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ABSTRACT
Predicting the risk of potential diseases from Electronic Health
Records (EHR) has attracted considerable attention in recent years,
especially with the development of deep learning techniques. Com-
pared with traditional machine learning models, deep learning
based approaches achieve superior performance on risk prediction
task. However, none of existing work explicitly takes prior medical
knowledge (such as the relationships between diseases and corre-
sponding risk factors) into account. In medical domain, knowledge
is usually represented by discrete and arbitrary rules. Thus, how to
integrate such medical rules into existing risk prediction models to
improve the performance is a challenge. To tackle this challenge,
we propose a novel and general framework called PRIME for risk
prediction task, which can successfully incorporate discrete prior
medical knowledge into all of the state-of-the-art predictive models
using posterior regularization technique. Different from traditional
posterior regularization, we do not need to manually set a bound
for each piece of prior medical knowledge when modeling desired
distribution of the target disease on patients. Moreover, the pro-
posed PRIME can automatically learn the importance of different
prior knowledge with a log-linear model. Experimental results on
three real medical datasets demonstrate the effectiveness of the
proposed framework for the task of risk prediction1.

CCS CONCEPTS
• Information systems→Datamining; •Applied computing
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1The PRIME source code is publicly available at http://www.acsu.buffalo.edu/
~fenglong.
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1 INTRODUCTION
With the immense accumulation of Electronic Health Records (EHR)
being available, the analysis of such data enables researchers and
healthcare providers to get closer to the goal of personalized
medicine. However, raw EHR data has its own issues, such as high di-
mensionality, temporality, sparsity, irregularity and bias [5]. These
challenges dramatically increase the difficulty of directly applying
traditional machine learning or statistical models [13, 14, 27, 28, 32]
to predict patients’ potential diseases, which is a core task in medi-
cal domain, named risk prediction. Therefore, it is crucial to develop
more powerful models for solving the challenges introduced by the
raw EHR data in risk prediction task.

Recently, deep learning models have shown the ability of directly
extracting meaningful features from raw electronic health records
in many domains, including computational phenotyping [1, 4],
diagnosis prediction [7, 8, 20], risk prediction [2, 3, 5, 9, 25], and so
on. Especially for risk prediction task, attention-based recurrent
neural networks (RNN) are employed to predict the disease of
Heart Failure in [9]. Convolutional neural networks (CNN) are also
introduced to capture the local temporal characteristics of patients’
visits and predict the risks of diseases [2, 3, 5], with improvement
in performance.

Though the aforementioned deep learning based models have
achieved good performance in the risk prediction task, they all
ignore the importance of prior medical knowledge, such as the
relationships between diseases and their corresponding risk factors.
As we all know, prior medical knowledge plays an important role
in healthcare domain. When a patient visits a doctor, the doctor
first reviews the current symptoms, and then takes a careful review
on medical history, such as medications, smoking history, alcohol
use, and diseases of family history, which are risk factors of diseases.
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With the current symptoms and patient’s past medical history, the
doctor may have an initial diagnosis for this patient. For example,
the symptoms of a patient are rapid irregular heartbeat associated
with shortness of breath, increased need to urinate at night, chest
pain and fainting. He/She has been suffering high blood pressure
and coronary artery disease more than eight years. According to the
experience (or prior medical knowledge) and current symptoms,
the doctor can quickly diagnose that the patient may have heart
failure rather than other diseases. It is because high blood pressure
and coronary artery disease are two key risk factors of heart failure.
Therefore, considering prior medical knowledge is essential for risk
prediction task.

However, it is extremely difficult to directly apply prior medical
knowledge to EHR data. On the one hand, the medical knowledge
is arbitrary or heterogeneous. Some diseases may be related to
age (continuous value), while others are caused by the habits such
as smoking or drinking (categorical value). On the other hand,
almost all the medical knowledge is represented by rules. Thus,
transforming the discrete arbitrary medical rules into the continuous
real values is a thought-provoking problem. Even if we can obtain
the real-valued representations of prior medical knowledge, how
to reasonably combine the knowledge with the predictive models
is still a challenge.

Posterior regularization [12] is an effective technique to convert
the discrete knowledge into continuous real-valued features by
modeling the posterior distribution as a constrained posterior fea-
ture set. However, the main drawback of directly applying posterior
regularization technique is that it needs to manually set a bound
for each constraint feature, which is impractical in medical domain.
For example, when predicting the risk of heart failure disease for a
patient, the doctor may consider the frequency of historical diseases
(called underlying diseases in medical domain) and their durations.
Here, the frequency and durations of underlying diseases can be
modeled as constraint features. It is hard to set exact bound values
for these two constraint features to determine whether the patient
has heart failure or not. Obviously, the key challenge here is how
to automatically learn the bound values of constraint features and
guarantee the predictive performance meanwhile.

To tackle all the aforementioned challenges, in this paper, we
propose a novel predictive framework PRIME, which can success-
fully integrate heterogeneous discrete PRIorMEdical knowledge
into the predictive models to improve the performance. Specifically,
the framework can employ all the existing deep learning based
approaches as the basic predictive model, such as recurrent neu-
ral networks (RNN) and convolutional neural networks (CNN). To
automatically learn the bounds of constraint features, we use a
log-linear model in the proposed PRIME instead of modeling the
posterior distribution as a constrained posterior set. It not only
makes the training process of the proposed model more efficient,
but also learns different weights for different constraint features.
We conduct experiments on three medical datasets. The results
show that the proposed framework PRIME is able to incorporate
heterogeneous prior medical knowledge and outperforms existing
risk prediction models.

It is worthwhile to highlight the contributions of the proposed
framework as follows:

• To the best of our knowledge, this is the first attempt to take
prior medical knowledge into account for risk prediction
task.

• We propose a novel framework PRIME, which models prior
medical knowledge as posterior regularization and learns
the desired posterior distribution with a log-linear model.

• The proposed PRIME is a general model, which can be easily
applied to any predictive models in healthcare. Moreover,
it is able to distinguish the importance of different prior
knowledge contributed to the risk prediction.

• Experimental results on three medical datasets demonstrate
that the proposed PRIME is effective for the task of risk
prediction.

In the following sections, we first review existing work in Sec-
tion 2. In Section 3, we introduce the background information on
deep learning based risk prediction models and posterior regular-
ization technique. The details of the proposed PRIME are presented
in Section 4. In Section 5, we conduct experiments on three real
EHR datasets and demonstrate the effectiveness of the proposed
PRIME. The limitation of the proposed framework is discussed in
Section 6. Finally, we conclude this work in Section 7.

