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3D Object Representation Learning: A Set-to-Set
Matching Perspective

Tan Yu , Jingjing Meng, Ming Yang , Member, IEEE, and Junsong Yuan , Fellow, IEEE

Abstract— In this paper, we tackle the 3D object representation
learning from the perspective of set-to-set matching. Given two
3D objects, calculating their similarity is formulated as the
problem of set-to-set similarity measurement between two set of
local patches. As local convolutional features from convolutional
feature maps are natural representations of local patches, the
set-to-set matching between sets of local patches is further
converted into a local features pooling problem. To highlight good
matchings and suppress the bad ones, we exploit two pooling
methods: 1) bilinear pooling and 2) VLAD pooling. We analyze
their effectiveness in enhancing the set-to-set matching and mean-
while establish their connection. Moreover, to balance different
components inherent in a bilinear-pooled feature, we propose
the harmonized bilinear pooling operation, which follows the
spirits of intra-normalization used in VLAD pooling. To achieve
an end-to-end trainable framework, we implement the proposed
harmonized bilinear pooling and intra-normalized VLAD as two
layers to construct two types of neural network, multi-view
harmonized bilinear network (MHBN) and multi-view VLAD
network (MVLADN). Systematic experiments conducted on two
public benchmark datasets demonstrate the efficacy of the
proposed MHBN and MVLADN in 3D object recognition.

Index Terms— 3D object recognition, convolutional neural
network, bilinear pooling.

I. INTRODUCTION

INSPIRED by the success of deep learning in 2D images,
the community has also attempted to exploit convolutional

neural networks for 3D object recognition [1]–[11]. These
approaches can be coarsely classified into three categories
according to their inputs: 1) view-based methods [2], [5],
[6], [12], 2) volume-based methods [1], [3], [4], [7], [8],
[13], and 3) pointset-based methods [9]–[11]. View-based
methods project 3D objects into multiple 2D views, then the
classification is conducted using the features from 2D CNNs.
Volume-based approaches apply 3D convolutional neural net-
works directly on voxelized shapes, while pointset-based meth-
ods directly take unordered point sets as input. Among the
three categories, the view-based methods generally outperform
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the other two. Even though one volume-based work, VRN
Ensemble [13] outperforms existing view-based methods, its
excellent performance is mainly attributed to the model ensem-
ble and a more advanced base model.

Despite that view-based methods [2], [5], [6], [12] have
already achieved excellent performance in 3D object recogni-
tion, there are still some drawbacks in current methods. For
instance, one of the earliest view-based method based on deep
neural network, multi-view CNN (MVCNN) [2], max-pools
the view-wise feature into a global feature as the representation
of the 3D object. Nevertheless, pooling operations generally
lose some information in aggregating features of multiple
views to the maximal activation (max-pooling) or the sum
of all activations (sum-pooling). Meanwhile, the experiments
in [2] show that the performance of sum-pooling is even worse
than max-pooling. Below we investigate the reason. To be
specific, we define A as a 3D object and {Xi }ni=1 as features of
n projected views. In the same manner, we define another 3D
object B and its projected views’ features {Y j }nj=1. Through
sum-pooling, descriptors of two objects are obtained by

X =
n�

i=1

Xi , Y =
n�

j=1

Y j . (1)

Below we analyse the effectiveness of a feature from the
perspective of feature similarity. Note that, optimizing the
feature similarity, i.e., metric learning, is a common practice
to boost the retrieval accuracy. Despite that this paper focuses
on classification, the effectiveness of a metric is vital to
classification since we adopt a linear classifier. The similarity
between two sum-pooled features is

sim(A,B) = �X, Y� =
n�

i=1

n�
j=1

�Xi , Y j �, (2)

where �·, ·� denotes the inner-product operation of two vectors.
It is easy to observe from above equation that, the similarity
between two sum-pooled global features will be equal to the
summation of similarities of every matching pair (Xi , Y j ).
Nevertheless, as shown in Figure 1(a), only the similarity
between two corresponding views (green solid arrows) can
reliably capture the relevance between two 3D objects whereas
the similarities from non-corresponding views (red dash
arrows) are low due to view-point variations. Nevertheless,
given two 3D objects represented by n views each, there
are only n pairs of corresponding views whereas the other
n2 − n pairs consist of non-corresponding views. Thus the
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Fig. 1. The comparisons among sum pooling, GIFT and patch-based
method. The sum-pooling suffers from being contaminated by overnumbered
non-corresponding pairs. GIFT greedily selects the best-matched view and
might discard the potentially relevant ones. Our patch-based method hooks
up relevant patch pairs no matter if they are from two corresponding views
or not, and meanwhile decouples the pairs of irrelevant patches.

pairs of corresponding views can be easily contaminated by
overnumbered non-corresponding pairs.

To mitigate the negative influence from pairs of
non-corresponding views, GIFT [6] utilizes a robust version
of Hausdorff distance defined as

sim(A,B) =
N�

i=1

max
j
�Xi , Y j �. (3)

The intuition behind the above distance is that, for each view
of A, it only takes into account the similarity with its most
relevant view of B. Therefore, GIFT only keeps the pairs
consisting of two corresponding views (green solid arrows)
and eliminates the pairs consisting of two non-corresponding
views (red dash arrows). The experiments in GIFT [6] shows
that it achieves a better performance than MVCNN [2].

However, GIFT [6], [14] requires to store the feature of
every view of the 3D objects separately whereas MVCNN [2]
only needs to store one global max-pooled feature. Meanwhile,
the GIFT requires to cross-match every view of A with every
view of B, taking n2 times comparisons where n is the number
of views. In contrast, MVCNN only needs directly com-
pare two global features representing two 3D objects, which
is much faster than GIFT. Using hamming embedding and
inverted-indexing, GIFT can achieve comparable efficiency
as MVCNN in retrieval tasks. As shown in Figure 1 (b),
it only counts the best-matched views and mitigate the negative
effect from similarities between non-corresponding views.
Nevertheless, even if two views from two 3D objects differ
significantly in global appearance due to view-point variations,
there might exist some relevant patches between these two
views locally. Greedily selecting the best-matched view can
remove the distraction from pairs of non-corresponding views
but it also discards the useful information.

