captures relevant information to
help predict the future visit yt is the key issue. �ere are three
methods that can be used to compute the context vector ct :
• Location-based A�ention. A location-based a�ention function

is to calculate the weights solely from the current hidden state hi
as follows:

αt i =W
>
α hi + bα , (2)

where Wα ∈ R2p and bα ∈ R are the parameters to be learned.
According to Eq. (2), we can obtain an a�ention weight vector αt
using so�max function as follows:

αt = So�max([αt1,αt2, · · · ,αt (t−1)]). (3)

�en the context vector ct ∈ R2p can be calculated based on the
weights obtained from Eq. (3) and the hidden states from h1 to ht−1
as follows:

ct =
t−1∑
i=1

αt ihi . (4)

Since location-based a�ention mechanism only considers each
individual hidden state information, it does not capture the relation-
ships between the current hidden state and all the previous hidden
states. To utilize the information from all the previous hidden states,
we adopt the following two a�ention mechanisms in the proposed
Dipole .
• General A�ention. An easy way to capture the relationship

between ht and hi (1 6 i 6 t − 1) is using a matrixWα ∈ R2p×2p ,
and calculating the weight as:

αt i = h
>
t Wαhi , (5)

and the context vector ct can be obtained using Eq. (3) and Eq. (4).
• Concatenation-based A�ention. Another way to calculate the

context vector ct is using a multi-layer perceptron (MLP) [2]. We
�rst concatenate the current hidden state hs and the previous state
hi , and then a latent vector can be obtained by multiplying a weight
matrix Wα ∈ Rq×4p , where q is the latent dimensionality. We
select tanh as the activation function. �e a�ention weight vector
is generated as follows:

αt i = v
>
α tanh(Wα [ht ;hi ]), (6)

wherevα ∈ Rq is the parameter to be learned, and we can obtain
the context vector ct with Eq. (3) and Eq. (4).

Diagnosis Prediction
Given the context vector ct and the current hidden state ht , we

employ a simple concatenation layer to combine the information
from both vectors to generate an a�entional hidden state as follows:

h̃t = tanh(Wc [ct ;ht ]), (7)

where Wc ∈ Rr×4p is the weight matrix. �e a�entional vector
h̃t is fed through the so�max layer to produce the (t + 1)-th visit
information de�ned as:

ŷt = So�max(Ws h̃t + bs ) (8)

whereWs ∈ R |G |×r andbs ∈ R |G | are the parameters to be learned.

Objective Function
Based on Eq. (8), we use the cross-entropy between the ground
truth visit informationyt and the predicted visit ŷt to calculate the
loss for all the patients as follows:

L(x (1)1 , · · · , x (1)
T (1)−1

, · · · , x (N )1 , · · · , x (N )
T (N )−1

)

= − 1
N

N∑
n=1

1
T (n) − 1

T (n)−1∑
t=1

(
y>t log(ŷt ) + (1 − yt )> log(1 − ŷt )

) (9)

3.3 Interpretation
In healthcare, the interpretability of the learned representations of
medical codes and visits is important. We need to understand the
clinical meaning of each dimension of medical code representations,
and analyze which visits are crucial to the prediction.

Since the proposed model is based on a�ention mechanisms, it is
easy to �nd the importance of each visit for prediction by analyzing
the a�ention scores. For the t-th prediction, if the a�ention score
αt i is large, then the probability of the (i + 1)-th visit information
related to the current prediction is high. We employ the simple
method proposed in [9] to interpret the code representations. We
�rst use ReLU(W >v ), a non-negative matrix, to represent the medi-
cal codes. �en we rank the codes by values in a reverse order for
each dimension of the hidden state vector. Finally, the top k codes
with the largest values are selected as follows:

argsort(W >v [:, i])[1 : k],

whereW >v [:, i] represents the i-th column or dimension ofW >v . By
analyzing the selected medical codes, we can obtain the clinical
interpretation of each dimension. Detailed examples and analysis
are given in Section 4.4 and 4.5.

4 EXPERIMENTS
In this section, we evaluate the performance of the proposed Dipole
model on two real world insurance claims datasets, compare its
performance with other state-of-the-art prediction models, and
show that it yields higher accuracy.

