
Algorithm Analysis

It means: estimating the resourses required.
The resources of algorithms: time and space.
We mainly consider time: harder to estimate; often more critical.
The efficiency of an algorithm is measured by a runtime function
T(n).
n is the size of the input.
Strictly speaking, n is the # of bits needed to represent input.
Commonly, n is the # of items in the input, if each item is of fixed
size.
This makes no difference in asymptotic analysis in most cases.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 2 / 1

Example 1
An array of k int. Strictly speaking n = 32k bits. However, since int has
fixed size of 32 bits, we can use n = k as input size.

Example 2
The input is one integer of k digits long. Since its size is not fixed (k can
be arbitrarily large). The input size is not n = 1. It is n = 4k bits long.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 3 / 1

What’s T(n)?

Defining T(n) as the real run time is meaningless, because the
real run time depends on many factors, such as the machine
speed, the programming language used, the quality of compilers
etc. These are not the properties of the algorithm.

T(n)
def
= the number of basic instructions performed by the

algorithm.
Basic instructions: +,−, ∗, /, read from/write into a memory
location, comparison, branching to another instruction ...
These are not basic instructions: input/output statement,
sin(x), exp(x) These actions are done by function calls, not by a
single machine instruction.
Knowing T(n) and the machine speed, we can estimate the real
runtime.
Example 3: The machine speed is 108 ins/sec. T(n) = 106. The
real runtime would be about 10−8 × 106 = 0.01 sec.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 4 / 1

Example 4: Consider this simple program:
1: s = 0
2: for i = 1 to n do
3: for j = 1 to n do
4: s = s + i + j
5: end for
6: end for

T(n) =? It’s hard to get the exact expression of T(n) even for this
very simple program.
Also, the exact value of T(n) depends on factors such as prog
language, compiler. These are not the properties of the loop. They
should not be our concern.
We can see: the loop iterates n2 times, and loop body takes
constant number of instructions.
So T(n) = an2 + bn + c for some constants a, b, c.
We say the growth rate of T(n) is n2. This is the sole property of
the algorithm and is our main concern.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 5 / 1

Growth rate functions

We want to define the precise meaning of growth rate.

Definition 1:

Θ(g(n)) = {f (n) | ∃c1 > 0, c2 > 0, n0 ≥ 0 so that

∀n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

If f (n) ∈ Θ(g(n)), we also write f (n) = Θ(g(n)) and say: the growth rate
of f (n) is the same as the growth rate of g(n).

0

2

1

c g(n)

c g(n)

f(n)

0n

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 7 / 1

Example 5

f (n) = 1
12 n2 + 60n− 4 ∈ Θ(n2) (or write f (n) = Θ(n2).)

Proof: We need to find c1 and n0 so that ∀n ≥ n0,

c1n2 ≤ 1
12

n2 + 60n− 4

Pick c1 = 1/12, the above becomes: 0 ≤ 60n− 4. This is true for all
n ≥ n0 = 1. We also need to find c2 and n0 so that ∀n ≥ n0,

1
12

n2 + 60n− 4 ≤ c2n2

For any n ≥ 1, we have:

1
12

n2 + 60n− 4 < n2 + 60n ≤ n2 + 60n2 = 61n2

So if c1 = 1/12, c2 = 61 and n0 = 1, all the required conditions hold.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 8 / 1

Definition 2:

O(g(n)) = {f (n) | ∃c2 > 0, n0 ≥ 0 so that

∀n ≥ n0, 0 ≤ f (n) ≤ c2g(n)}

If f (n) ∈ O(g(n)), we also write f (n) = O(g(n)) and say: the growth rate
of f (n) is at most the growth rate of g(n).

n0

f(n)

c g(n)2

0

Example 6
f (n) = 10n− 4 ∈ O(0.01n2) (or write f (n) = O(0.01n2).)

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 9 / 1

Definition 3:

Ω(g(n)) = {f (n) | ∃c1 > 0, n0 ≥ 0 so that

∀n ≥ n0, 0 ≤ c1g(n) ≤ f (n)}

If f (n) ∈ Ω(g(n)), we also write f (n) = Ω(g(n)) and say: the growth rate
of f (n) is at least the growth rate of g(n).

n0
0

f(n)

c g(n)1

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 10 / 1

Definition 4:

o(g(n)) = {f (n) | ∀c > 0,∃n0 ≥ 0 so that

∀n ≥ n0, 0 ≤ f (n) ≤ cg(n)}

If f (n) ∈ o(g(n)), we also write f (n) = o(g(n)) and say: the growth rate
of f (n) is strictly less than the growth rate of g(n).

