

Clustering

UE 141 Spring 2013

Jing Gao SUNY Buffalo

Data

Clustering

user	items
	orange, banana, apple, water
	orange, apple, water
	rice, bread, milk, eggs
	bread, milk, eggs, water
"I DO DA	yogurt, milk, eggs

Goal

- Increase profit while maintaining advertising cost!

Clustering: From Data to Knowledge to Decision

Group 1

user items

orange, banana, apple, water

orange, apple, water

rice, bread, milk, eggs

bread, milk, eggs, water

yogurt, milk, eggs

Increase profit!!

Target marketing!

Group 2: Mary, Mike and Joe bought bread, eggs, milk

Definition of Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Two Important Aspects

- Properties of input data
 - Define the similarity or dissimilarity between points
- Requirement of clustering
 - Define the objective and methodology

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity
Type		
Categorical	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$
Continuous	d = p - q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$
		$s = 1 - \frac{a - min_a}{max_d - min_d}$

Dissimilarity and similarity between p and q

K-means

- Partition $\{x_1,...,x_n\}$ into K clusters
 - K is predefined
- Initialization
 - Specify the initial cluster centers (centroids)
- Iteration until no change
 - For each object x_i
 - Calculate the distances between x_i and the K centroids
 - (Re)assign x_i to the cluster whose centroid is the closest to x_i
 - Update the cluster centroids based on current assignment

K-means: Initialization

Initialization: Determine the three cluster centers

K-means Clustering: Cluster Assignment

Assign each object to the cluster which has the closet distance from the centroid to the object

K-means Clustering: Cluster Assignment

Assign each object to the cluster which has the closet distance from the centroid to the object

Question

Evolution of clusters

- Feature values of objects evolve, so the clusters evolve accordingly
- E.g., my affiliation changed from U Illinois to UB in 2012, so
 I belong to two different clusters at two different time
- An interesting data mining question is to find the evolution of clusters
- Can you discuss possible ways of cluster evolution?