4.1 Data Description
�e datasets we used in the experiments are the Medicaid claims
and the Diabetes claims.

�eMedicaid Dataset
Our �rst dataset consists of Medicaid claims3 over the year 2011. It
consists of data corresponding to 147, 810 patients, and 1, 055, 011

3h�ps://www.medicaid.gov
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visits. �e patient visits were grouped by week, and we excluded
patients who made less than two visits.
�e Diabetes Dataset
�e Diabetes dataset consists of Medicaid claims over the years 2012
and 2013, corresponding to patients who have been diagnosed with
diabetes (i.e. Medicaid members who have the ICD-9 diagnosis code
250.xx in their claims). It contains data corresponding to 22, 820
patients with 466, 732 visits. �e patient visits were aggregated by
week, and excluded patients who made less than �ve visits.

For both datasets, each visit information includes the ICD-9
diagnosis codes and procedure codes, categorized in accordance
with the Current Procedural Terminology (CPT). Table 1 lists more
details about the two datasets.

Table 1: Statistics of Diabetes and Medicaid Dataset.

Dataset Diabetes Medicaid
# of patients 22,820 147,810
# of visits 466,732 1,055,011
Avg. # of visits per patient 20.45 7.14
# of unique medical codes 7,399 8,522
- # of unique diagnosis codes 984 1,021
- # of unique procedure codes 6,415 7,501
Avg. # of medical codes per visit 6.35 5.57
Max # of medical codes per visit 105 99
# of category codes 422 426
- # of unique diagnosis categories 183 185
- # of unique procedure categories 239 241
Avg. # of category codes per visit 4.85 4.08
Max # of category codes per visit 38 42

4.2 Experimental Setup
In this subsection, we �rst describe the state-of-the-art approaches
for EHR representation learning and diagnosis prediction which are
used as baselines, and then outline the measures used for evaluation.
Finally, we introduce the implementation details.
Baseline Approaches
To validate the performance of the proposed model for diagnosis
prediction task, we compare it with several state-of-the-art models.
We select three existing approaches as baselines4:

Med2Vec [9]. Med2Vec, which follows the idea of Skip-gram
[22], is a simple and robust algorithm to e�ciently learn medical
code representations and predict the medical codes appearing in
the following visit based on the current visit information.

RETAIN [11]. RETAIN is an interpretable predictive model in
healthcare with reverse time a�ention mechanism, a two-level neu-
ral a�ention model. It can �nd in�uential past visits and important
medical codes within those visits. Since the original RETAIN is used
for binary prediction task, we change the �nal so�max function for
satisfying multiple variable prediction, i.e., diagnosis prediction.

RNN. We �rst embed visit information into vector representa-
tions according to Eq. (1), then feed this embedding to the GRU.
4GRAM [10] is not a baseline as it uses external knowledge to learn the medical code
representations.

�e hidden states produced by the GRU are directly used to predict
the medical codes of the (t + 1)-th visit using so�max according to
Eq. (8). All the parameters are trained together with the GRU.

Our Approaches
Since all the a�ention mechanisms proposed in Section 3.2 can be
used for RNN model, we propose three variants of RNN as follows:

RNNl . We add location-based a�ention model into RNN. �e
a�ention scores are calculated by Eq. (2). �en we can obtain the
context vectors according to Eq. (4). Based on the context vectors,
we can generate a�ention hidden states using Eq. (7). Finally, we
can predict the medical codes of the (t + 1) visit using Eq. (8).

RNNд . RNNд is similar to RNNl , but uses general a�ention
model, i.e., Eq. (5), to calculate a�ention scores.

RNNc . RNNc uses concatenation-based a�ention mechanism
(Eq. (6)) to calculate a�ention weights.

�e proposed Dipole model is a general framework for predicting
diagnoses in healthcare. We show the performance of the following
four approaches in the experiments.

Dipole−. �is model only uses the hidden states generated by
BRNN to predict the next visit information, i.e., without employing
any a�ention mechanisms.

Dipolel . It is based on location-based a�ention mechanism with
Eq. (2).

Dipoleд . Dipoleд uses general a�ention model when calculating
the context vectors, i.e., Eq. (5).

Dipolec . Similar to Dipolel and Dipoleд , Dipolec employs con-
catenation based a�ention mechanism (Eq. (6)) in the predictive
model.

