

Association Analysis

UE 141 Spring 2013

Jing Gao SUNY Buffalo

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs, Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma({Milk, Bread, Diaper}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- Association Rule
 - An implication expression of the form X \rightarrow Y, where X and Y are itemsets
 - Example: {Milk, Diaper} \rightarrow {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example: {Milk, Diaper} \Rightarrow Beer $s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - \Rightarrow Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\{Milk, Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67) \\ \{Milk, Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0) \\ \{Diaper, Beer\} \rightarrow \{Milk\} (s=0.4, c=0.67) \\ \{Beer\} \rightarrow \{Milk, Diaper\} (s=0.4, c=0.67) \\ \{Diaper\} \rightarrow \{Milk, Beer\} (s=0.4, c=0.5) \\ \{Milk\} \rightarrow \{Diaper, Beer\} (s=0.4, c=0.5) \\ \}$

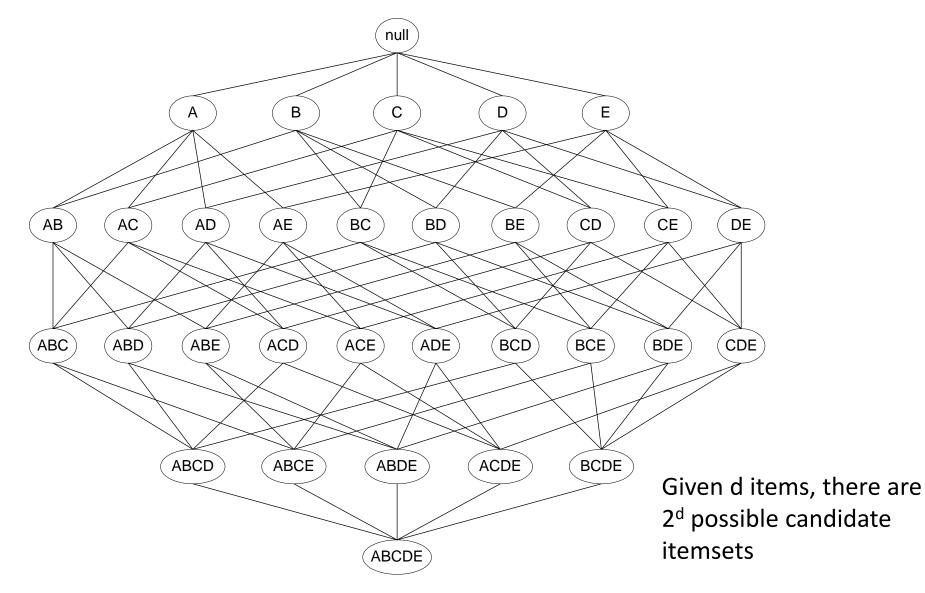
Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

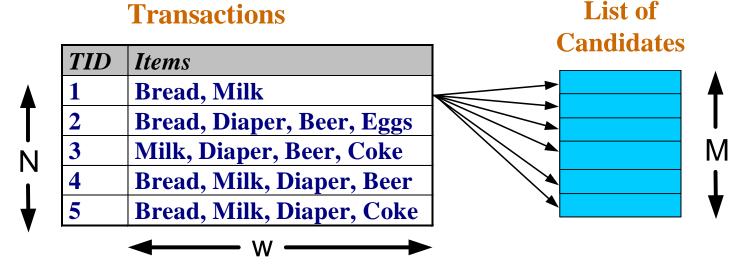
- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation



Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database



– Match each transaction against every candidate

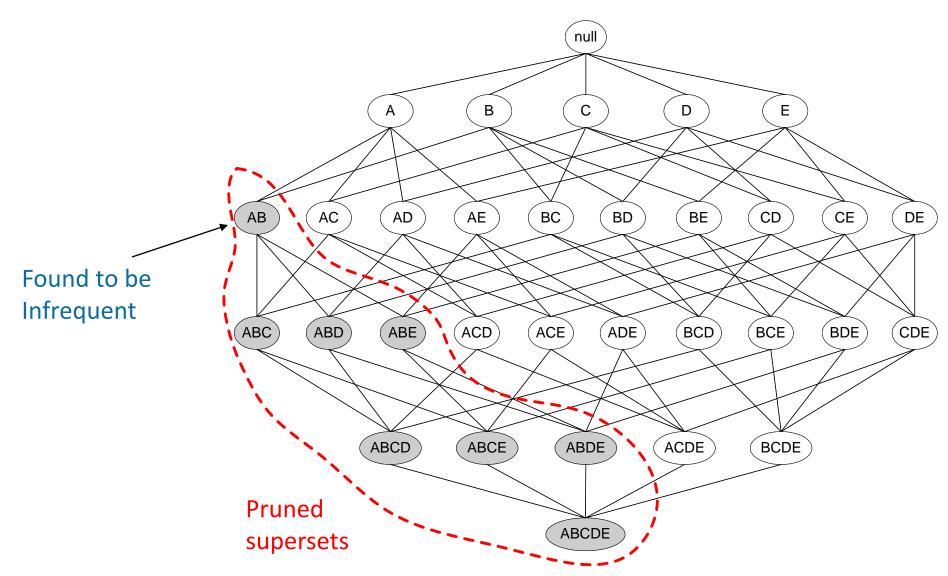
Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