Observing the limitations of view-wise pooling used in
MVCNN and GIFT, we propose to pool feature in patch level
rather than view level to obtain a more reasonable similarity
measure between two 3D objects. As shown in Figure 1 (c),
ideally, we seek to hook up relevant patch pairs no matter
they are from two corresponding views or not and mean-
while decouple the pairs of irrelevant patches. Since a local
convolutional feature is a natural and effective representation
of a local patch, a 3D object can be characterized through
a set of local convolutional features and thus the similarity

measurement between 3D objects is converted into a set-to-set
matching problem. To achieve an effective set-to-set matching,
we exploit two set-to-set matching kernels, polynomial set-
to-set matching kernel (PSMK) and local set-to-set matching
kernel (LSMK).

PSMK adaptively assigns higher weights to good matching
pairs and lower weights to bad ones. Note that directly
evaluating PSMK requires comparing each local patch from
one object with all local patches from another object, which
is costly given the huge number of local patches of each
object. To alleviate the computational cost, we exploit the
connection between bilinear pooling methods and polynomial
kernel, achieving the same functionality of PSMK through
bilinear pooling in a more efficient manner. In this case,
the set-to-set similarity computing complexity is reduced from
O(N2d) to O(d2) (where N is the number of patches for
each 3D object and d is the dimension of local feature)
thanks to global bilinear-pooled representation. To further
improve the representation’s discriminative power, we extend
the original bilinear pooling to harmonized bilinear pooling,
which learns an element-wise Box-Cox [15] transformation
for each singular value from the training data.

LSMK partitions the feature space into multiple cells
through clustering on local convolutional features. The patches
are assigned to different clusters according to the similarities
between their corresponding local convolutional features with
cluster centroids. In this case, when comparing the similarity
between two 3D objects, only the local patches which are
assigned to the same cluster are compared, which effectively
decouple the irrelevant patches since irrelevant patches tend
to be assigned to different clusters due to their dissimilarity
in appearance. Similar to PSMK, directly evaluating LSMK
is also computationally intensive. To boost its efficiency,
we exploit the connection between LSMK and vector of
locally aggregated descriptor (VLAD), achieving the same
functionality of LSMK through aggregating local convolu-
tional features from all projected views through VLAD.

Note that, if the matching between two objects is perfect,
we might not need an advanced set-to-set matching kernel
and the sum matching kernel might be enough. Nevertheless,
in real scenarios, due to misalignment and occlusion, the good
matching pairs might only exist in several small regions, which
requires a more advanced set-to-set matching kernel such as
the PSMK and LSMK proposed in this paper to highlight the
good matchings in small regions.

Even though the above two strategies are quite different
from the perspective of algorithms, their goals are quite simi-
lar. Concretely, both of them aim to highlight pairs of relevant
patches and suppress pairs of irrelevant patches. To incorporate
them into neural network, we implement these two strategies
as two layers, which construct two deep neural networks,
respectively. Both of the constructed neural network can be
trained in an end-to-end manner. Systematic experiments on
two public benchmark datasets, Modelnet10 and Modelnet40,
demonstrate the effectiveness of the proposed methods. Note
that, this paper is an extended version of our previsouly
published work [16]. In summary, our method has following
contributions:
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• Unlike existing view-based methods pooling view-wise
global features, we tackle the 3D object recognition from
the perspective of patches-to-patches similarity measure-
ment, which is in essence, a set-to-set matching problem.

• To achieve an effective set-to-set similarity, we seek to
highlight pairs consisting of relevant patches whereas
suppress pairs of irrelevant patches. To this end,
we exploit two set-to-set matching kernels, PSMK and
LSMK.

• To boost efficiency of matching kernels and obtain the
global representation of 3D objects, we propose to implic-
itly embed the matching kernels when aggregating local
features. We discover that bilinear pooling embeds the
PSMK and VLAD embeds LSMK.

• We propose the harmonized bilinear pooling, balancing
singular values of the pooled bilinear features by learning
a Box-Cox transformation on the singular values.

• We implement harmonized bilinear pooling and VLAD
as two layers and use them to construct two multi-view
convolutional neural networks, respectively. Both of them
can be trained in an end-to-end manner.

II. RELATED WORK

A. View-Based Methods

MVCNN [2] projects a 3D object into multiple views,
extracts view-wise CNN features and max-pools them into a
global representation of the 3D object. GIFT [6] also extracts
view-wise features but does not pool them. Instead, it obtains
the similarity between two 3D objects by view-wise matching.
Recently, Wang et al. [12] recurrently cluster the views into
multiple sets, pool the features in each set and achieve
better performance than the original MVCNN. In parallel,
GVCNN [17] first groups the view-wise features to obtain the
group-wise features and further obtains the global feature by
fusing all group-wise features, achieving good performance in
3D object recognition.

B. Volume-Based Methods

Some works [1], [3], [4] apply 3D convolutional neural
networks directly on voxelized shapes. These methods are
constrained by their resolution owing to data sparsity and
costly computation of 3D convolution. Generally speaking,
the performance of volume-based methods is not as good as
view-based methods. Nevertheless, one of volume-based meth-
ods, VRN-Ensemble [13], achieves better performance than all
existing view-based methods on two public datasets. However,
its excellent performance is attributed to model ensemble and
a more advanced base model architecture. It ensembles 5
ResNet [18] models and one Inception model whereas most
existing view-based methods are based on a single VGG-M
model. As shown in [13], using a single ResNet model, its
performance is not as good as the view-based methods. More
recently, Xie et al. [19] proposed a descriptor network fol-
lowing an “analysis by synthesis” scheme, achieving excellent
performance in both 3D object recovery and recognition tasks.