Evaluation Strategies
To evaluate the performance of predicting future medical codes
for each method, we use two measures: accuracy and accuracy@k
. Accuracy is de�ned as the correct medical codes ranked in top
k divided by |yt |, where |yt | is the number of medical codes in
the (t + 1)-th visit, and k equals to |yt |. Accuracy@k is de�ned as
the correct medical codes in top k divided by min(k, |yt |). In our
experiments, we vary k from 5 to 30.

Implementation Details
We implement all the approaches with �eano 0.7.0 [4]. For training
models, we use Adadelta [30] with a mini-batch of 100 patients5. We
randomly divide the dataset into the training, validation and testing
set in a 0.75:0.1:0.15 ratio. �e validation set is used to determine
the best values of parameters. We also use regularization (l2 norm
with the coe�cient 0.001) and drop-out strategies (the drop-out rate
is 0.5) for all the approaches. In the experiments, we set the same
m = 256, p = 256 and q = 128 for baselines and our approaches.
We perform 100 iterations and report the best performance for each
method.

4.3 Results of Diagnosis Prediction
Table 2 shows the accuracy of the proposed approaches and base-
lines on both Diabetes and Medicaid datasets for the diagnosis

5For Med2Vec, we use 1000 visits per batch as in [9]. �e window size is 5 on the
Diabetes dataset and 3 on the Medicaid dataset.
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prediction task. #C represents the average number of correct pre-
dictions. �e number of visits or predictions in the test set is 65,975
in the Diabetes dataset, and 136,023 in the Medicaid dataset.

Table 2: �e Accuracy of Diagnosis Prediction Task.

Method Diabetes Medicaid

# C Accuracy # C Accuracy

Baseline
RNN 28,608 0.4336 58,245 0.4282

Med2Vec 29,175 0.4422 62,326 0.4582
RETAIN 28,851 0.4373 63,496 0.4668

Our
Approach

RNNl 29,880 0.4529 62,938 0.4627
RNNд 30,124 0.4566 62,571 0.4600
RNNc 30,164 0.4572 62,693 0.4609
Dipole− 29,623 0.4490 62,475 0.4593
Dipolel 30,645 0.4645 65,441 0.4811
Dipoleд 29,464 0.4466 64,557 0.4746
Dipolec 30,698 0.4653 63,931 0.4700

In Table 2, we can observe that the accuracy of the proposed
approaches, including Dipole and RNN variants, is higher than that
of baselines on the Diabetes dataset. Since most medical codes are
about diabetes, Med2Vec can correctly learn vector representations
on the Diabetes dataset. �us, Med2Vec achieves the best results
among the three baselines. For the Medicaid dataset, the accuracy
of RETAIN is be�er than that of Med2Vec. �e reason is that there
are many diseases in the Medicaid dataset, and the categories of
medical codes are more than those on the Diabetes dataset. In this
case, a�ention mechanism can help RETAIN to learn reasonable
parameters and make correct prediction.

�e accuracy of RNN is the lowest among all the approaches
on both datasets. �is is because the prediction of RNN mostly de-
pends on the recent visits’ information. It cannot memorize all the
past information. However, RETAIN and the proposed RNN vari-
ants, RNNl , RNNд and RNNc , can fully take all the previous visit
information into consideration, assign di�erent a�ention scores
for past visits, and achieve be�er performance when compared to
RNN.

Since most of the visits on the Diabetes dataset are related to
diabetes, it is easy to predict the medical codes in the next visit
according to the past visit information. RETAIN uses a reverse
time a�ention mechanism for prediction, which will decrease the
prediction performance compared with the approaches using a time
ordered a�ention mechanism. �us, the performance of the three
proposed RNN variants is be�er than that of RETAIN. However,
the accuracy of RETAIN is be�er than the proposed RNN variants’
as the data are about di�erent diseases on the Medicaid dataset.
Using the reverse time a�ention mechanism can help us to learn
the correct relationships among visits.

Both RNN and the proposed Dipole− do not use any a�ention
mechanism, but the accuracy of Dipole− is higher than that of RNN
on both the Diabetes and Medicaid dataset. It shows that modeling
visit information from two directions can improve the prediction
performance. �us, it is reasonable to employ bidirectional recur-
rent neural networks for diagnosis prediction task.