Example:
f (n) = 2n and g(n) = n2. Then:
f (n) = O(g(n)), f (n) = o(g(n)), but f (n) 6= Θ(g(n)),

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 11 / 1

Definition 5:

ω(g(n)) = {f (n) | ∀c > 0, ∃n0 ≥ 0 so that

∀n ≥ n0, 0 ≤ cg(n) ≤ f (n)}

If f (n) ∈ ω(g(n)), we also write f (n) = ω(g(n)) and say: the growth rate
of f (n) is strictly bigger than the growth rate of g(n).

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 12 / 1

The properties of growth rate functions:

The meaning of these notations (roughly speaking):

if the growth-rate is
f (n) = Θ(g(n)) =

f (n) = O(g(n)) ≤
f (n) = Ω(g(n)) ≥
f (n) = o(g(n)) <

f (n) = ω(g(n)) >

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 14 / 1

Some properties of growth rate functions:
f (n) = Θ(g(n))⇐⇒ f (n) = O(g(n)) and f (n) = Ω(g(n))

f (n) = O(g(n))⇐⇒ g(n) = Ω(f (n))

f (n) = o(g(n))⇐⇒ g(n) = ω(f (n))

f (n) = O(g(n)) and g(n) = O(h(n)) =⇒ f (n) = O(h(n)) if we replace
O by Θ,Ω, o, ω, it holds true.
Read Ch. 3 for more relations and properties.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 15 / 1

Importance of the growth rate

The growth rate of the runtime function is the most important property
of an algorithm. Assuming 109 instruction/sec, The real runtime:

f (n) n = 10 30 50 1000
log2 n 3.3 ns 4.9 ns 5.6 ns 9.9 ns

n 10 ns 30 ns 50 ns 1 µs
n2 0.1 µs 0.9µs 2.5 µs 1 ms
n3 1 µs 27 µs 125 µs 1 sec
n5 0.1 ms 24.3 ms 0.3 sec 277 h
2n 1 µs 1 sec 312 h 3.4 ·10281 Cent

If T(n) = nk for some constant k > 0, the runtime is polynomial.
If T(n) = an for some constant a > 1, the runtime is exponential.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 17 / 1

T(n) = 2n, n = 360 and assuming 109 instructions/sec.
T(360) = 2360 = (210)36 ≈ (103)36 = 10108 instructions.
This translates into: 1099 CPU sec, about 3 · 1091 years.
For comparison: the age of the universe: about 1.5 · 1010 years.
The number of atoms in the known universe: ≤ 1080.
If every atom in the known universe is a supercomputer and starts
at the beginning of the big bang, we have only done
1.5·1010×1080

3·1091 = 5% of the needed computations!
Moore’s law: CPU speed doubles every 18 months. Then, instead
of solving the problem of size n = say 100, we can solve the
problem of size 101.
An exponential time algorithm cannot be used to solve problems
of realistic input size, no matter how powerful the computers are!

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 18 / 1

An example

Some simple looking problems indeed require exp runtime. Here is a
very important application that depends on this fact.

P1: Factoring Problem
Input: an integer X.
Output: Find its prime factorization.

If X = 117, the output: X = 3 · 3 · 13.

P2: Primality Testing
Input: an integer X.
Output: ”yes” if X is a prime number; ”no” if not.

If X = 117, output ”no”.
If X = 456731, output = ?

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 20 / 1

P1 and P2 are related.
If we can solve P1, we can solve P2 immediately.
The reverse is not true: even if we know X is not a prime, how to
find its prime factors?
P1 is harder than P2.
How to solve P1?

Find-Factor(X)
1: if X is even then
2: return ”2 is a factor”
3: end if
4: for i = 3 to

√
X by +2 do

5: test if X%i = 0, if yes, output ”i is a factor”
6: end for
7: return ”X is a prime.”