C. Pointset-Based Methods

PointNet proposed by Qi et al. [9] directly takes
unordered point sets as inputs, addressing the sparsity
problem encountered in volume-based methods. In paral-
lel, Klokov and Lempitsky [11] propose Kd-Networks for the
recognition of 3D object represented by 3D point cloud.
To further improve the performance of PointNet, Qi et al. [10]
propose an improved PointNet++ through exploiting local
structures induced by the metric space. Recently, Su et al.
proposed SPLATNet [20] which conduct hierarchical and
spatially-aware feature learning for unordered points, achiev-
ing outstanding performance in 3D object segmentation.
Meanwhile, PointGrid [21], a 3D convolutional neural net-
work, samples a fixed number of points within each cell,
achieving an excellent performance in 3D object recognition
and segmentation based on low-resolution mesh grid.

D. Bilinear Pooling

Bilinear pooling was firstly proposed by Tenenbaum and
Freeman [22] to separate style and content. It was traditionally
used in pooling hand-crafted features [23]. Recently it has
been used in pooling local convolutional features [24]–[27]
to take the second-order statistics into consideration, achiev-
ing state-of-the-art performance in fine-grained image clas-
sification. Our work is closely related to bilinear pooling.
Nevetheless, different from works [24]–[29] utilizing bilinear
pooling to obtain the second-order statistics for fine-grained
classification, the bilinear pooling in our work is to more
efficiently achieve the functionality of polynomial set-to-set
similarity measurement. Moreover, we conduct the harmoniz-
ing operation on the pooled bilinear feature to obtain more
discriminative representations of 3D objects.

III. SET-TO-SET MATCHING KERNEL

In this section, we analyze the effectiveness of several
set-to-set matching kernels. We define X = {xi}Ni=1 as the set
of local convolutional features from all views of object A.
Each local convolutional feature represents a local patch
from one view of A. We define Y = {yi}Ni=1 as the local
convolutional features from another object B. We define four
simple set-to-set matching kernel: sum set-to-set matching
kernel (SSMK) and maximum set-to-set matching kernel
(MSMK), polynomial set-to-set matching kernel (PSMK) and
local set-to-set matching kernel (LSMK).

A. Sum Set-to-Set Matching Kernel (SSMK)

SSMK(X ,Y) measures the sum of similarities between
each point in X and each point in Y:

SSMK(X ,Y) =
�
x∈X

�
y∈Y
�x, y�. (4)

The SSMK is robust to the noise since it takes similarity of
every possible matching pair into consideration. Nevertheless,
it treats each matching pair equally and thus good matching
pairs could be easily swamped by bad ones.
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Fig. 2. By adaptively assigning different weights, good matching pairs are
highlighted whereas the bad ones are suppressed.

B. Maximum Set-to-Set Matching Kernel (MSMK)

In contrast, MSMK(X ,Y) measures the maximum similar-
ity between points in X and points in Y:

MSMK(X ,Y) = max
x∈X

max
y∈Y
�x, y�. (5)

The MSMK only takes the best matching pair into
consideration and effectively suppresses bad influence from
bad matching pairs. Nevertheless, taking only the best match-
ing pair makes it throw away much useful information and
sensitive to noise.

C. Polynomial Set-to-Set Matching Kernel (PSMK)

To overcome drawbacks of SSMK and MSMK, we propose
a polynomial set-to-set matching kernel (PSMKp):

PSMKp(X ,Y) = � �
x∈X

�
y∈Y
�x, y�p� 1

p . (6)

It is not difficult to observe that both SSMK and MSMK are
special cases of PSMKp . To be specific, SSMK corresponds
to the condition when p = 1 whereas MSMK corresponds to
the case when p → +∞. By choosing a not too large value
p ∈ (1,+∞), the similarity measurement can simultaneously
suppress the bad matchings and meanwhile be robust to noise.

Let us consider a a special case by setting p = 2 and remove
the 1

p entry in the original PSMKp since it does not change
the order of the similarities:

PSMK2(X ,Y) =
�
x∈X

�
y∈Y
�x, y�2 (7)

By rewriting �x, y�2 = w(x, y)�x, y�, it is not difficult to find
that larger weights w(x, y) are assigned to the good matchings
with larger value of �x, y� whereas the smaller weights are
assigned to the bad ones as illustrated in Figure 2. It can be
regarded as a soft and robust version of MSMK.

D. Local Set-to-Set Matching Kernel (LSMK)

Meanwhile, we propose another set-to-set matching kernel,
which we define as local set-to-set matching kernel (LSMK),
achieving the same function as PSMK. LSMK is based on
a pre-learned feature space partition. Concretely, as shown
in Figure 3, LSMK partitions the feature space into K cells and
each local feature x is assigned to the cells with index i(x)
according to its similarity with the cells’ centroids {ck}Kk=1.
Given two sets of local features X and Y , LSMK is computed
by

LSMK(X ,Y) =
�
x∈X

�
y∈Y

�(i(x) = i(y))�x, y�, (8)

Fig. 3. After the feature space partition, the relevant patches which are closed
in feature space will be assigned to the same cell. In contrast, the irrelevant
patches will be divided into different cells.

where �(i(x) = i(y)) is an indicator function which is
non-zero if and only if the local features x and y are assigned
to the same cell. The feature space partition can be learned
through k-means in an unsupervised manner, but later we will
show it can be learned in an end-to-end manner.