�e proposed Dipolec and Dipolel can achieve the best perfor-
mance on the Diabetes and Medicaid dataset respectively, which

shows that both modeling visits from two directions and assign-
ing a di�erent weight to each visit can improve the accuracy for
diagnosis prediction task in healthcare. On the Diabetes dataset,
Dipolel and Dipolec outperform all the baselines and the proposed
RNN variants. On the Medicaid dataset, the performance of all the
three proposed approaches, Dipolel , Dipoleд and Dipolec is be�er
than that of baselines and RNN variants.

Table 3 shows the experimental results with the accuracy@k
measurement on the Diabetes and Medicaid dataset separately.
We can observe that as k increases, the performance of all the
approaches improves, but the proposed Dipole approaches show
superior predictive performance, demonstrating their applicability
in predictive healthcare modeling. In Table 3, RETAIN can achieve
comparable performance with the proposed approaches on the Med-
icaid dataset. �e overall performance of location-based a�ention
methods, Dipolel and RNNl , is be�er than that of other methods,
which indicates that location-based a�ention performs well on this
dataset. RETAIN also uses location-based a�ention mechanism.
�us, it can obtain high accuracy.

4.4 Case Study
To demonstrate the bene�t of applying a�ention mechanisms in
diagnosis prediction task, we analyze the a�ention weights learned
from one of the proposed approach Dipolec , which uses concate-
nation based a�ention mechanism. Figure 2 shows a case study
for predicting the medical code in the sixth visit (y5) based on the
previous visits on the Diabetes dataset. �e concatenation-based
a�ention weights are calculated for the visits from the second visit
to the ��h visit according to the hidden states h1, h2, h3 and h4.
�us, we have four a�ention scores. In Figure 2, X-axis represents
patients, and Y-axis is the a�ention weight calculated for each visit.
In this case study, we select �ve patients. We can observe that
for di�erent patients, the a�ention scores learned by the a�ention
mechanism are di�erent.
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Figure 2: Attention Mechanism Analysis.

To illustrate the correctness of the learned a�ention weights,
we provide an example. For the second patient in Figure 2, we
list all the diagnosis codes in Table 4. In order to predict the med-
ical codes in the sixth visits, we �rst obtain the a�ention scores
α = [0.2386, 0.0824, 0.3028, 0.3762]. Analyzing this a�ention vec-
tor, we can conclude that the medical codes in the second, fourth
and ��h visits signi�cantly contribute to the �nal prediction. From
Table 4, we can observe that the patient su�ered essential hyperten-
sion in the second and fourth visits, and diagnosed diabetes in the
��h visits. �us, the probability of the sixth visit’s medical codes
about diabetes and diseases related to essential hypertension is high.
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Table 3: �e Accuracy@k of Diagnosis Prediction Task.

Dataset Accuracy@k RNN Med2Vec RETAIN RNNl RNNд RNNc Dipole− Dipolel Dipoleд Dipolec

Diabetes

5 0.5236 0.5210 0.5257 0.5389 0.5423 0.5418 0.5413 0.5568 0.5350 0.5575
10 0.6107 0.6015 0.6102 0.6281 0.6316 0.6317 0.6325 0.6466 0.6204 0.6469
15 0.6829 0.6744 0.6826 0.6993 0.7026 0.7034 0.7036 0.7146 0.6913 0.7150
20 0.7355 0.7257 0.7354 0.7515 0.7542 0.7555 0.7548 0.7642 0.7415 0.7641
25 0.7759 0.7662 0.7761 0.7928 0.7949 0.7959 0.7942 0.8021 0.7820 0.8019
30 0.8087 0.7998 0.8091 0.8259 0.8273 0.8279 0.8251 0.8318 0.8141 0.8316

Medicaid

5 0.5238 0.5470 0.5663 0.5579 0.5540 0.5569 0.5586 0.5791 0.5698 0.5660
10 0.6237 0.6342 0.6620 0.6645 0.6595 0.6627 0.6575 0.6764 0.6663 0.6615
15 0.6933 0.7015 0.7297 0.7348 0.7300 0.7329 0.7249 0.7420 0.7324 0.7268
20 0.7444 0.7511 0.7773 0.7842 0.7809 0.7828 0.7720 0.7877 0.7785 0.7736
25 0.7843 0.7902 0.8134 0.8211 0.8183 0.8197 0.8074 0.8213 0.8127 0.8088
30 0.8157 0.8211 0.8416 0.8496 0.8469 0.8482 0.8358 0.8475 0.8400 0.8362

Table 4: Diagnosis Codes in Each Visit for Patient 2 in the
Case Study.

