- It means: estimating the resourses required.
- The resources of algorithms: time and space.
- We mainly consider time: harder to estimate; often more critical.
- The efficiency of an algorithm is measured by a runtime function T(n).
- *n* is the size of the input.
- Strictly speaking, *n* is the # of bits needed to represent input.
- Commonly, *n* is the # of items in the input, if each item is of fixed size.
- This makes no difference in asymptotic analysis in most cases.

Example 1

An array of *k* int. Strictly speaking n = 32k bits. However, since int has fixed size of 32 bits, we can use n = k as input size.

Example 2

The input is one integer of *k* digits long. Since its size is not fixed (*k* can be arbitrarily large). The input size is **not** n = 1. It is n = 4k bits long.

What's T(n)?

- Defining *T*(*n*) as the real run time is meaningless, because the real run time depends on many factors, such as the machine speed, the programming language used, the quality of compilers etc. These **are not** the properties of the algorithm.
- $T(n) \stackrel{\text{def}}{=}$ the number of basic instructions performed by the algorithm.
- Basic instructions: +, -, *, /, read from/write into a memory location, comparison, branching to another instruction ...
- These are **not** basic instructions: input/output statement, $sin(x), exp(x) \dots$ These actions are done by function calls, not by a single machine instruction.
- Knowing *T*(*n*) and the machine speed, we can estimate the real runtime.
- Example 3: The machine speed is 10^8 ins/sec. $T(n) = 10^6$. The real runtime would be about $10^{-8} \times 10^6 = 0.01$ sec.

Example 4: Consider this simple program:

- 1: s = 0
- 2: for i = 1 to n do
- 3: **for** j = 1 **to** n **do**
- 4: s = s + i + j
- 5: end for
- 6: **end for**
 - *T*(*n*) =? It's hard to get the exact expression of *T*(*n*) even for this very simple program.
 - Also, the exact value of T(n) depends on factors such as prog language, compiler. These are not the properties of the loop. They should **not** be our concern.
 - We can see: the loop iterates *n*² times, and loop body takes constant number of instructions.
 - So $T(n) = an^2 + bn + c$ for some constants a, b, c.
 - We say the growth rate of *T*(*n*) is *n*². This is the sole property of the algorithm and is our main concern.

Growth rate functions

We want to define the precise meaning of growth rate.

Definition 1:

$$\Theta(g(n)) = \{f(n) \mid \exists c_1 > 0, c_2 > 0, n_0 \ge 0 \text{ so that} \\ \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n)\}$$

If $f(n) \in \Theta(g(n))$, we also write $f(n) = \Theta(g(n))$ and say: the growth rate of f(n) is the same as the growth rate of g(n).

Example 5

$$f(n) = \frac{1}{12}n^2 + 60n - 4 \in \Theta(n^2)$$
 (or write $f(n) = \Theta(n^2)$.)

Proof: We need to find c_1 and n_0 so that $\forall n \ge n_0$,

$$c_1 n^2 \le \frac{1}{12} n^2 + 60n - 4$$

Pick $c_1 = 1/12$, the above becomes: $0 \le 60n - 4$. This is true for all $n \ge n_0 = 1$. We also need to find c_2 and n_0 so that $\forall n \ge n_0$,

$$\frac{1}{12}n^2 + 60n - 4 \le c_2 n^2$$

For any $n \ge 1$, we have:

$$\frac{1}{12}n^2 + 60n - 4 < n^2 + 60n \le n^2 + 60n^2 = 61n^2$$

So if $c_1 = 1/12$, $c_2 = 61$ and $n_0 = 1$, all the required conditions hold.

Definition 2:

$$O(g(n)) = \{f(n) \mid \exists c_2 > 0, n_0 \ge 0 \text{ so that} \\ \forall n \ge n_0, 0 \le f(n) \le c_2 g(n) \}$$

If $f(n) \in O(g(n))$, we also write f(n) = O(g(n)) and say: the growth rate of f(n) is at most the growth rate of g(n).

Example 6

$$f(n) = 10n - 4 \in O(0.01n^2)$$
 (or write $f(n) = O(0.01n^2)$.)

Definition 3:

$$\Omega(g(n)) = \{f(n) \mid \exists c_1 > 0, n_0 \ge 0 \text{ so that} \\ \forall n \ge n_0, 0 \le c_1 g(n) \le f(n)\}$$

If $f(n) \in \Omega(g(n))$, we also write $f(n) = \Omega(g(n))$ and say: the growth rate of f(n) is at least the growth rate of g(n).