IV. KERNEL EMBEDDING

In the previous section, we analyze the effectiveness of sev-
eral set-to-set matching kernels. Nevertheless, to evaluate the
matching kernel, we need to exhaustively compare every local
feature from X and every local feature from Y , which is con-
siderably time-consuming. To boost the efficiency, we propose
to implicitly embed the matching kernel when aggregating the
local features. After the kernel embedding, each 3D object is
represented by a global feature and the inner-product between
two objects’ global features is equivalent to the output of
embedded matching kernel. Since computing the inner-product
between global features are much faster than exhaustively
comparing every pair of local features, the efficiency is sig-
nificantly boosted. Moreover, the aggregated global feature is
more flexible in further process compared with original set of
discrete local features. Concretely, the global feature can be
used as the input of any classifier such as SVM and softmax
whereas the original local feature sets based on matching
kernels can only rely on nearest neighbour classifier.

A. PSMK Embedding

In fact, �x, y�p is a special case of polynomial kernel
K (x, y) = (x�y + c)p when c = 0. It has an explicit feature
map defined as

�x, y�p = �vec(x⊗ · · ·
p
⊗ x), vec(y⊗ · · ·

p
⊗ y)�, (9)

where ⊗ represents the outer-product operation and ⊗· · ·
p
⊗

denotes p times outer product. Concretely, let us consider the
case when p = 2 and obtain

�x, y�2 = �vec(x⊗ x), vec(y⊗ y)�
= �vec(xx�), vec(yy�)�. (10)

Thus we can rewrite Eq. (7) by

PSMK2(X ,Y) = �vec(
�
x∈X

xx�), vec(
�
y∈Y

yy�)�, (11)

where
�

x∈XA
xx� and

�
y∈XB

yy� are bilinear-pooled fea-
tures of object A and B, respectively. That it, the PSMK2
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between two sets of local features are equal to the
inner-product similarity between two bilinear pooled features.
In other words, bilinear pooling implicitly embeds the PSS2
set-to-set matching kernel.

Let us define the number of local features within the set
as N = |X | = |Y|. Without kernel embedding, comput-
ing PSMK2(X ,Y) requires N2 times comparisons between
every pair of d-dimension local features, taking O(d N2) time
complexity. After kernel embedding, we just need to compute
an inner product between two d2-dimension global features,
taking O(d2) time complexity. In our case, d 	 N2, thus
the efficiency is significantly boosted after kernel embedding.
Note that,

vec(x⊗ · · ·
p
⊗ x) ∈ R

d p
, (12)

which means that the dimension of pooled feature increases
exponentially as p increases. When p > 2, the dimension
of the pooled feature will be extremely high, making both
memory and computational cost extremely huge. Therefore,
considering both effectiveness and efficiency, we select p = 2.

Note that, the proposed PSMK kernel resembles the gen-
eralized mean pooling proposed in [30]. But they are quite
different in the motivation and formulation. To be specific,
given two sets of features X = {x1, · · · , xN } and Y =
{y1, · · · , yN }, generalized mean pooling conducts on each set
individually:

x̄[k] = 1

N

N�
i=1

xi [k]p,

ȳ[k] = 1

N

N�
i=1

yi [k]p, (13)

where x̄[k] and ȳ[k] denotes the k-th element of the pooled
global feature of x̄ and ȳ. The similarity between X and Y
based on the generalized mean pooling (GMP) is

simGMP(X ,Y) = �x̄, ȳ�. (14)

It is straightforward to see that simGMP(X ,Y) based on
generalized mean pooling is not equivalent to the proposed
PSMK(X ,Y). Meanwhile, GMP cannot achieve the function
of highlighting good matchings achieved by our PSMK.

B. LSMK Embedding

Let us consider LSMK(X ,Y) contributed by the k-th cell:
LSMKk(X ,Y) =

�
x∈X

�
y∈Y

�(i(x) = i(y) = k)�x, y�. (15)

We define the sum-pooled vector in the k-th cell from XA and
that from XB as

vk
x =

�
x∈X

�(i(x) = k)x,

vk
y =

�
y∈Y

�(i(y) = k)y. (16)

It is not difficult to observe that

�vk
x , vk

y� = LSMKk(X ,Y). (17)

To obtain global representation, we concatenate each set of
locally pooled features into a global vector

Vx = [v1
x, · · · , vK

x ], Vy = [v1
y, · · · , vK

y ]. (18)

It is straightforward to obtain

�Vx , Vy� =
K�

k=1

�vk
x , vk

y� =
K�

k=1

LSMKk(X ,Y)

= LSMK(X ,Y). (19)

Note that, if we replace vk
x =

�
x∈X �(i(x) = k)x in Eq. (16)

by vk
x =

�
x∈X �(i(x) = k)(x − ck), the aggregated global

feature Vx in Eq. (18) will be equivalent to the vector of locally
aggregated descriptors (VLAD) [31]. From above analysis,
we conclude that VLAD embeds the LSMK kernel.

V. HARMONIZED BILINEAR POOLING

Below we investigate the components unbalance problem
inherited in bilinear-pooled features. Following the previous
definition, we obtain the bilinear-pooled feature of A and B
by FA = �

x∈X xx� and FB = �
y∈Y y j y j

�. By singular
value decomposition (SVD), we obtain

FA = UA�AU�A =
d�

s=1

σ s
Aus

Aus
A
�

FB = UB�BU�B =
d�

t=1

σ t
But

But
B
� (20)

where {us
A}ds=1 are singular vectors and {σ t

A}dt=1 are singular
values. The similarity between A and B is

sim(A,B) = �vec(FA), vec(FB)�

=
d�

s=1

d�
t=1

σ s
Aσ t

B�us
A, ut

B�2. (21)

For the convenience of illustration, we term a singular vector
as a component. From Eq. (21), we observe that the similarity
between A and B is equal to the weighted summation of
squares of similarities of all pairs of components (us

A, ut
B ).