2 RELATEDWORK
In this section, we briefly review existing studies which are closely
related to our work, including deep learning based models for
healthcare applications and posterior regularization techniques
with deep learning models.

2.1 Deep Learning for Healthcare
For most healthcare applications, the first step is to extract effec-
tive phenotypes from longitudinal EHR [1, 3–5, 7–9, 13, 14, 16, 20,
21, 24, 26–29, 32]. Traditional electronic phenotyping approaches
are mainly based on matrix factorization [27, 28, 32] and tensor
factorization [13, 14]. Recently, deep learning based models have
shown their superior ability to learn complex patterns from high
dimensional, noisy and temporal EHR data. Multi-layer perception
(MLP) is used to learn the representations of phenotypes [4] and
medical codes [7]. However, MLP based models do not consider the
temporal nature of the EHR data. To model the temporal EHR data,
recurrent neural networks (RNN) are applied to predict patients’
health status [8, 9, 20, 24, 26] and patient subtyping [1]. Convolu-
tional neural networks (CNN) focus on capturing local temporal
dependency among EHR data and are used for predicting multiple
diseases [25] and for other related task.

Risk prediction is an important yet challenging task in healthcare
domain. Choi et al. [9] try to use attention-based recurrent neural
networks to predict the risk of heart failure disease. Cheng et al. [5]
apply the CNN model to analyze discrete patient EHR data. Che
et al. [2] propose to use the pretrained embeddings of medical
features in the CNN model to improve the prediction performance.
In [3], the authors build a semi-supervised deep learning model
with generative adversarial networks for the risk prediction task.

Compared with all the aforementioned predictive models, the
proposed framework PRIME has the following advantages: (1) It
takes prior medical knowledge into account, and (2) it is a general
model that can include any state-of-the-art predictive model when
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modeling patients’ visits. The prior knowledge guides the predictive
models to learn better sub-optimal parameters, which finally leads
to good predictive performance.

2.2 Posterior Regularization in Deep Learning
The proposed framework PRIME is inspired by posterior regu-
larization [12], which has been successfully introduced into deep
learning models for sentiment classification [17] and machine trans-
lation [31] in natural language processing. Hu et al. [17] add the
first-order logic rules into convolutional neural networks to further
enhance the performance of sentiment classification task. However,
this work still needs tomanually set the bound values of constrained
posterior features.

Different from the work [17], we use a log-linear model to rep-
resent the desired distribution. Employing log-linear models not
only enables the proposed PRIME to incorporate prior medical
knowledge as real-valued features, but also makes the proposed
framework differentiable.

3 BACKGROUND
In this section, we first describe the EHR data used in this paper,
then introduce the basic deep learning based risk prediction models,
and finally present the posterior regularization technique.

3.1 EHR Data Description
The EHR data consists of patients’ time-ordered visiting records.
Let P denote the set of all the patients, where |P | is the num-
ber of patients in the EHR data. For each patient p ∈ P, there
are Tp time-ordered visits V (p)

1 ,V
(p)
2 , · · · ,V

(p)
Tp

. We denote C =

{c1, c2, · · · , c |C |} as the set of all the diagnosis codes or medical
events, and |C| represents the number of unique diagnosis codes.
Each visit V (p)

t includes a subset of diagnosis codes, which is de-
noted by a vector x(p)t ∈ {0, 1} |C | . The i-th element in x(p)t is 1
if V (p)

t contains diagnosis code ci . Demographical information of
patients is also recorded for each visit, such as gender, ethnicity and
age. For each patient, we use g(p) to denote his/her demographical
information at time Tp . For simplicity, we drop the superscript (p)
when it is unambiguous in the following sections.

3.2 Basic Risk Prediction Models
In this paper, we separately apply two basic deep learning models
used for risk prediction: One is a convolutional neural network
(CNN) with a 1D convolutional layer over time-ordered visits and
a max pooling layer, which has been used in previous work [2,
3, 5], and the other is a basic long-short term memory network
(LSTM) [15].

The input of the predictive model is the EHR records of the p-th
patient, denoted by X(p) = {x(p)t }

Tp
t=1 ∈ RTp×|C | . Since the input

X(p) is too sparse and with high dimensionality, it is natural to
learn its low-dimension and meaningful embeddings. Thus, we
first embed the input xt into visit-level representations vt ∈ Rk as
follows:

vt =Wvxt + bv , (1)

where Wv ∈ Rk×|C | and bv ∈ Rk are parameters to be learned,
and k is the size of latent representations. Next, we provide the
details of these two predictive models.

CNN Predictive Model. We first apply the convolutional opera-
tion only over the temporal dimension ofV(p) = {v(p)t }

Tp
t=1 ∈ RTp×k .

In order to capture the temporal dependencies among multiple vis-
its, we use a combination ofm filters with s different window sizes.
Let l denote the size of a time window, and then vt :t+l−1 represents
the concatenation of l visits from vt to vt+l−1. A filter Wf ∈ Rl×k

is applied on the window of l visits to produce a new feature ft ∈ R
with the ReLU activation function as follows:

ft = ReLU(Wf vt :t+l−1 + bf ),

where bf ∈ R is a bias term, and ReLU(f ) = max(f , 0). This fil-
ter is applied to each possible window of visits in the whole de-
scription {v1:l , v2:l+1, · · · , vTp−l+1:Tp } to generate a feature map
f ∈ RTp−l+1 as follows:

f = [f1, f2, · · · , fTp−l+1].

To obtain themost important feature, max pooling technique [10]
is used over the feature map f , i.e., f̂ = max(f). We can see that each
filter produces a feature. Since we havem filters with s different
window sizes, the final vector representation of the p-th patient
can be obtained by concatenating all the extracted features, i.e.,
z(p) ∈ Rms .

Finally, a fully connected softmax layer is applied to produce
prediction probabilities as follows:

ŷp = softmax(Wyz(p) + by ), (2)

where Wy ∈ RN×ms and by ∈ RN are the learnable parameters,
and N is the number of target diseases. In this work, we focus on
the binary prediction task, i.e., N = 2.

LSTM Predictive Model. We use the basic LSTM unit [15] in the
predictive model, whose behavior is controlled by a set of three
gates: input, output and forget gates. The memory unit accumulates
the useful information from the input vt at time t based on the
values of the gates, and stores the information in its internal state.
The final output z(p) from LSTM is the vector representation of
patient p. Finally, Eq. (2) is used for prediction.