Definition 4:

$$o(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 \ge 0 \text{ so that} \\ \forall n \ge n_0, 0 \le f(n) \le cg(n)\}$$

If $f(n) \in o(g(n))$, we also write f(n) = o(g(n)) and say: the growth rate of f(n) is strictly less than the growth rate of g(n).

Example:

f(n) = 2n and $g(n) = n^2$. Then: f(n) = O(g(n)), f(n) = o(g(n)), but $f(n) \neq \Theta(g(n)),$

Definition 5:

$$\omega(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 \ge 0 \text{ so that} \\ \forall n \ge n_0, 0 \le cg(n) \le f(n) \}$$

If $f(n) \in \omega(g(n))$, we also write $f(n) = \omega(g(n))$ and say: the growth rate of f(n) is strictly bigger than the growth rate of g(n).

The meaning of these notations (roughly speaking):

if	the growth-rate is	
$f(n) = \Theta(g(n))$	=	
f(n) = O(g(n))	\leq	
$f(n) = \Omega(g(n))$	\geq	
f(n) = o(g(n))	<	
$f(n) = \omega(g(n))$	>	

Some properties of growth rate functions:

•
$$f(n) = \Theta(g(n)) \iff f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

• $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
• $f(n) = o(g(n)) \iff g(n) = \omega(f(n))$
• $f(n) = O(g(n)) \text{ and } g(n) = O(h(n)) \Longrightarrow f(n) = O(h(n)) \text{ if we replace}$

- O by $\Theta, \Omega, o, \omega$, it holds true.
- Read Ch. 3 for more relations and properties.

The growth rate of the runtime function is the most important property of an algorithm. Assuming 10^9 instruction/sec, The real runtime:

f(n)	<i>n</i> = 10	30	50	1000
$\log_2 n$	3.3 ns	4.9 ns	5.6 ns	9.9 ns
п	10 ns	30 ns	50 ns	1 <i>µ</i> s
n^2	0.1 μ s	0.9 μ s	2.5 μs	1 ms
n^3	1 μs	27 μs	125 μ s	1 sec
n^5	0.1 ms	24.3 ms	0.3 sec	277 h
2 ⁿ	1 μs	1 sec	312 h	3.4 ·10 ²⁸¹ Cent

If T(n) = n^k for some constant k > 0, the runtime is polynomial.
If T(n) = aⁿ for some constant a > 1, the runtime is exponential.

- $T(n) = 2^n$, n = 360 and assuming 10^9 instructions/sec.
- $T(360) = 2^{360} = (2^{10})^{36} \approx (10^3)^{36} = 10^{108}$ instructions.
- This translates into: 10^{99} CPU sec, about $3 \cdot 10^{91}$ years.
- For comparison: the age of the universe: about $1.5 \cdot 10^{10}$ years.
- The number of atoms in the known universe: $\leq 10^{80}$.
- If every atom in the known universe is a supercomputer and starts at the beginning of the big bang, we have only done $\frac{1.5 \cdot 10^{10} \times 10^{80}}{3 \cdot 10^{91}} = 5\%$ of the needed computations!
- Moore's law: CPU speed doubles every 18 months. Then, instead of solving the problem of size n = say 100, we can solve the problem of size 101.
- An exponential time algorithm cannot be used to solve problems of realistic input size, no matter how powerful the computers are!

An example

Some simple looking problems indeed require exp runtime. Here is a very important application that depends on this fact.

P1: Factoring Problem

Input: an integer *X*. Output: Find its prime factorization.

If X = 117, the output: $X = 3 \cdot 3 \cdot 13$.

P2: Primality Testing

Input: an integer *X*. Output: "yes" if *X* is a prime number; "no" if not.

- If *X* = 117, output "no".
- If *X* = 456731, output = ?

- P1 and P2 are related.
- If we can solve P1, we can solve P2 immediately.
- The reverse is not true: even if we know *X* is not a prime, how to find its prime factors?
- P1 is harder than P2.
- How to solve P1?

Find-Factor(X)

- 1: if X is even then
- 2: return "2 is a factor"
- 3: end if
- 4: for i = 3 to \sqrt{X} by +2 do
- 5: test if X%i = 0, if yes, output "*i* is a factor"
- 6: end for
- 7: return "X is a prime."