The weight corresponds to the product of the corresponding
singular values σ s

Aσ t
B . Nevertheless, the scales of singular val-

ues vary significantly. As illustrated in Figure 4(a), the largest
singular value is above 102 whereas the smallest singular
value is below 10−4. Therefore, the weight σ s

Aσ t
B from two

large singular values will be much larger than that from two
small singular values, leading to vanishing of contributions
from singular vectors corresponding to small singular values.
This problem motivates us to conduct equalization on different
singular values to make every component contribute to the final
scores between two 3D objects in a more democratic manner.

To better understand the motivation of the proposed equal-
ization method, let us consider an object represented by a
feature x which can be decomposed into a linear combination
of two components 10c1+ c2 where c1 and c2 are orthogonal
and unit-norm. Given another object represented by the feature
y = a1c1 + a2c2, the similarity between x and y is

�x, y� = �10c1 + c2, a1c1 + a2c2� = 10a1 + a2. (22)
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Fig. 4. After Box-Cox transformation, the scales of components are more
balanced. Before the transformation, The singular value σ ∈ [10−8, 103].
After transformation, the singular values σ ∈ [−10, 10].

In this case, the similarity between x and y is mainly deter-
mined by a1 and the contribution from a2 is marginal. Our
method balances the contributions from a1 and a2 and thus
makes the similarity more effective.

The Box-Cox transformation [15] is a data stabilization
technique widely used in statistics and economics. Inspired by
its success in stabilizing variance, we utilize it to normalize the
singular values to mitigate the problem caused by burstiness.
The Box-Cox transformation is defined as

σ (λ) =
⎧⎨
⎩

σλ − 1

λ
, λ 
= 0,

ln(σ ), λ = 0.
(23)

The condition when λ = 0 is based on the fact that
limλ→0

σλ−1
λ = ln(σ ). Note that the singular value σ

is non-negative since the bilinear matrix is semi-definite.
We visualize the values of singular values before and after
Box-Cox transformation in Figure 4, in which we set λ = 0.1.
As we can see, after the Box-Cox transformation, the singular
values will be transformed to be at comparable scales. Never-
theless, how to choose λ is a nontrivial problem and there is no
evidence showing that we should assign the same λ to different
singular values {σk}dk=1. Therefore, we propose to learn a λk

for each σk from the data. To be specific, we incorporate
{λk}dk=1 as the weights of one layer of the neural network,
which can be trained in an end-to-end manner. The readers
can refer to next section for details. Below we summarize the
pipeline of the harmonized bilinear pooling in the forward
path:

1)
�N

i=1 xi xi� → F
2) F→�d

k=1 σkukuk�

3)
�d

k=1
σ

λk
k −1
λk

ukuk� → H

A. Relation to Existing Bilinear Pooling Methods

There are some existing works [32], [33] utilizing the
matrix-logarithm operation to map the covariance matrix from
Symmetric Postive Definite (SPD) manifold to the tangent
Euclidean space. Interestingly, the matrix-logarithm operation
is equivalent to Box-Cox transformation conducted on the
singular values when λ = 0. But Meanwhile, Lin et al. [34]

Fig. 5. The architecture of the proposed Multi-view Harmonized Bilinear
Network (MHBN).

recently propose the improved bilinear pooling which normal-
izes the singular values by element-wise signed square-root
normalization given by sign(σk)

√|σk |. It is not difficult
to observe that the square root normalization used in [34]
corresponds to the Cox-Box transformation when λ = 1/2.
Different from matrix-logarithm [32], [33] and improved
bilinear pooling [34], we adaptively learn the {λk}dk=1 from
the data, possessing higher flexibility and modelling ability.
Meanwhile, several works [35]–[37] show that higher-order
pooling achieves better performance than bilinear pooling.
If we use higher-order SVD [38], our harmonized normaliza-
tion can also be applied in higher-order pooling. Nevertheless,
conducting higher-order SVD is very time-consuming, limiting
the efficiency.

B. Relation to Normalization Method in VLAD

As for VLAD aggregation method, we also need
normalization to balance the contribution from differ-
ent components. One of most widely used normalization
method is intra-normalization proposed in [39]. To be
specific, given a VLAD feature Vx = [v1

x , · · · , vK
x ],

intra-normalization obtains the normalized feature V̄x by con-
ducting �2-normalization on each locally-pooled feature vk

x
individually:

V̄x = [ v1
x

�v1
x�2

, · · · , vK
x

�vK
x �2
]. (24)

Despite the intra-normalization used in VLAD is quite dif-
ferent from the harmonizing operation proposed for bilinear
pooling from the perspective of algorithms, their purposes are
quite similar, that is, to make different components inherited
in the global feature more balanced.

VI. MULTI-VIEW HARMONIZED BILINEAR NETWORK

In this section, we will introduce how to incorporate harmo-
nized bilinear-pooling as a layer of the proposed multi-view
harmonized bilinear network and derive the back-propagation
equations for training the network. As shown in Figure 5,
the proposed harmonized bilinear-pooling layer is concate-
nated after the last convolutional layer. All views share the
weights of the convolutional layers. For each view Vj , the out-
put of the last convolutional layer is a three dimensional tensor
X j ∈ R

W×H×D . We define a local convolutional feature x ∈
R

D as a super-column of tensor generated from a specific view.
Therefore, given a 3D object represented by M views, we will
obtain N = MW H local features. We define X = {xi }Ni=1 as
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the set of all local features of all views. We define L as the
cross-entropy loss used in training the network. The proposed
harmonized bilinear-pooling layer consists of 6 sub-layers:

A. Early Sqrt Sub-Layer

It simply normalizes each local feature by root
normalization:

x̄i = sign(xi )
	|xi |, (25)

where  represents the element-wise multiplication.
√· and |·|

represent the element-wise square root and absolute. This layer
is actually conducting root-normalization. Previous works
like RootSIFT [40] have shown that the root-normalization
can considerably improve the performance of local features.
We can compute ∂L

∂xi
through back-propagation by

∂L

∂xi
= 1

2
√|xi | 

∂L

∂ x̄i
. (26)

B. Conv Sub-Layer

It is a convolutional layer with 1× 1× d × D kernel size.
It reduces the dimension of local convolutional features from
D to d (d < D) by

x̂i =Wx̄i + b, (27)

where W and b are initialized by PCA. The dimension
reduction serves two purposes: 1) improving the efficiency in
training and testing; 2) mitigating over-fitting.

