

Classification

UE 141 Spring 2013

Jing Gao SUNY Buffalo

Classification

features

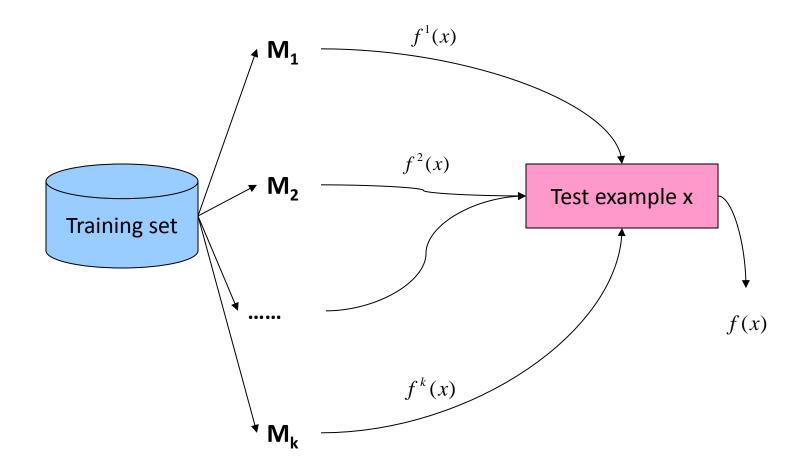
class labels

patient	temp.	blood pres.	heart rate	Sick?	
	99	110	90	Yes	labeled
" " "	100	120	100	Yes	
	96	130	65	No	training

a model: J(x)=y: leatures \neg class labels

patient	temp.	blood pres.	heart rate	Sick?	
	98	130	80		test
	115	110	95		√ unlabeled

Ensemble Learning



Ensemble Learning

Problem

- Given a data set $D = \{x_1, x_2, ..., x_n\}$ and their corresponding labels $L = \{l_1, l_2, ..., l_n\}$
- An ensemble approach computes:
 - A set of classifiers {f₁,f₂,...,f_k}, each of which maps data to a class label: f_i(x)=l
 - A combination of classifiers f^* based on $\{f_1, f_2, \dots, f_k\}$

Why Ensemble Works? (1)

Intuition

 combining diverse, independent opinions in human decision-making as a protective mechanism (e.g. stock portfolio)

Stock investment

- Invest all the money on one stock is very risky
- Distribute your money across multiple stocks is the best way to guarantee stable return

Why Ensemble Works? (2)

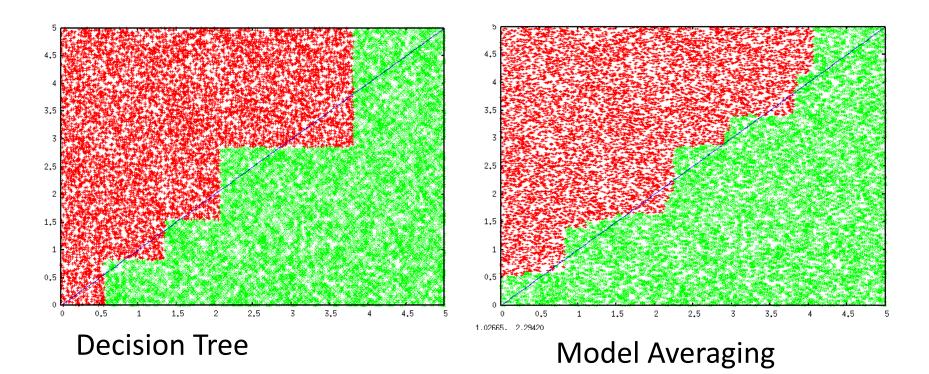
Uncorrelated error reduction

- Suppose we have 5 completely independent classifiers for majority voting
- If accuracy is 70% for each
 - 10 (.7³)(.3²)+5(.7⁴)(.3)+(.7⁵)
 - 83.7% majority vote accuracy
- 101 such classifiers
 - 99.9% majority vote accuracy

Why Ensemble Works? (3)

Overcome limitations of single hypothesis

 The target function may not be implementable with individual classifiers, but may be approximated by model averaging



Generating Base Classifiers

• Sampling training examples

- Train k classifiers on k subsets drawn from the training set
- Using different learning models
 - Use all the training examples, but apply different learning algorithms

