

Recommendation Systems

UE 141 Spring 2013

Jing Gao SUNY Buffalo

Recommendation Systems

• Data

• Goal

 Learn what a user might be interested in and recommend other items he might like

Applications of Recommendation Systems

- Amazon or other online shopping websites
 - Huge amount of purchase data => Recommend other items to users
- Movie/music/book/hotel/restaurant recommendation
 - For example, Netflix, TripAdvisor, Yelp.....
 - Based on user ratings, recommend other items users might like
 - Attract and maintain users in the service
- Recommend news, webpages, friends.....

Movie Recommendation

User 1	1	1	1	0	0
User 2	0	0	0	1	1
User 3	0	1	0	0	1
User 4	1	1	1	0	?

Interested: 1 Not interested: 0

What We Do in Real-life Recommendations?

• Will I be interested in a new movie?

- I have a friend who share very similar taste with me—
 Follow her recommendation of the new movie
- I have a friend who has the "opposite" interest in movies— Do not follow her recommendation of the new movie
- I have a friend who sometime agrees with me but sometime disagrees with me—I should not consider her recommendation of the new movie seriously

Collaborative Filtering

User 1	1	1	1	0	0
User 2	0	0	0	1	1
User 3	0	1	0	0	1
User 4	1	1	1	0	?

User 1 & User 4: Positively correlated User 2 & User 4: Negatively correlated User 3 & User 4: Uncorrelated

Ratings from 1 to 5

User 1	5	4	3	1	3
User 2	1	1	2	5	4
User 3	2	5	1	2	5
User 4	5	4	4	1	?

Compute Average Rating

User 1	5	4	3	1	3
User 2	1	1	2	5	4
User 3	2	5	1	2	5
User 4	5	4	4	1	?

3.25 3.5 2.5 2.25 4

Subtract Average Rating

User 1	1.75	0.5	0.5	-1.25	-1
User 2	-2.25	-2.5	-0.5	2.75	0
User 3	-1.25	1.5	-1.5	-0.25	1
User 4	1.75	0.5	1.5	-1.25	?

Computing Similarity

User 1	1.75	0.5	0.5	-1.25	-1
User 2	-2.25	-2.5	-0.5	2.75	0
User 3	-1.25	1.5	-1.5	-0.25	1
User 4	1.75	0.5	1.5	-1.25	?

Compute a similarity score between two users: The higher the score is, the more likely they enjoy the same movies

Pearson Correlation Measure

User 1	1.75	0.5	0.5	-1.25	-1
User 4	1.75	0.5	1.5	-1.25	?

 $\frac{1.75^{'}1.75 + 0.5^{'}0.5 + 0.5^{'}1.5 + (-1.25)^{'}(-.1.25)}{\sqrt{1.75^{2} + 0.5^{2} + 0.5^{2} + (-1.25)^{2}}\sqrt{1.75^{2} + 0.5^{2} + (-1.25)^{2}}}$

Computing New Rating

User 1	1.75	0.5	0.5	-1.25	-1
User 2	-2.25	-2.5	-0.5	2.75	0
User 3	-1.25	1.5	-1.5	-0.25	1
User 4	1.75	0.5	1.5	-1.25	?

User 1 & User 4: 0.9305 User 2 & User 4: -0.7904 User 3 & User 4: -0.4382

?=4+0.9305*(-1)+(-0.7904)*0+(-0.4382)*1=2.6313

Ъ

Ratings Data

Modification

• Huge sparse data

- Compute average ratings based on the available ratings
- Compute similarity between two users based on the ratings on the items that both users give ratings to
- Compute the weighted average only upon top K users who share the most similar ratings with the target user

Mathematical Formulation

 $r_{i,k}$ = rating of user *i* on item *k*

 I_k = the set of users who give ratings to item k

Average rating for item *k* is

$$m_k = \frac{1}{|I_k|} \mathop{\mathbf{a}}_{m\hat{\mathbf{I}}} r_{m,k}$$

Predicted vote for user *i* on item *k* is a weighted sum

$$r_{i,k} = m_k + \overset{K}{\overset{a}{a}} W_{i,m}(r_{m,k} - m_k)$$

User-centered Recommendation

r_{i,k} = rating of user *i* on item *k*I_i = items for which user *i* has generated a rating
Average rating for user *i* is

$$m = \frac{1}{|I_i|} \mathop{\mathbf{a}}_{j \mid I_i} r_{i,j}$$

Predicted vote for user *i* on item *j* is a weighted sum

$$r_{i,k} = m_i + \overset{K}{\overset{}{a}}_{j=1} w_{k,j} (r_{i,j} - m_j)$$

Question

• How does Facebook recommend possible friends for you?