C. Bilinear Pooling Sub-Layer

X̂ = [x̂1, . . . , x̂n] ∈ R
d×N are defined as all the compact

local convolutional features after conv sub-layer. The output
of the bilinear pooling sub-layer is computed by

F = X̂X̂�. (28)

We can compute ∂L
∂X̂

through back-propagation by

∂L

∂X̂
= (

∂L

∂F
+ ∂L

∂F

�
)X̂. (29)

D. Harmonizing Sub-Layer

It decomposes the bilinear pooled matrix F by SVD:
F→ U�U�. (30)

The the output of harmonizing layer H is obtained by

H← Uh(�)U�. (31)

h(�) is the matrix containing the harmonized singular values
defined by

h(�)(i, j) =

⎧⎪⎨
⎪⎩

σ
λi
i − 1

λi
, i = j,

0, i 
= j.
(32)

where {σk}dk=1 are the singular values of input bilinear-pooled
matrix F. The singular values are harmonized by coefficients

{λk}dk=1, which are parameters of the harmonizing sub-layer.
In the back-propagation phase, ∂L

∂λk
is computed by

∂L

∂λk
= λkσ

λk
k ln(σk)− σ

λk
k + 1

λ2
k

uk
� ∂L

∂H
uk, (33)

Below we derive Eq. (33). By plugging Eq. (32) into Eq. (31),
we obtain

H =
d�

k=1

σ
λk
k − 1

λk
uku�k . (34)

Therefore,

∂L

∂λk
= vec(

∂L

∂H
)�vec(

∂H
∂λk

)

= λkσ
λk
k ln(λk)− σ

λk
k + 1

λ2
k

uk
� ∂L

∂H
uk . (35)

Meanwhile, ∂L
∂F is computed by

∂L

∂F
= U

��
K 

�
U�

∂L

∂U


+

� ∂L

∂�


diag

�
U�, (36)

where uk is the k-th singular vector and matrix K is defined
as

K(i, j) =
⎧⎨
⎩

1

σ j − σi
, i 
= j,

0, i = j.
(37)

∂L
∂� and ∂L

∂U are computed by

∂L

∂U
=

� ∂L

∂H
+

� ∂L

∂H

��
Uh(�),

∂L

∂�
= h�(�)U� ∂L

∂H
U. (38)

h(�) is defined in Eq. (32) and h�(�) is given by

h�(�)(i, j) =
�

σ
λi−1
i , i = j,

0, i 
= j.
(39)

The readers can refer to [41] for detailed derivation of
Eq. (36) (37) (38).

E. Late Sqrt Sub-Layer

It aims to further suppress the burstiness and reshape the
2D matrix into a 1D vector:

v = sign(vec(H))	
vec(|H|). (40)

F. �2-Norm Sub-Layer

It conducts the �2-normalization:

v̂ = v
�v�2 . (41)
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VII. MULTI-VIEW VLAD NETWORK

In the previous section, we have analyzed that the VLAD
implicitly embeds LSMK, which automatically decouples the
irrelevant patches and only match between relevant patches.
Straightforwardly, we can directly utilize VLAD to aggre-
gate the local convolutional features of pre-trained CNNs.
Nevertheless, the off-the-shelf pre-trained network might not
be optimal for new datasets. Inspired by the success of
NetVLAD [42], we also incorporate the VLAD as a layer
into the neural network to further boost the performance.
We propose our multi-view VLAD Network (MVLADN) to
achieve end-to-end training for 3D object recognition task. Our
experiments show the representation learned from the end-to-
end trained network can outperform the aggregated VLAD
representation based on the pre-trained CNN model.

Following the definition in the last section, for each view Vi ,
the output of a convolutional layer is a three-dimension tensor
XH×W×D

i . We define local convolutional feature x ∈ R
D as a

super-column of the tensor. The tensor is further unfolded into
N = nW H local convolutional features {x j }Nj=1. As shown
in Fig. 6, VLAD layer consists of 4 sub-layers:

A. Square Root Sub-Layer

The first sub-layer is a square root layer, it conducts the
root normalization for each local convolutional feature x by

x̄ j = sign(x j )
	|x j |, (42)

where  denotes the element-wise product operation and ||
denotes the element-wise absolute operation. In the back-
propagation, we can compute ∂L

∂xi
by

∂L

∂x j
= 1

2
	|x j | 

∂L

∂ x̄ j
(43)

B. Conv Sub-Layer

Similar to the one used in MHBN, it is also a 1× 1× d ×
D convolutional layer for dimension reduction. It reduces the
dimension of local features from D to d where d < D by

x̂ j =Wx̄ j + b. (44)

It improves the efficiency and meanwhile smooth the over-
fitting. W and b are initialized by PCA.