Let θ be the set of all the parameters in the CNN/LSTM model,
and the prediction probability vector ŷp can also be denoted by
model posterior distribution P(yp |X(p);θ ), where yp is the ground
truth. The cross-entropy between the ground truth yp and the
prediction probabilities ŷp is used to calculate the loss. Thus, the
objective function of risk prediction is the average of cross-entropy:

L(θ ) = −
1
|P |

|P |∑
p=1

(
y⊤p log(ŷp ) + (1 − yp )⊤ log(1 − ŷp )

)
. (3)

Though the predictive models have shown their superior ability
for the risk prediction task, they all ignore the importance of prior
medical knowledge. For example, it is known that the heart works
harder than it has to if the blood pressure is high. In other words,
high blood pressure is an important factor to judge whether the
patient will suffer the heart failure disease in the future. Therefore,
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it is crucial to design a new framework for integrating priori medical
knowledge into risk prediction model.

3.3 Posterior Regularization
Posterior regularization [12] is proposed to incorporate indirect su-
pervision (i.e., priori medical knowledge) via structural constraints
on posterior distributions of latent variables. The goal of posterior
regularization is to restrict the space of model posteriors using
priori knowledge to guide the model towards desired parameter
distributions. Let q(yp ) denote the desired distribution of patient p.
The posterior regularized loss function is defined as

F (θ ,q) = L(θ ) + α
1
|P |

|P |∑
p=1

min
q∈Q

KL
(
q(yp )| |P(yp |X(p);θ )

)
, (4)

where α is a hyper-parameter to balance the preference between the
loss of predictive model (Eq. (3)) and posterior regularization, and
KL(·| |·) is the Kullback-Leibler divergence to measure the difference
between the desired distribution q(yp ) and the posterior distribu-
tion P(yp |X(p);θ ) of the predictive model. Q is a set of constraints
for posterior information and defined as:

Q = {q(yp ) : Eq [ϕ(X(p), yp )] ≤ b},

where ϕ(X(p), yp ) is the set of constraint features and b is the
(known) bound of constraint feature expectations. However, in
risk prediction task, it is hard to specify the value of b to effec-
tively bound the exceptions of constraint features. For example, the
risk factors of heart failure include high blood pressure, diabetes,
heart attack, and so on2. Even for the experienced doctors, they
hardly provide the exact bounds of different risk factors. The other
challenge is that the same risk factor may cause multiple diseases.
Taking diabetes as an example, it causes not only heart failure, but
also chronic kidney disease3. As the expectation of the same risk
factor causing different diseases may be different, it is even more
difficult to set different bound values for different diseases, and thus
directly applying such posterior regularization techniques may not
be practical.

4 RISK PREDICTION FRAMEWORKWITH
PRIORI MEDICAL KNOWLEDGE

To tackle the aforementioned challenges in Section 3, in this work,
we propose a novel framework PRIME that incorporates posterior
regularization technique [12] into risk prediction.We first introduce
the proposed framework and then present how to design constraint
features with priori medical knowledge for the target disease.

4.1 The Proposed Framework PRIME
Figure 1 shows the overview of the proposed framework PRIME
for the task of risk prediction. Given the input data X(p), to predict
its true label vector yp , we can use the predictive model to obtain
the prediction probability vector ŷp = P(yp |X(p);θ ). The main
objective of the proposed PRIME is to integrate the prior medical

2https://www.mayoclinic.org/diseases-conditions/heart-failure/symptoms-causes/
syc-20373142
3https://www.mayoclinic.org/diseases-conditions/chronic-kidney-disease/
symptoms-causes/syc-20354521

Constraint 

Feature Space

Risk 

Prediction 

Model

Input Data      

Loss

Figure 1: Overview of the Proposed Framework PRIME.

knowledge into the basic risk prediction model. To achieve this
goal, a desired distribution q(yp ) is introduced along with posterior
regularization technique. However, as we discussed in Section 3.3,
we cannot directly optimize Eq. (4) to obtain the optimal parameters
for risk prediction model. To solve the first challenge, that is how
to specify the bound b for different constraint features, we use a
log-linear model [22] to represent the desired distribution q(yp ).
The objective function can be rewritten as follows:

J(θ , Γ,W) = L(θ )+α
1
|P |

|P |∑
p=1

KL
(
ỹp | |P(yp |X(p);θ )

)
+βL′(Γ,W),

(5)
where the desired distribution ỹp = Q(yp |X(p); Γ,W) that encodes
priori medical knowledge is defined as follows:

Q(yp |X(p); Γ,W) =
exp{Γ · ϕ(X(p), yp ;W)}∑
y′p exp{Γ · ϕ(X(p), y′p ;W)}

, (6)

where Γ is the learnable confidence matrix for different constraint
feature categories according to prior medical knowledge, which
will be illustrated in Section 4.2. Introducing the parameter set W
into the constraint feature function makes the proposed model
successfully distinguish the difference among multiple pieces of
priori knowledge in the same category. In this way, we do not need
to manually specify the bound vector b. β is the hyper-parameter,
and L′(Γ,W) is the average cross entropy between the desired
distribution ỹp and the ground truth yp , which is defined as follows:

L′(Γ,W) = −
1
|P |

|P |∑
p=1

(
y⊤p log(ỹp ) + (1 − yp )⊤ log(1 − ỹp )

)
.

From Eq. (5), we can observe that the proposed approach is a
general framework for incorporating knowledge into the predic-
tive model, which can be applied to any prediction task in medical
domain, including, but not limited to, risk prediction, diagnosis
prediction and survivability prediction. Moreover, the flexibility of
log-linear models makes the proposed framework easily represent
the arbitrary priori knowledge as constraint features. Furthermore,
it is easy to optimize the objective function (Eq. (5)) with standard
stochastic gradient descent algorithms when we employ the differ-
entiable log-linear models. Finally, the design of the desired distri-
bution in Eq. (6) can successfully tackle the problem of manually
setting bound values for constraint features. The proposed PRIME
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can automatically assign different confidence levels for the same
constraint feature when predicting the risk of different diseases.

Next, we will introduce how to design constraint features to
integrate priori medical knowledge into the desired distribution for
risk prediction in detail.

4.2 Constraint Feature Design
Since different diseases have different risk factors, we cannot use
the same constraint feature with prior medical knowledge to pre-
dict these diseases. Fortunately, in medical domain, doctors have
classified risk factors into five main categories: patient character-
istics, underlying diseases, disease duration, genetics and family
history. In the following, we formally provide the design of these
constraint features.