- To solve P1, we call Find-Factor(X) to find the smallest prime factor i of X. Then call Find-Factor(X/i) ...
- The runtime of **Find-Factor**: *X* is not a fixed-size object. So the input size *n* is the # of bits needed to represent *X*.
- *X* is *n* bits long, the value of *X* is $\leq 2^n$.
- In the worst case, we need to perform $\frac{1}{2}\sqrt{2^n} = \frac{1}{2}(1.414)^n$ divisions. So this is an exp time algorithm.
- Minor improvements can be (and had been) made. But basically, we have to perform most of these tests. No poly-time algorithm for Factoring is known.
- It is strongly believed, (but not proven), no poly-time algorithm for solving the Factoring problem exists.

- A customer (Alice) wants to send a message *M* to her bank (Bob).
- If an intruder (Evil) intercepts M, we must make sure Evil cannot understand it.
- So *M* must be encrypted:
 - Alice computes an encrypted message $C = P_A(M)$ ($P_A()$ is the encryption function), and send *C* to Bob.
 - Bob receives *C*, and computes $M = S_A(C)$ ($S_A()$ is the decryption function), to retrieve the original *M*
 - Even if Evil sees C, he doesn't know $S_A()$, so cannot recover M.

• 1-1 Encryption:

- Alice and Bob agree a particular method (secret key) for encryption.
- Only Alice and Bob know this particular secret key, and keep it secret.
- For another customer (Dave), Bob and Dave must use a different key.
- There are many different ways for 1-1 Encryption. It is not hard.
- However, Bob is dealing with many customers, and Alice is dealing with many banks, on-line accounts ...
- It would be a nightmare if we have to arrange a different key for each (Alice, Bob) pair.

RSA Public-Key Cryptosystem

- Invented by Rivest, Shamir and Aldeman in 1977. Most of current computer security systems are based on this.
- Everyone uses the same public key for encryption.
- Bob: chose a pair of large prime numbers *x* and *y*, say 128 digits each.
- Bob: compute $X = x \cdot y$.
- Bob: computes two numbers d and e, such that $d \cdot e = 1$ (mod $[(x-1) \cdot (y-1)]$). (This is easy to do, see Sec. 31.7)
- The pair (X, e) is the public key. Bob makes it public.
- (*x*, *y*, *d*) is the secret key. Only Bob knows it.

Example

x = 7, y = 29. Then $X = 7 \cdot 29 = 203$, and $(x - 1) \cdot (y - 1) = 168$. Pick e = 11 and d = 107, then $11 \cdot 107 = 1177 = 1 \pmod{168}$. Thus (203, 11) is the public key. (7, 29, 107) is secret key.

- Alice (and Dave and everyone else): Get public key (X, e)
 (= (203, 11) in our example).
- Treat her message *M* as an integer. (It can be just the value of the binary string representing *M*. For example M = 100.)
- Compute the encrypted message $C = P_A(M) \stackrel{\text{def}}{=} M^e \pmod{X}$. (In our example $C = 100^{11} \pmod{203} = 4$).
- Send C(=4) to Bob.
- Bob: Receiving C(=4). Recover the original message $M = S_A(C) \stackrel{\text{def}}{=} C^d \pmod{X}$. (In our example $4^{107} \pmod{203} = 100$).
- Because of the the choice of *e*, *d*, the number theory ensures the result *M* is the same as the original message *M*. (Namely (*M^e*)^d = *M* (mod *X*) for all *M*.)

- If Evil intercepts C, he doesn't know the secret key d, so he cannot recover M = C^d (mod X).
- But Evil knows *X* (since this is public).
- If Evil can factor $X = x \cdot y$, he can calculate *d*. Then he knows every thing that Bob knows.
- But he must factor a 256 digit number *X*. This requires about $\sqrt{10^{256}} = 10^{128} \approx 2^{426}$ divisions. This will need much much much longer time than the previous 2^{360} example!

- RSA received 2002 Turing Award (the Nobel prize equivalent in CS) for this (and related) work.
- This system works because the strong (but not proven) belief: The Factoring (P1) problem cannot be solved in poly-time.
- For long time, it is not known if the problem P2 (Primality Testing) can be solved in poly-time.
- In 2001, Agrawal, Kayal and Saxena found a poly-time algorithm for solving P2.
- Had they found a poly-time algorithm for solving P1 (Factoring), RSA system (and the entire computer security industry) would have collapsed overnight!