C. Soft VLAD Sub-Layer

The soft-VLAD is an extension of original VLAD by
changing original hard cluster assignment to soft assignment
to make it differentiable [42]. It computes each sub-vector vk

by

vk =
N�

j=1

e−α�x̂ j−μk�22�K
k�=1 e−α�x̂ j−μk�22

(x̂ j − μk). (45)

To make the gradients easier to compute, a trick is to replace
the similarity measured by Euclidean distance −�x̂ j − μk�22
by the inter-product similarity x̂�j μk . Therefore, we replace

Fig. 6. The structure of VLAD layer.

e−α�x̂ j−μk�22 by eαx̂ j w�k where wk = μk and above equation
will be equivalent to

vk =
N�

j=1

eαx̂�j wk�K
k�=1 eαx̂�j wk�

(x̂ j − μk). (46)

All the sub-vectors are concatenated into a global vector v =
[v1, v2, . . . , vK ]. To enable more flexibility, we decouple wk

from μk and thus {wk}Kk=1 as well as {μk}Kk=1 consist of the
weights of the Soft-VLAD layer.

D. Intra-Normalization [39] Sub-Layer

It conducts the �2-normalization on each subvector vk in
order to balance the contribution of each subvector:

v̂ = [v1/�v1�2; v2/�v2�2; . . . ; vK /�vK �2] (47)

VIII. EXPERIMENT

A. Implementation Details

We render the 3D mesh models by placing 6 centroid point-
ing virtual cameras around the mesh every 60 degrees with
an elevation of 30 degrees from the ground plane. We adopt
VGG-M network [43] as our base model. Despite that some
more advanced networks are proposed such as ResNet [18]
and DenseNet [44], we use VGG-M to make a fair compar-
ison with other existing methods which are mostly based on
VGG-M. We remove all the layers of original VGG-M after
conv5 layer and concatenate the proposed harmonized bilinear
pooling/VLAD layer after conv5. We initialize the weights of
harmonizing sub-layer {λk}dk=1 by 0.5, the weight of VLAD
layer through k-means, the weights of 1 × 1 × d × D conv
sub-layer by PCA. A dropout layer is added after harmonized
bilinear-pooling/VLAD layer and we set the dropout ratio as
0.5. Likewise MVCNN [2] and RCPCNN [12], after training,
we replace the softmax classifier with a linear SVM as the
classifier in the testing phase.

B. Datasets and Evaluation Metrics

ModelNet40 [1] consists of 12311 3D models from 40 cat-
egories. The models are split into 9843 training samples
and 2468 testing samples. ModelNet10 [1] consists of 4899
3D models split into 3991 training samples and 908 testing
samples from 10 categories. Following MVCNN-MultiRes [4],
we report both average instance accuracy and average class
accuracy. Average instance accuracy counts the percentage of
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Fig. 7. Influence of local convolutional feature dimension d.

TABLE I

INFLUENCE OF THE NUMBER OF VIEWS

the correctly recognized testing samples among all the testing
samples whereas the average class accuracy is the average
accuracy cross all the classes.

C. Influence of the Number of Views

We evaluate the effect of the number of views on the average
instance accuracy of our MHBN and MVLADN on the Mod-
elnet40 dataset. We compare them with that from MVCNN [2]
and recurrent clustering and pooling (RCPCNN) [12]. The
accuracies of MVCNN and RCPCNN shown in Table I are
taken from Table 3 of Wang et al. [12]. As shown in Table I,
our MHBN and MVLADN consistently outperform MVCNN
and RCPCNN with a large margin. Note that a performance
drop is observed when the number of views increases from
6 to 12 in MVCNN, RCPCNN and ours. This performance
drop might be attributed to the fact that sampling too densely
will enlarge the joint area of two adjacent views, making the
representation dominated by the overlaps.

D. Ablation Study on MHBN

1) Influence of Dimension of Local Features: The conv
sub-layer aims to reduce the dimension of original local convo-
lutional features from D (512) to d . We evaluate the influence
of d on the performance of our MHBN. As shown in Figure 7,
on the ModelNet40 dataset, the average instance/class accu-
racy generally improves as the dimension of local features d
increases. To balance the efficiency and effectiveness, we set
d = 128 on the ModelNet40 dataset. In contrast, on the
ModelNet10 dataset, the accuracy drops when d > 64. This
is owing to that the scale of ModelNet10 is small and thus
a larger d tends to cause over-fitting. We set d = 64 on the
ModelNet10 dataset.

2) Influence of Early Sqrt and Late Sqrt Sub-Layers: By
removing these two sub-layers, MHBN achieves 93.24 average
instance accuracy on ModelNet40 and 93.39 on ModelNet10.
After we add on late sqrt sub-layer, it improves average

TABLE II

INFLUENCE OF EARLY SQRT AND LATE SQRT SUBLAYERS

TABLE III

COMPARISON WITH OTHER POOLING METHODS

instance accuracy from 93.24 to 93.63 on ModelNet40. If we
add on early sqrt and late sqrt sub-layers together, the aver-
age class/instance accuracy is improved from 90.00/93.24
to 92.19/94.04 on ModelNet40 and from 93.03/93.39 to
94.93/94.93 on ModelNet10.

3) Comparison With Other Pooling Methods: In this
section, we compare the classification and retrieval perfor-
mance of the proposed harmonized bilinear-pooling with sum-
pooling, max-pooling, bilinear pooling [24], improved bilinear
pooling [34], log-covariance pooling [32] and an off-the-shelf
set-wise pooling method DeepSets [45]. In implementation of
DeepSets [45], we use a stack of two layers define in Eq. (6)
of [45] to process the last convolutional feature map and the
global feature is obtained by sum-pooling. We use mean
average precision (mAP) to evaluate the retrieval accuracy.
Note that, bilinear pooling corresponds to the special case of
the proposed harmonized bilinear pooling by fixing λ = 1,
improved bilinear pooling is the special case when λ = 1/2
and log-covariance pooling is the condition when λ = 0.
To make a fair comparison, we also add early sqrt and late
sqrt layers in bilinear pooling, improved bilinear pooling and
log-covariance pooling. As shown in Table III, ours consis-
tently outperforms all other pooling methods on both Model-
Net10 and ModelNet40 datasets. Meanwhile, the classification
performance of compared methods are in accordance with their
retrieval performance, that is, the method achieving higher
classification accuracy tends to have a higher retrieval mAP. In
Figure 8, we visualize {λk}dk=1 and components’ scales before
and after harmonization on the ModelNet10 dataset.