Patient Characteristics
In healthcare, it is natural to consider the characteristics of pa-
tients such as gender, age and ethnicity, when predicting the risk
of diseases. For example, people of certain races, including Blacks,
Hispanics, American Indians and Asian-Americans, are at higher risk
of suffering type 2 diabetes4. Since COPD develops slowly over
years, most people are at least 40 years old when symptoms begin5.
Thus, it is important to design constraint features for patient char-
acteristics. In this paper, we mainly focus on two characteristics of
patients: ethnicity and age.

Given the demographical information g(p) = [д
(p)
e ,д

(p)
a ] of pa-

tient p and the corresponding label yp , the feature on ethnicity can
be defined as follows:

ϕe (X(p), yp ) =

{
1 if д(p)e ∈ E

0 otherwise
,

where E denotes the set of races related to the prediction. Since
the value of ϕe is either 1 or 0, thus the ethnicity vector ϕe = [1, 1]
or [0, 0]. To model the different importance on cases and controls,
the confidence vector γe is introduced for the constraint feature
ethnicity.

For most of diseases, the risk increases as the patients get older.
Thus, the commonly used logistic function is introduced to model
the effect of age as follows:

ϕa (X(p), yp ;w(a)
y ) =

{
1 + exp{−w(a)

y (д
(p)
a −ψ )}

}−1
,

where w
(a)
y ∈ R is the disease specific parameter to model the

influence of age for risk prediction. If the disease is not sensitive
to age, then w

(a)
y → +∞. ψ is a predefined scalar. In this paper,

we use age groups instead of real ages of patients and set ψ = 9
(i.e., the age from 40 to 45). Thus, the age feature vector ϕa =
[ϕa (w

(a)
0 ),ϕa (w

(a)
1 )], and γa is its corresponding confidence vector.

Underlying Diseases
Underlying diseases of patients are the key risk factors for the
prediction. Different underlying diseases may have different contri-
butions for the target disease prediction. For example, the underly-
ing diseases of heart failure include high blood pressure, coronary
4https://www.mayoclinic.org/diseases-conditions/diabetes/symptoms-causes/
syc-20371444
5https://www.mayoclinic.org/diseases-conditions/copd/symptoms-causes/
syc-20353679

artery disease, diabetes, and so on. If the diagnosis codes about
high blood pressure always appear in a patient’s visiting records
compared with other diseases’ codes, then the probability of high
blood pressure causing heart failure is higher than that of other
underlying diseases.

To fully make use of all the underlying diseases, we first obtain
theses diseases for each risk prediction task denoted as U, and
then calculate the frequency of those underlying diseases in pa-
tient p’s visits, which is represented by up . The reason is that the
greater the frequency, the higher the risk. Additionally, the effect
of different underlying diseases is different for the final disease pre-
diction. Therefore, the constraint features of underlying diseases
are designed as follows:

ϕu (X(p), yp ;w(u)
y ) =

{{
1 + exp(−w(u)

y · up )
}−1 if sum(up ) > 0

0 if sum(up ) = 0
,

where w(u)
y ∈ R |U | is the leaned parameter to represent the dif-

ferent effect of different underlying diseases, |U| is the number of
underlying diseases, and sum(up ) is the sum of up . The underlying
disease vector is ϕu = [ϕu (w

(u)
0 ),ϕu (w

(u)
1 )], and its importance

vector is γu .

Disease Duration
Similar to the frequency of underlying diseases, the duration of
underlying diseases is another import factor for risk prediction. If a
patient p has been diagnosed high blood pressure for five years, and
the other patient p′ has the disease for only one month, then the
risk of suffering the disease heart failure on patient p is much higher
than that on patientp′. In order to obtain the duration of underlying
diseases, we first find the start time t (p)d of a certain underlying
disease d from patients’ visiting records, and then calculate the
duration usingTp − t

(p)
d . Finally, the duration of diseases is denoted

as dp . Based on dp , the constraint features on disease duration is
defined as follows:

ϕd (X
(p), yp ;w(d )

y ) =

{{
1 + exp(−w(d )

y · dp )
}−1 if sum(dp ) > 0

0 if sum(dp ) = 0
,

wherew(d )
y ∈ R |U | is similar tow(u)

y to model the difference among
underlying diseases, and ϕd = [ϕd (w

(d )
0 ),ϕd (w

(d )
1 )] with confi-

dence vector γd .

Genetics & Family History
Many diseases are caused by abnormalities in an individual’s
genome6. For example, the uncommon genetic disorder alpha-1-
antitrypsin deficiency is the cause of some cases of COPD. To design
the constraint feature for genetics, we first collect a set of genetic
disorders G which are related to the target disease. Let C(p) denote
all the diagnosis codes in patient p’s visits X(p). The value of con-
straint feature is 1 as long as the intersection of C(p) and G is not
empty. The formal mathematical formulation is given as follows:

ϕд(X(p), yp ) =

{
1 if C(p) ∩ G , ∅

0 otherwise
.

6https://www.genome.gov/10001204/specific-genetic-disorders/
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Similar to the constraint feature ethnicity, the value of ϕд is 1 or 0.
Thus, ϕд = [0, 0] or [1, 1], and γд is the confidence vector.

Some diseases are related to the disease history of the whole
family, such as chronic kidney disease. We collect the set of fam-
ily history disorders H , and then provide the constraint feature
function as follows:

ϕh (X
(p), yp ) =

{
1 if C(p) ∩H , ∅

0 otherwise
,

and ϕh = [0, 0] or [1, 1, ] with the confidence vector γh .
Note that (1) in the proposed PRIME framework, the confidence

matrix Γ and weights w ∈ W of risk factors belonging to dif-
ferent categories can be learned automatically. (2) We use the
weighted combination of all the risk factors to predict the risk
of diseases, i.e., Γ · ϕ(X(p), yp ;W) = γe ⊙ ϕe + γa ⊙ ϕa + γu ⊙

ϕu + γd ⊙ ϕd + γд ⊙ ϕд + γh ⊙ ϕh in Eq. (6), where ⊙ is the
element-wise multiplication. (3) If the patient p does not have any
underlying diseases, i.e., sum(up ) = 0, the desired distribution
Q(yp |X(p); Γ,W) will be close to [0.5, 0.5], which cannot correctly
represent the real distribution. To avoid this phenomenon, we force
Q(yp |X(p); Γ,W) = P(yp |X(p);θ ) when sum(up ) = 0.

4.3 Prediction
In the training process, our goal is to learn a set of parameters by
minimizing the objective function Eq. (5), i.e.,

θ̂ , Γ̂,Ŵ = argmin
θ,Γ,W

{
J(θ , Γ,W)

}
.