Visit Diagnosis Codes

1

Symptoms involving digestive system (787)
Essential hypertension (401)
Symptoms involving respiratory system and other
chest symptoms (786)
Special screening for other conditions (V82)

2 Essential hypertension (401)

3 Disorders of lipoid metabolism (272)
Hypotension (458)

4
Essential hypertension (401)
Need for isolation and other prophylactic
measures (V07)

5 Diabetes mellitus (250)

6 Hypertensive heart disease (402)
Diabetes mellitus (250)

According to the proposed approach, we can predict the correct
diagnoses that this patient su�ers diabetes and hypertensive heart
disease. �is case study demonstrates that we can learn an accu-
rate a�ention weight for each visit, and the experimental results in
Section 4.3 also illustrate that the appropriate a�ention models can
signi�cantly improve the performance of the diagnosis prediction
task in healthcare.

4.5 Code Representation Analysis
�e interpretability of medical codes is important in healthcare. In
order to analyze the representations of medical codes learned by
the proposed model Dipoleд , we show top ten diagnosis codes with
the largest value in each of six columns selected from the hidden
representation matrix W >v ∈ R |C |×m in Table 5. In this way, we
can demonstrate the characteristic of each column and map each
dimension from the code embedding space to the medical concept.

In Table 5, we can clearly observe that the codes in all the six di-
mensions are about diabetes complications, which are in accordance
with the complications listed on the American Diabetes Associa-
tion6. Dimension 10 is related to eye complications and Alzheimer’s

6h�p://www.diabetes.org/living-with-diabetes/complications/

disease. Diabetes can damage the blood vessels of the retina (di-
abetic retinopathy), potentially leading to blindness, and Type 2
diabetes may increase the risk of Alzheimer’s disease. Dimension
38 relates to the complications of neuropathy (nerve damage). Di-
mension 77 is about heart diseases. It has been established that
there is a high correlation between diabetes, heart disease, and
stroke. In fact, two out of three patients with diabetes die from
heart disease or stroke. Patients with diabetes have a greater risk
of depression than people without diabetes. Dimension 79 includes
the codes related to mental health. Dimension 141 shows a fact that
diabetes may cause skin problems, including bacterial and fungal
infections. High blood pressure is one common complication of
diabetes shown in dimension 142, which also raises the risk for
heart a�ack, stroke, eye problems, and kidney disease.

4.6 Assumption Validation
In the proposed model, we adopt bidirectional recurrent neural net-
works to model patient visits instead of recurrent neural networks.
To illustrate the bene�t of employing bidirectional recurrent neu-
ral networks, we analyze the detailed mean accuracy of RNN and
Dipole- shown in Figure 3. We �rst divide patients into di�erent
groups based on the number of visits. �e group label is the quo-
tient of the number of visits divided by 15 for the Diabetes dataset
and 7 for the Medicaid dataset, which is X-axis in Figure 3. �en
we calculate the weighted average accuracy (Y-axis) of di�erent
groups, i.e.,

∑
n MAn∗Cn∑

n Cn
, where MAn is the mean accuracy of all

the patients with n visits, and Cn is the number of patients with
n visits. From Figure 3, we can observe that the average accuracy
of Dipole- is be�er than that of RNN in di�erent groups. On the
Diabetes dataset, the weighted mean accuracy of RNN increases
when the number of visits becomes larger. �is is because the codes
of visits on the Diabetes dataset are all about diabetes, and RNN
can make correct prediction according to recent visits’ information.
However, the codes on the Medicaid dataset are related to multiple
diseases, and it is hard to correctly predict the future visit informa-
tion when the sequences are too long. �us, the weighted mean
accuracy signi�cantly drops when the number of visits is large on
the Medicaid dataset.