Sampling features

- Train k classifiers on k subsets of features drawn from the feature space
- Learning "randomly"
 - Introduce randomness into learning procedures

Bagging

Training set

- Sampling with replacement
- Sample a subset from the training set

Ensemble learning

- Train a classifier on each sample
- Use majority voting to determine the class label of ensemble classifier

Original Data:

х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
у	1	1	1	-1	7	-1	-1	1	1	1

Samples and classifiers:

Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
у	1	1	1	1	-1	-1	-1	-1	1	1
X	0.1	0.2	0.3	0.4	0.5	0.5	0.9	1	1	1
							1		1	1
Y	01	02	03	04	04	05	0.7	07	0.8	09
y							-1			
	^ /									
X	0.1									1
у		I	-1	-1	-1	-1	-1			

Combine predictions by majority voting

Boosting

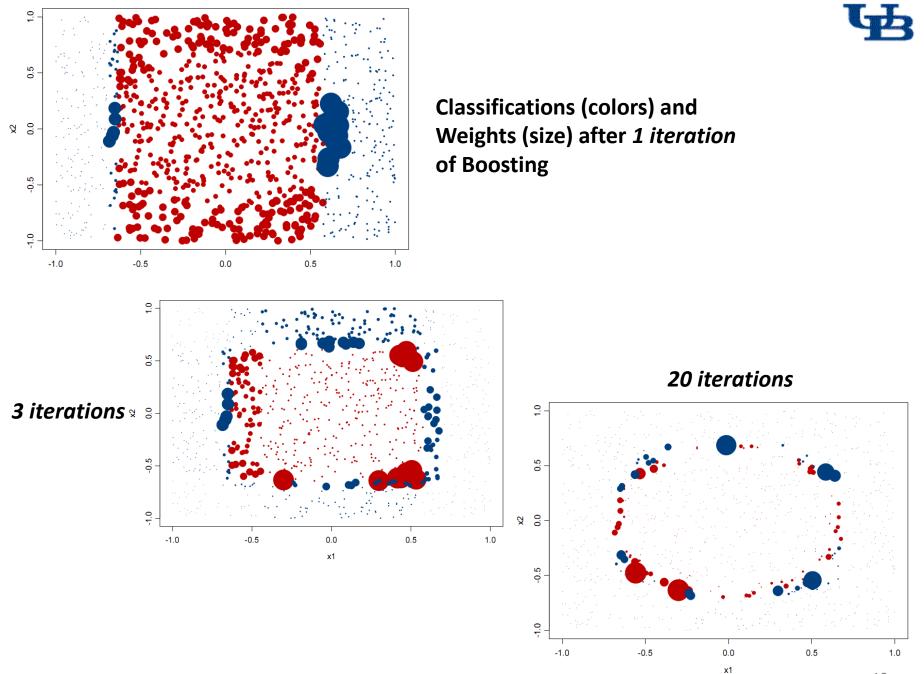
• Principles

- Boost a set of weak learners to a strong learner
- Make records currently misclassified more important

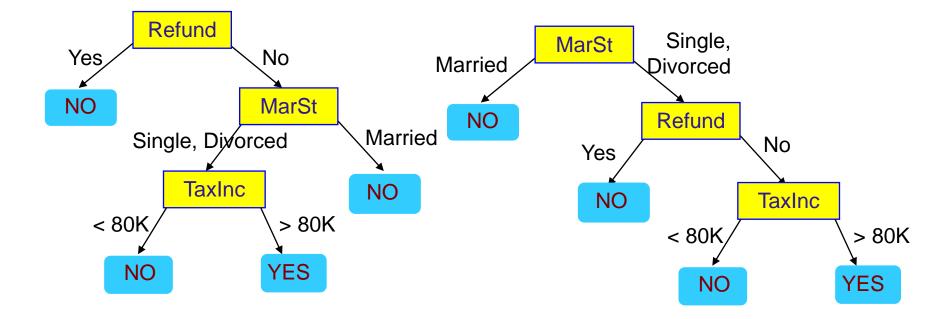
• Example

- Record 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4



Random Forests



..... A lot more ways to build a decision tree from the data

Instead of selecting one best tree among all the trees, let's combine them!