Given the learned parameters, we can predict the risk for an unseen
patient X(p) according to

ŷp = argmax
{
P(yp |X(p); θ̂ )

}
. (7)

Though Eq. (7) can make predictions for given patients, it ignores
the effect of prior medical knowledge. Thus, we use the following
formulation to predict the risk of patients:

ŷp = argmax
{
P(yp |X(p); θ̂ ) +Q(yp |X(p); Γ̂,Ŵ)

}
. (8)

5 EXPERIMENTS
To fairly evaluate the effectiveness of the proposed framework
PRIME, three real EHR datasets are used, including heart failure,
COPD and chronic kidney disease cohorts. The experimental results
show that integrating prior medical knowledge indeed improves the
performance of onset prediction. Moreover, the proposed PRIME
framework is able to learn the importance of different risk factors
for the final prediction. Next, we start this section by introducing
the datasets and experimental settings, and then provide detailed
performance comparison between the proposed PRIME and state-
of-the-art approaches.

5.1 Datasets
The datasets are extracted from a real EHR database, and three
cohorts are identified: heart failure, COPD and chronic kidney
disease. The statistics of these three datasets are listed in Table 1.
The goal of this work is to predict whether a patient is from the case
or control group as a binary classification task. For each dataset, we
first identify a set of optional case patients according to the medical

Table 1: Statistics of Datasets.

Dataset Heart Failure COPD Kidney Disease

# of cases 2,403 4,807 3,201
# of controls 5,168 11,487 7,020
# of visits 247,792 518,996 345,676
Avg. # of visits per patient 32.73 31.85 33.82
# of unique ICD-9 codes 4,130 5,132 4,714
Avg. # of codes per visit 2.83 2.71 2.81

diagnosis guidelines, and then domain experts help us confirm
whether the patients suffer these diseases. Finally, a set of group
matched controls is collected according to patient demographics
and clinical characteristics. For each case patient, we denote the
date of disease confirmation, i.e., the operation criterion date, then
track back from this date, hold off the visits within the prediction
window (270 days), and finally use the remaining visits before the
prediction window as the patient’s input data. For each control
patient, we hold off the last one year’s visits and use the remaining
visits as the input data. We remove the ICD-9 codes which appear
less than 5 times in the datasets, and exclude patients who made
less than 5 visits.

5.2 Experimental Setup
In this subsection, we first describe the traditional and state-of-the-
art approaches for risk prediction which are used as baselines, and
then introduce the implementation details. Finally, we outline the
measures used for evaluation.

Baseline Approaches
To validate the performance of the proposed framework for risk
prediction task, we implement the following methods:

• Traditional classification approaches. We compare the proposed
PRIMEwith logistic regression (LR), support vector machine (SVM)
and random forest (RF). The input data is the frequency of all the
diagnosis codes appeared in all the visits. When implementing
these approaches with scikit-learn7, we follow the same setting as
mentioned in previous work [2, 3].

• Deep learning approaches. We use four deep learning models
as baselines, including two recurrent neural networks (GRU [6]
and LSTM [15]), and two prediction approaches: RETAIN [9] and
CNN [2, 3, 5]. For GRU, LSTM and RETAIN, we set k = 256 in
Eq. (1) and the hidden size as 256. For CNN, we set the size of
filter windows (l) from 2 to 5 with s = 100 filter maps. We also
use regularization (l2 norm with the coefficient 0.001) and drop-out
strategies (the drop-out rate is 0.5) for all the approaches.

The Proposed Approaches
PRIME is the proposed framework for risk prediction, which inte-
grates prior medical knowledge with posterior regularization tech-
nique. PRIMEr and PRIMEc are two implementations of PRIME,
which use LSTM and CNN as the basic predictive model respec-
tively. The settings of PRIMEr and PRIMEc are the same as those
of LSTM and CNN. Besides, we set α = β = 0.01 for PRIMEr , and
α = 0.01 and β = 0.1 for PRIMEc . PRIMEr− and PRIMEc− have
7http://scikit-learn.org/stable/
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the same settings with PRIMEr and PRIMEc except for the final
prediction step. PRIMEr− and PRIMEc− use Eq. (7), but PRIMEr
and PRIMEc apply Eq. (8) for the risk prediction.
Details of Designing Constraint Features
To clearly show the details of designing constraint features for each
prediction task, we first list all the underlying diseases used for
the three prediction tasks in Table 2. Next, we introduce how to
calculate the constraint features: underlying disease and disease du-
ration. For each kind of underlying diseases, if one of the diagnosis
codes appears in the patients’ visits, then the counter of this disease
adds 1. The duration of each underlying disease is calculated from
the first appeared date to the end and measured by months. If the
frequency of underlying diseases is smaller than 3, then we set it
as well as its duration as 0 in our experiments.

Table 2: Diagnosis Codes (ICD9) of Underlying Diseases. “∗”
means that all the codes in this diagnosis group are included.

Disease ICD-9 Codes

High Blood Pressure
401, 401.0, 401.1, 401.9, 402.0,
402.00, 402.1, 402.10, 402.9,
402.90

Coronary Artery Disease 414.00, 414.01, 414.0
Diabetes 250.∗
Congenital Heart Defects V13.65
Valvular Heart Disease 424.0

Alcohol Use 305.0, 305.00, 305.01,
305.02, 305.03

Smoking 305.1, V15.82, E869.4

Obesity 278, 278.0, 278.00, 278.01,
278.02, 278.03

Asthma 493.∗
Abnormal Kidney Structure 794.4
Exposure to dusts & Chemicals V87.2

The constraint features used in heart failure prediction task
include age, underlying diseases and their durations. The underlying
disease setU consists of high blood pressure, coronary artery disease,
diabetes, congenital heart defects, valvular heart disease, alcohol use,
smoking and obesity. The constraint features for predicting the
risk of COPD are age, genetics (the diagnosis code 273.4, i.e., G =
{273.4}), underlying diseases and durations. The underlying diseases
include smoking, asthma and exposure to dusts and chemicals. For the
task of kidney disease prediction, we use age, ethnicity, diseases of
family history, underlying diseases and their durations. Specifically,
ethnicity set E includes African-American, Native American and
Asian-American. The diagnosis codes about family history (i.e., H )
are V18.6, V18.61, V18.69. The underlying diseases are high blood
pressure, diabetes, smoking, obesity and abnormal kidney structure.
Implementation Details & Evaluation Strategies
We implement all the deep learning baselines and the proposed
framework PRIME with PyTorch 0.2.0. For training models, we
use Adadelta [30] with a mini-batch size of 50. We randomly di-
vide the datasets into the training, validation and testing set in
a 0.75:0.10:0.15 ratio. The validation set is used to select the best

values of parameters. We repeat all the approaches 10 times and
report the average performance.