Figure 4 shows the di�erence of weighted mean accuracy be-
tween Dipole- and RNN in di�erent groups. We can observe that
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Table 5: Interpretation for Diagnosis Code Representations on the Diabetes Dataset.
Dimension 10 Dimension 38 Dimension 77

Glaucoma (365)
Fracture of one or more tarsal and
metatarsal bones (825)
Dementias (290)
Psoriasis and similar disorders (696)
Mild mental retardation (317)
Cataract (366)
Injury, other and unspeci�ed (959)
Rheumatoid arthritis and other
in�ammatory polyarthropathies (714)
�yrotoxicosis with or without goiter(242)
Blindness and low vision (369)

Hereditary and idiopathic peripheral
neuropathy (356)
Other disorders of so� tissues (729)
Dermatophytosis (110)
Other disorders of urethra and urinary
track (599)
Mononeuritis of lower limb (355)
Diabetes mellitus (250)
Mononeuritis of upper limb
and mononeuritis multiplex (354)
Sprains and strains of
sacroiliac region (846)
Osteoarthrosis and allied disorders (715)
Other and unspeci�ed disorders of back (724)

Cardiac dysrhythmias (427)
Chronic pulmonary heart disease (416)
Special screening for malignant
neoplasms (V76)
Angina pectoris (413)
Other hernia of abdominal cavity without
mention of obstruction (553)
Cardiomyopathy (425)
Ill-de�ned descriptions and complications
of heart disease (429)
Diabetes mellitus (250)
Acute pulmonary heart disease (415)
Gastrointestinal hemorrhage (578)

Dimension 79 Dimension 141 Dimension 142

Neurotic disorders (300)
Other current conditions in the mother
classi�able elsewhere (648)
Symptoms concerning nutrition metabolism
and development (783)
Obesity and other hyperalimentation (278)
Diseases of esophagus (530)
Other organic psychotic conditions
(chronic) (294)
Schizophrenic disorders (295)
Asthma (493)
Chronic liver disease and cirrhosis (571)
Spondylosis and allied disorders (721)

Viral hepatitis (070)
Other cellulitis and abscess (682)
Other personal history presenting
hazards to health (V15)
Cellulitis and abscess of �nger and toe (681)
Bacterial infection in conditions classi�ed
elsewhere (041)
Episodic mood disorders (296)
Chronic ulcer of skin (707)
Mononeuritis of upper limb and
mononeuritis multiplex (354)
Other diseases due to viruses and
Chlamydiae (078)
Diabetes mellitus (250)

Essential hypertension (401)
Hypertensive renal disease (403)
Hypertensive heart disease (402)
Chronic renal failure (585)
Other disorders of kidney and ureter (593)
Other psychosocial circumstances (V62)
Secondary hypertension (405)
Nonspeci�c abnormal results of
function studies (794)
Calculus of kidney and ureter (592)
Other organic psychotic conditions
(chronic) (294)
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Figure 3: Weighted Mean Accuracy of Di�erent Groups.

with the increase of the number of visits, the di�erence also aug-
ments dramatically. It demonstrates that bidirectional recurrent
neural networks can “remember” more information when the se-
quences are long, and make correct predictions with their memories.
�us, modeling patient visits with bidirectional recurrent neural
networks is reasonable.
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Figure 4: Di�erence of Weighted Mean Accuracy.

5 CONCLUSIONS
Diagnosis prediction is a challenging and important task, and in-
terpreting the prediction results is a hard and vital problem for
predictive model in healthcare. Many existing work in diagnosis
prediction employs deep learning techniques, such as recurrent
neural networks (RNNs), to model the temporal and high dimen-
sional EHR data. However, RNN-based approaches may not fully
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remember all the previous visit information, which leads to the
incorrect prediction. To interpret the predicting results, existing
work introduces location-based a�ention model, but this mecha-
nism ignores the relationships between the current visit and the
past visits.

In this paper, we propose a novel model, named Dipole, to ad-
dress the challenges of modeling EHR data and interpreting the
prediction results. By employing bidirectional recurrent neural
networks, Dipole can remember the hidden knowledge learned
from the previous and future visits. �ree a�ention mechanisms al-
low us to interpret the prediction results reasonably. Experimental
results on two large real world EHR datasets prove the e�ective-
ness of the proposed Dipole for diagnosis prediction task. Analysis
shows that the a�ention mechanisms can assign di�erent weights
to previous visits when predicting the future visit information. We
demonstrate that the learned representations of medical codes are
meaningful. Finally, an experiment is conducted to validate the
reasonableness and e�ectiveness of modeling patient visits with
bidirectional recurrent neural networks.
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