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 21 / 1

To solve P1, we call Find-Factor(X) to find the smallest prime
factor i of X. Then call Find-Factor(X/i) ...
The runtime of Find-Factor: X is not a fixed-size object. So the
input size n is the # of bits needed to represent X.
X is n bits long, the value of X is ≤ 2n.
In the worst case, we need to perform 1

2

√
2n = 1

2(1.414)n divisions.
So this is an exp time algorithm.
Minor improvements can be (and had been) made. But basically,
we have to perform most of these tests. No poly-time algorithm for
Factoring is known.
It is strongly believed, (but not proven), no poly-time algorithm for
solving the Factoring problem exists.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 22 / 1

Encryption

A customer (Alice) wants to send a message M to her bank (Bob).
If an intruder (Evil) intercepts M, we must make sure Evil cannot
understand it.
So M must be encrypted:

Alice computes an encrypted message C = PA(M) (PA() is the
encryption function), and send C to Bob.
Bob receives C, and computes M = SA(C) (SA() is the decryption
function), to retrieve the original M
Even if Evil sees C, he doesn’t know SA(), so cannot recover M.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 24 / 1

1-1 Encryption:
Alice and Bob agree a particular method (secret key) for encryption.
Only Alice and Bob know this particular secret key, and keep it
secret.
For another customer (Dave), Bob and Dave must use a different
key.

There are many different ways for 1-1 Encryption. It is not hard.
However, Bob is dealing with many customers, and Alice is
dealing with many banks, on-line accounts ...
It would be a nightmare if we have to arrange a different key for
each (Alice, Bob) pair.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 25 / 1

RSA Public-Key Cryptosystem

Invented by Rivest, Shamir and Aldeman in 1977. Most of current
computer security systems are based on this.
Everyone uses the same public key for encryption.
Bob: chose a pair of large prime numbers x and y, say 128 digits
each.
Bob: compute X = x · y.
Bob: computes two numbers d and e, such that d · e = 1
(mod [(x− 1) · (y− 1)]). (This is easy to do, see Sec. 31.7)
The pair (X, e) is the public key. Bob makes it public.
(x, y, d) is the secret key. Only Bob knows it.

Example
x = 7, y = 29. Then X = 7 · 29 = 203, and (x− 1) · (y− 1) = 168.
Pick e = 11 and d = 107, then 11 · 107 = 1177 = 1 (mod 168).
Thus (203, 11) is the public key. (7, 29, 107) is secret key.

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 26 / 1

Alice (and Dave and everyone else): Get public key (X, e)
(= (203, 11) in our example).
Treat her message M as an integer. (It can be just the value of the
binary string representing M. For example M = 100.)

Compute the encrypted message C = PA(M)
def
= Me (mod X). (In

our example C = 10011 (mod 203) = 4).
Send C(= 4) to Bob.
Bob: Receiving C(= 4). Recover the original message
M = SA(C)

def
= Cd (mod X). (In our example 4107 (mod 203) = 100).

Because of the the choice of e, d, the number theory ensures the
result M is the same as the original message M. (Namely
(Me)d = M (mod X) for all M.)

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 27 / 1

If Evil intercepts C, he doesn’t know the secret key d, so he cannot
recover M = Cd (mod X).
But Evil knows X (since this is public).
If Evil can factor X = x · y, he can calculate d. Then he knows
every thing that Bob knows.
But he must factor a 256 digit number X. This requires about√

10256 = 10128 ≈ 2426 divisions. This will need much much much
.... longer time than the previous 2360 example!

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 28 / 1

RSA received 2002 Turing Award (the Nobel prize equivalent in
CS) for this (and related) work.
This system works because the strong (but not proven) belief: The
Factoring (P1) problem cannot be solved in poly-time.
For long time, it is not known if the problem P2 (Primality Testing)
can be solved in poly-time.
In 2001, Agrawal, Kayal and Saxena found a poly-time algorithm
for solving P2.
Had they found a poly-time algorithm for solving P1 (Factoring),
RSA system (and the entire computer security industry) would
have collapsed overnight!

c©Jinhui Xu (University at Buffalo) CSE 431/531 Algorithm Analysis and Design 29 / 1

	Algorithm Analysis
	Growth rate functions
	The properties of growth rate functions:
	Importance of the growth rate
	An example
	Encryption