We use F1 Score, Accuracy, and the area under the receiver oper-
ating characteristic curve (AUROC) as measures for comparing the
performance of all the methods in three risk prediction tasks.

5.3 Performance Evaluation
Table 3 shows the performance of all the approaches on all the
three real world medical datasets. We can observe that the proposed
approaches achieve the best performance compared with all the
baselines in terms of the values of all the measures.

On the Heart Failure dataset, the overall performance of tradi-
tional approaches LR, RF and SVM is worse than that of the deep
learning based approaches. This illustrates that employing deep
learning techniques to model the high dimensional and sparse EHR
data is effective for risk prediction task. In the four deep learn-
ing based baselines, GRU and LSTM perform better than RETAIN
and CNN. Since RETAIN applies attention mechanisms, training
RETAIN needs abundant EHR data. The size of the Heart Failure
dataset is relatively small, and thus the performance of RETAIN
is worse than that of GRU and LSTM. The advantage of CNN is
to capture the local temporal important features. However, heart
failure is a chronic disease, which needs to capture the longtime
characteristics of disease evolution. RNN based models can cor-
rectly recognize these features on the Heart Failure dataset, which
leads to better performance compared with CNN.

For the proposed four approaches, PRIMEr achieves the best per-
formance. We can observe that the performance of both PRIMEr
and PRIMEr− is better than that of the basic predictive model
LSTM. Similarly, the values of all the measures on both PRIMEc
and PRIMEc− are higher than those on CNN. These observations
strongly confirm that prior medical knowledge can help the predic-
tive models to improve the performance.

On the COPD dataset, the performance of RETAIN is better than
that of GRU and LSTM, which shows that the attention mechanism
starts to work. Among all the baselines, the performance of CNN is
the best. Even for the proposed PRIMEr and PRIMEr−, the values
on all the measures are smaller than those of CNN. The reason is
that unlike some diseases, COPD has a clear cause, which is directly
related to cigarette smoking. CNN has superior ability to capture
these local important features, i.e., the diagnosis codes about smok-
ing in visits. Thus, it achieves better performance compared with
other approaches. However, after integrating prior medical knowl-
edge using posterior regularization, i.e., the proposed approach
PRIMEc significantly improves over CNN. This again confirms that
taking prior medical knowledge into account is effective for risk
prediction task.

Since the characteristics of patients suffering kidney disease are
very clear, the traditional classification approach RF can achieve
comparable performance with deep learning based ones. Even on
the simple dataset, incorporating prior medical knowledge can still
improve the predictive performance. On the Kidney Disease dataset,
we also observe that the performance of the basic model LSTM is
comparable with that of the proposed PRIMEr . This is because we
do not tune the best values of the hyper-parameters α and β . These
two parameters are sightly sensitive to the dataset. Nevertheless,
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Table 3: Performance on the Three Real World Medical Datasets.

Model Heart Failure COPD Kidney Disease
AUROC F1 Score Accuracy AUROC F1 Score Accuracy AUROC F1 Score Accuracy

Traditional
Classification

LR 0.8810 0.8383 0.9048 0.8940 0.8559 0.9206 0.9147 0.8922 0.9335
RF 0.8755 0.8444 0.9137 0.8801 0.8478 0.9202 0.9235 0.9145 0.9491
SVM 0.8424 0.7734 0.8590 0.8400 0.7711 0.8715 0.8940 0.8545 0.9067

Deep
Learning

GRU 0.9047 0.8854 0.9357 0.9014 0.8772 0.9349 0.9263 0.9146 0.9485
RETAIN 0.8913 0.8661 0.9251 0.9110 0.8925 0.9431 0.9225 0.9133 0.9485
LSTM 0.9034 0.8827 0.9339 0.9041 0.8812 0.9370 0.9267 0.9164 0.9498
CNN 0.8994 0.8712 0.9260 0.9181 0.8968 0.9444 0.9284 0.9161 0.9491

This Work

PRIMEr− 0.9059 0.8881 0.9374 0.9048 0.8859 0.9399 0.9258 0.9107 0.9455
PRIMEc− 0.8944 0.8709 0.9278 0.9204 0.9005 0.9464 0.9331 0.9201 0.9511
PRIMEr 0.9126 0.8955 0.9410 0.9052 0.8868 0.9403 0.9276 0.9118 0.9459
PRIMEc 0.9070 0.8788 0.9295 0.9211 0.9014 0.9468 0.9362 0.9236 0.9530

the proposed PRIMEc outperforms other approaches on the Kidney
Disease dataset.

From Table 3, we can safely conclude that integrating prior med-
ical knowledge into existing risk prediction model can help it im-
prove the predictive performance. Moreover, utilizing posterior
regularization technique to model the prior medical knowledge
with risk prediction approach is effective and reasonable.

Table 4: Statistics of Constraint Features on Three Datasets.

Group Heart Failure COPD Kidney Disease
= 0 > 0 = 0 > 0 = 0 > 0

Case 424 1,979 3,033 1,774 588 2,613
Control 3,649 1,519 11,023 464 5,076 1,944
Sum 4,073 3,498 14,056 2,238 5,664 4,557

5.4 Importance of Constraint Features
The main contribution of this work is to introduce prior medical
knowledge into the predictive model. To model the prior knowl-
edge, posterior regularization technique is applied. The challenge of
posterior regularization is how to design constraint features, which
is introduced in Section 4.2. Next, we conduct experiments on the
constraint features to illustrate the reasonableness of the proposed
framework. We count four numbers in Table 4: The number of
patients in case/control group with sum(up ) = 0 and sum(up ) > 0.
We can observe that more than 50% patients have no constraint
features on underlying diseases and durations. Especially on the
COPD dataset, there are 86.3% patients without underlying diseases
in the constraint feature set (i.e., sum(up ) = 0). Thus, we cannot
directly use constraint features to predict the labels of patients.
However, even only using a small part of patients with constraint
features (i.e., sum(up ) > 0), the proposed framework can learn
better model parameters and achieve better performance compared
with the basic predictive models. This also can be observed from
Table 3. Thus, designing constraint features for risk prediction task
is necessary.