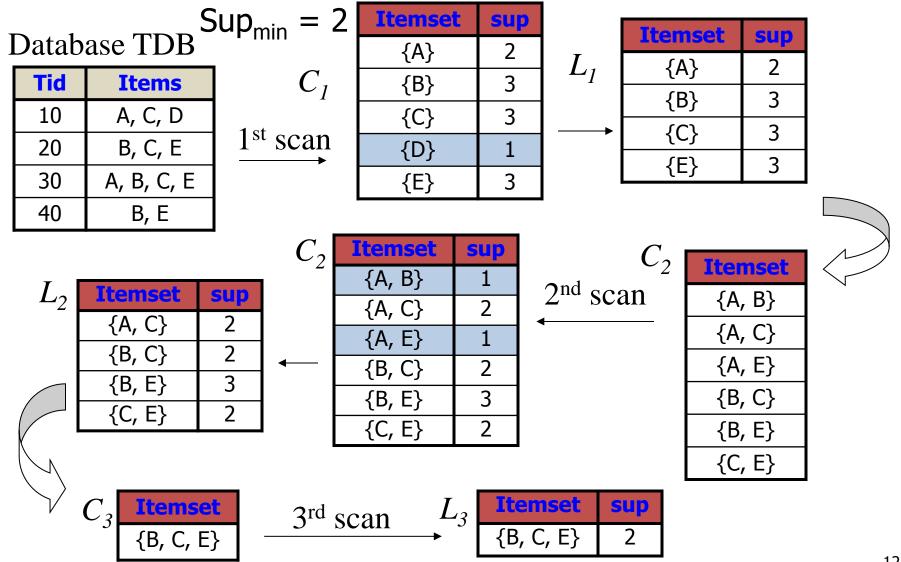
$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle



The Apriori Algorithm—An Example



Mining Association Rules from Record Data

How to apply association analysis formulation to record data?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser Type	Buy
1	USA	982	8	Male	IE	No
2	China	811	10	Female	Chrome	No
3	USA	2125	45	Female	Mozilla	Yes
4	Germany	596	4	Male	IE	Yes
5	Australia	123	9	Male	Mozilla	No

Example of Association Rule:

{Number of Pages \in [5,10) \land (Browser=Mozilla)} \rightarrow {Buy = No}

Handling Categorical Attributes

- Transform categorical attribute into binary variables
- Introduce a new "item" for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
 - Browser Type = Chrome

Handling Categorical Attributes

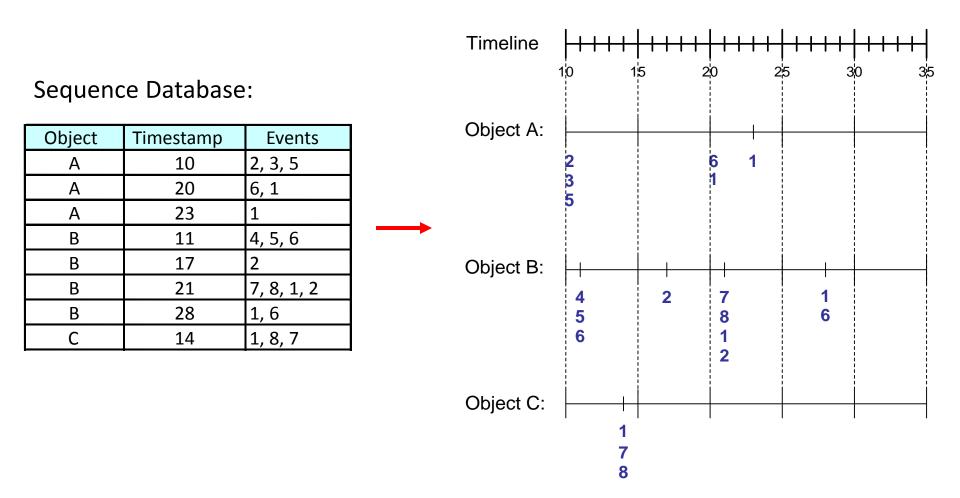
- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items

Handling Continuous Attributes

- Different kinds of rules:
 - Age \in [21,35) \land Salary \in [70k,120k) \rightarrow Buy
 - Salary \in [70k,120k) \land Buy \rightarrow Age: μ =28, σ =4

- Different methods:
 - Discretization-based
 - Statistics-based

Sequence Data



Sequential Pattern Mining: Example

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
A	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
E	2	2, 4, 5

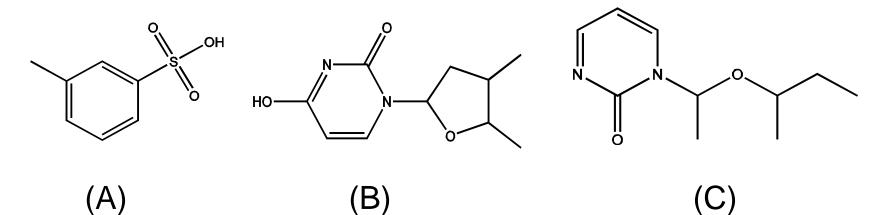
Minsup = 50%

Examples of Frequent Subsequences:

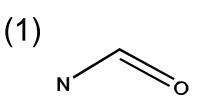
< {1,2} >	s=60%
< {2,3} >	s=60%
< {2,4}>	s=80%
< {3} {5}>	s=80%
< {1} {2} >	s=80%
< {2} {2} >	s=60%
< {1} {2,3} >	s=60%
< {2} {2,3} >	s=60%
< {1,2} {2,3} >	s=60%

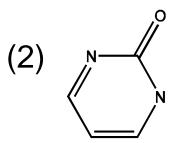
Mining Frequent Subgraphs

Graph Dataset



Frequent Patterns (Min Support is 2/3)





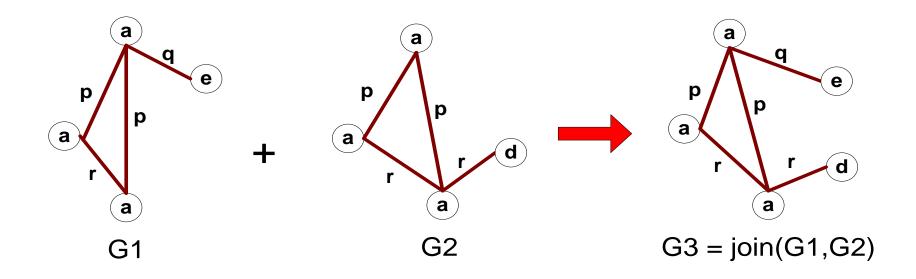
Challenges...

- Support:
 - number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

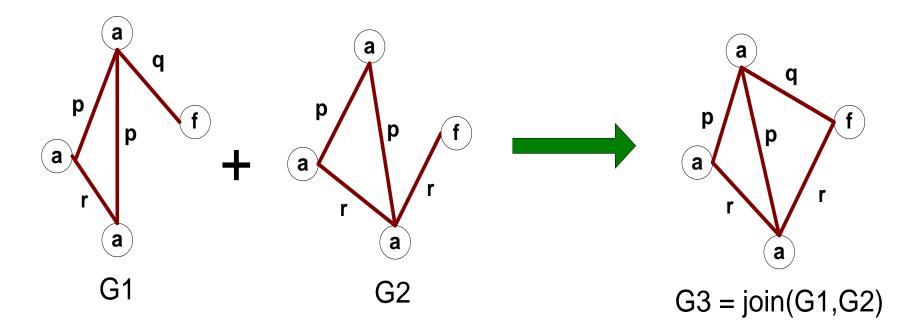
Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - Use frequent (k-1)-subgraphs to generate candidate ksubgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

Vertex Growing



Edge Growing



Question

- If you are a supermarket manager, how will you coordinate association analysis for different purpose and for different target user groups?
 - Items can be "original" items or represented by their categories or brands
 - A transaction can be a "real" transaction or accumulated transaction by week, month or year

—