5.5 Constraint Feature Analysis
The advantage of the proposed PRIME is to automatically learn the
weights for different risk factors and constraint feature categories.
Next, we quantitatively show the weights learned by the proposed
framework and qualitatively illustrate the reasonableness of the
learned weights.

Confidence of Feature Categories. Figure 2 shows the normalized
confidence scores Γ learned by PRIMEr on the Heart Failure dataset,
where the normalizer is Softmax function. We can observe that the
six weights are different, and the weights on the risk prediction
are higher than those on the non-risk prediction. From Eq. (6), we
can observe that only according to the confidence matrix Γ, the
proposed model PRIMEr cannot determine the labels of patients.
This is because they are also related to the weights on the constraint
features.
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Figure 2: Confidence Matrix Learned by PRIMEr on the
Heart Failure Dataset.

Weights of Constraint Features. Figures 3 and 4 show the weights
learned by the proposed framework PRIMEr on the Heart Failure
dataset for the constraint features: underlying diseases and disease
duration respectively. From Figure 3(a), we can observe that for
the prediction of case patients, congenital heart defects, valvular
heart disease, alcohol use play important roles for the case patients’
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Figure 3: LearnedWeights by PRIMEr for Underlying Diseases on the Heart Failure Dataset. X-axis represents different under-
lying diseases, which are in the order of 1-high blood pressure, 2-coronary artery disease, 3-diabetes, 4-congenital heart defects,
5-valvular heart disease, 6-alcohol use, 7-smoking and 8-obesity. Since the values of the learned weights may be negative, we
use softmax function to normalize the weight vector. Y-axis represents the normalized weights.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Underlying Disease d

N
o
rm

a
li
z
e
d
W
e
ig
h
t

(a) w(d )
1 (Risk)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

Underlying Disease d

N
o
rm

a
li
z
e
d
W
e
ig
h
t

(b) w(d )
0 (Non-risk)

Figure 4: Learned Weights by PRIMEr for Disease Duration on the Heart Failure Dataset.

prediction. Congenital heart defect8 is one or more abnormalities
in the heart’s structure that the patients are born with. One of
complications of congenital heart defects is heart failure. Valvular
heart disease9 may cause heart failure when one or more of the
valves do not open or close properly. Some studies [11] have been
shown that heavy drinking increases the risk of heart failure.

Figure 3(b) shows the weights of underlying diseases on the
control patients. The weight of high blood pressure, coronary artery
disease and diabetes is much higher than that of other risk factors.
It dose not mean that these three factors are not the risk factors
for the prediction of heart failure disease. The reason is that when
constructing the control patients for cases, we consider patients’
underlying diseases. Since these three diseases are common ones,
they all frequently appear in the visits of both case and control
patients.

For the learned weights for disease duration shown in Figure 4,
the overall trends are similar with those estimated for underly-
ing diseases. These two figures demonstrate that the proposed
framework PRIME can learn different weights for different risk
factors according to the characteristics of input data. In this way,
the proposed framework PRIME successfully tackles the drawback
of existing posterior regularization models [12, 17]. Due to the lim-
itation of space, we do not show the weights on the COPD and

8https://www.mayoclinic.org/diseases-conditions/adult-congenital-heart-disease/
symptoms-causes/syc-20355456
9https://www.mayoclinic.org/diseases-conditions/heart-valve-disease/
symptoms-causes/syc-20353727

Kidney dataset as the patients are similar with that in the weights
exhibited on the Heart Failure dataset.

6 DISCUSSIONS
This paper presents PRIME, a deep learning based framework for
risk prediction task. The proposed PRIME automatically incorpo-
rates discrete medical knowledge or rules into deep prediction
models using posterior regularization. With such a design, the pro-
posed framework achieves more accurate prediction results than
the state-of-the-art baselines.

It is worth mentioning that we do not explicitly perform
any missing value imputation for the input EHR data. Imputing
EHR data is challenging as EHR data are not missing at random
(NMAR) [18, 19, 23]. The proposed PRIME does not explicitly solve
the problem of missing values. However, it does implicitly reduce
the impact brought by missing values by employing the dropout
technique, which is essentially equivalent to the random remove of
some visits or codes. Thus, the proposed framework is more robust
to missing visits.

The limitation of this work is that the proposed PRIME is only ef-
fective for common diseases. For rare and emerging diseases, since
there is little medical knowledge about them, it is hard to incor-
porate any prior knowledge into deep learning predictive models.
Thus, the proposed PRIME may achieve similar performance to
the state-of-the-art baselines. In our future work, we will focus on
how to improve predictive performance of risk prediction for rare
diseases.
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7 CONCLUSIONS
In this paper, we propose a general risk prediction framework
PRIME, which can integrate prior medical knowledge into all
the existing predictive models to improve the predictive perfor-
mance. Specifically, we employ two state-of-the-art deep learning
architectures–recurrent neural networks (RNN) and convolutional
neural networks (CNN)–as the basic predictive models. To model
the discrete and heterogeneous prior medical knowledge, posterior
regularization technique is used. However, different from existing
posterior regularization, we use a log-linear model to estimate the
desired distributions of diseases. The benefit of the proposed ap-
proach is that it can automatically learn the weights for different
prior medical knowledge. We validate the proposed framework on
three real medical datasets. Experimental results show that the pro-
posed PRIME outperforms existing risk prediction models. Finally,
we qualitatively analyze the reasonableness of the weights learned
by the proposed PRIME.

ACKNOWLEDGMENTS
The authors gratefully thank Ran Huo who is an MD candidate
from Southern Medical University for helpful discussions. The au-
thors would like to thank the anonymous referees for their valuable
comments and suggestions, and NVIDIA Corporation with the do-
nation of the Titan Xp GPU. This work is supported in part by
the US National Science Foundation under grants IIS-1553411, IIS-
1747614, IIS-1218393 and IIS-1514204. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, and Jiayu Zhou. 2017.

Patient Subtyping via Time-Aware LSTM Networks. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’17). 65–74.

[2] Zhengping Che, Yu Cheng, Zhaonan Sun, and Yan Liu. 2016. Exploiting Convo-
lutional Neural Network for Risk Prediction with Medical Feature Embedding. In
Proceedings of NIPS Workshop on Machine Learning for Health (NIPS-ML4HC’16).

[3] Zhengping Che, Yu Cheng, Shuangfei Zhai, Zhaonan Sun, and Yan Liu. 2017.
Boosting Deep Learning Risk Prediction with Generative Adversarial Networks
for Electronic Health Records. In Proceedings of the IEEE International Conference
on Data Mining (ICDM’17). 787–792.

[4] Zhengping Che, David Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan Liu.
2015. Deep Computational Phenotyping. In Proceedings of the 21st ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’14).
507–516.

[5] Yu Cheng, Fei Wang, Ping Zhang, and Jianying Hu. 2016. Risk Prediction with
Electronic Health Records: A Deep Learning Approach. In Proceedings of the 2016
SIAM International Conference on Data Mining (SDM’16). 432–440.

[6] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the Properties of Neural Machine Translation: Encoder-decoder
Approaches. arXiv preprint arXiv:1409.1259 (2014).

[7] Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey,
Michael Thompson, James Bost, Javier Tejedor-Sojo, and Jimeng Sun. 2016. Multi-
layer representation learning for medical concepts. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’16). 1495–1504.

[8] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng
Sun. 2017. GRAM: Graph-based Attention Model for Healthcare Representation
Learning. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’17). 787–795.

[9] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. 2016. Retain: An Interpretable Predictive model for
Healthcare Using Reverse Time Attention Mechanism. In Proceedings of Advances
in Neural Information Processing Systems (NIPS’16). 3504–3512.

[10] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural Language Processing (Almost) From Scratch.
Journal of Machine Learning Research (JMLR) 12, Aug (2011), 2493–2537.

[11] Luc Djoussé and J Michael Gaziano. 2008. Alcohol consumption and heart failure:
a systematic review. Current atherosclerosis reports 10, 2 (2008), 117–120.

[12] Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar, et al. 2010. Posterior Regu-
larization for Structured Latent Variable Models. Journal of Machine Learning
Research (JMLR) 11, Jul (2010), 2001–2049.

[13] Joyce C Ho, Joydeep Ghosh, Steve R Steinhubl, Walter F Stewart, Joshua C Denny,
Bradley A Malin, and Jimeng Sun. 2014. Limestone: High-throughput Candidate
Phenotype Generation via Tensor Factorization. Journal of Biomedical Informatics
52 (2014), 199–211.

[14] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput
Phenotyping from Electronic Health Records via Sparse Nonnegative Tensor
Factorization. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Dining (KDD’14). 115–124.

[15] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] George Hripcsak and David J Albers. 2012. Next-generation Phenotyping of
Electronic Health Records. Journal of the AmericanMedical Informatics Association
(JAMIA) 20, 1 (2012), 117–121.

[17] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. 2016.
Harnessing Deep Neural Networks with Logic Rules. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (ACL’16). 2410–
2420.

[18] Jau-Huei Lin and Peter J Haug. 2008. Exploiting Missing Clinical Data in Bayesian
Network Modeling for Predicting Medical Problems. Journal of Biomedical Infor-
matics 41, 1 (2008), 1–14.

[19] Roderick JA Little and Donald B Rubin. 2014. Statistical Analysis with Missing
Data. Vol. 333. John Wiley & Sons.

[20] Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao.
2017. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirec-
tional Recurrent Neural Networks. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’17).
1903–1911.

[21] Fenglong Ma, Chuishi Meng, Houping Xiao, Qi Li, Jing Gao, Lu Su, and Aidong
Zhang. 2017. Unsupervised Discovery of Drug Side-effects from Heterogeneous
Data Sources. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’17). ACM, 967–976.

[22] Franz Josef Och and Hermann Ney. 2002. Discriminative Training and Maximum
Entropy Models for Statistical Machine Translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics (ACL’02). 295–302.

[23] Rimma Pivovarov, David J Albers, Jorge L Sepulveda, and Noémie Elhadad. 2014.
Identifying and Mitigating Biases in EHR Laboratory Tests. Journal of Biomedical
Informatics 51 (2014), 24–34.

[24] Qiuling Suo, Fenglong Ma, Giovanni Canino, Jing Gao, Aidong Zhang, Pierangelo
Veltri, andAgostino Gnasso. 2017. AMulti-task Framework forMonitoringHealth
Conditions via Attention-based Recurrent Neural Networks. In Proceedings of
the AMIA 2017 Annual Symposium (AMIA’17).

[25] Qiuling Suo, Fenglong Ma, Ye Yuan, Mengdi Huai, Weida Zhong, Jing Gao, and
Aidong Zhang. 2017. Personalized Disease Prediction Using A CNN-Based
Similarity Learning Method. In Proceedings of The IEEE International Conference
on Bioinformatics and Biomedicine (BIBM’17). 811–816.

[26] Qiuling Suo, Fenglong Ma, Ye Yuan, Mengdi Huai, Weida Zhong, Jing Gao, and
Aidong Zhang. 2018. Deep Patient Similarity Learning for Personalized Health-
care. IEEE Transactions on NanoBioscience (2018).

[27] Fei Wang, Noah Lee, Jianying Hu, Jimeng Sun, and Shahram Ebadollahi. 2012.
Towards Heterogeneous Temporal Clinical Event Pattern Discovery: A Convolu-
tional Approach. In Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’12). 453–461.

[28] Xiang Wang, Fei Wang, Jianying Hu, and Robert Sorrentino. 2014. Exploring
Joint Disease Risk Prediction. In AMIA Annual Symposium Proceedings (AMIA’14).
1180–1187.

[29] Ye Yuan, Guangxu Xun, Fenglong Ma, Qiuling Suo, Hongfei Xue, Kebin Jia, and
Aidong Zhang. 2018. A Novel Channel-aware Attention Framework for Multi-
Channel EEG Seizure Detection via Multi-view Deep Learning. In Proceedings of
the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics
(BHI’18). IEEE, 206–209.

[30] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[31] Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu, and Maosong Sun. 2017.
Prior Knowledge Integration for Neural Machine Translation Using Posterior
Regularization. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (ACL’17), Vol. 1. 1514–1523.

[32] Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye. 2014. From Micro to Macro:
Data Driven Phenotyping by Densification of Longitudinal Electronic Medical
Records. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’14). 135–144.

Research Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

1919


	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning for Healthcare
	2.2 Posterior Regularization in Deep Learning

	3 Background
	3.1 EHR Data Description
	3.2 Basic Risk Prediction Models
	3.3 Posterior Regularization

	4 Risk Prediction Framework with Priori Medical Knowledge
	4.1 The Proposed Framework PRIME
	4.2 Constraint Feature Design
	4.3 Prediction

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Performance Evaluation
	5.4 Importance of Constraint Features
	5.5 Constraint Feature Analysis

	6 Discussions
	7 Conclusions
	Acknowledgments
	References