E. Ablation Study on MVLADN

1) Influence of the Dimension of Local Features: As men-
tioned in the previous section, the second sub-layer in the
VLAD layer is a 1 × 1 × D × d convolutional layer. It aims
to reduce the dimension of local features from D(512) to d .
We test the performance of the proposed MVLADN when
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Fig. 8. The visualization of λk , σk and |(σλk
k − 1)/λk |.

TABLE IV

THE INFLUENCE OF SQUARE ROOT LAYER AND INTRA-NORM LAYER ON

THE PERFORMANCE OF THE PROPOSED MVLADN

the reduced dimension d varies among 32, 64, 128 and 256.
As we can see from Figure 9, the performance of the pre-
trained MVLADN generally increases as the feature dimension
increases. Meanwhile, the finetuned MVLADN achieved the
best performance when d = 128. We set the default value of
d = 128 on both datasets.

2) Influence of the Number of Clusters: The dimension of
the output of the VLAD layer is d K , where d is the dimension
of local features and K is the number of clusters. We evaluate
the influence of the number of clusters on the performance of
the proposed MVLADN in Figure 10. As shown in Figure 10,
the proposed MVLADN achieves excellent performance when
K = 64/128. We set default K = 64 and thus the default
dimension of the output of VLAD layer is 64× 128 = 8192.

3) Square-Root Sub-Layer and Intra-Norm Sub-Layer:
We evaluate the influence of square-root sub-layer and
the intra-norm sub-layer. As we can see from Table IV
that, square-root sublayer and intra-norm sub-layer indeed
boost the performance of the proposed MVLADN. For
instance, by removing both square-root and intra-norm sub-
layers, the average instance/class accuracy achieved on the
ModelNet40 dataset is only 91.77/89.84. By incorporating
intra-norm sub-layer, our MVLADN achieves a 93.15/90.16
average instance/class accuracy. Moreover, by incorporating
both square-root and intra-norm sub-layers, our MVLADN
achieves an 93.96/91.68 average instance/class accuracy on
the ModelNet40 dataset.

F. Efficiency

To demonstrate the efficiency of the proposed MHBN,
we compare the time cost with MVCNN [2]. We set the batch
size as 16 and test on a single P40 Nvidia GPU card. Table V
reports the total time cost on the whole neural network and the
time cost on pooling per batch. As shown, despite the pooling
time having increased considerably, the total time cost only

TABLE V

TIME COST COMPARISON BETWEEN MVCNN [2] AND OUR MHBN

TABLE VI

THE INFLUENCE OF ADDITIONAL MODALITY. BY ADDING ADDITIONAL
DEPTH MODALITY, THE PERFORMANCE GETS IMPROVED

TABLE VII

THE INFLUENCE OF ADDITIONAL MODALITY ON MVLADN. BY ADDING
ADDITIONAL DEPTH MODALITY, THE PERFORMANCE GETS IMPROVED

increases marginally, since the cost of pooling layers is quite
marginal compared to that of convolutional layers.

G. Additional Modality

Note that, all the experiments in the previous sections are
conducted using only RGB images. Analogous to [5], [12],
we evaluate the influence of additional depth modality as well.
For each 3D object, we obtain 6 depth views in addition
to 6 RGB views. We train two MHBNs/MVLADNs for
RGB views and depth views separately. We concatenate
the features from RGB-MHBN/MVLADN and that of Depth-
MHBN/MVLADN as the final feature of a 3D object, and
train a linear SVM as classifier, respectively. As shown
in Table VI and VII, incorporating the additional depth modal-
ity generally improves recognition performance of MHBN
and MVLADN. For instance, using MHBN, incorporating
additional depth modality improves the performance from
94.12/92.23 to 94.73/93.06 on the ModelNet40 dataset and
improve that from 94.93/94.91 to 95.04/95.03 on the Model-
Net10 dataset. Nevertheless, we witness a slight performance
drop using MVLADN on ModelNet10 dataset when adding
depth modality.

H. Comparison With State-of-the-Art Methods

In this section, we compare ours with existing state-of-the-
art methods. Sequentially, we compare ours with three cate-
gories of methods, that is, volume-based methods, view-based
methods and pointset-based methods.

We first compare with the volume-based methods [1],
[3], [4], [46]. As shown in Table VIII, the volume-based
methods are generally not as good as ours and other
view-based methods. As to view-based methods, MVCNN [2]
achieves a 92.1/89.9 average instance/class accuracy using
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Fig. 9. The influence of d, local feature dimension, on the recognition performance of the proposed MVLADN.

Fig. 10. The influence of K , the number of clusters, on the recognition performance of the proposed MVLADN.

TABLE VIII

COMPARISON WITH STATE-OF-THE-ART METHODS

12 views, which are considerably better than volume-based
methods. In contrast, our MHBN achieves a 94.7/93.1 aver-
age instance/class accuracy and our MVLADN achieves a
94.6/92.3 average instance/class accuracy using a combination
of 6 RGB views and 6 depth views. Several recently pro-
posed pointset-based methods, Kd-Network [11], PointNet++
[10] and PointGrid [21] are compared as well. As shown
in Table VIII, our MHBN and MVLADN consistently out-
perform all of them in both single-modality mode and
multi-modality mode.

IX. CONCLUSION

In this paper, we characterize a 3D object by a set
of local patches from multiple projected views. 3D object

representation learning is tackled from the perspective of set-
to-set matching. We exploit two set-to-set matching kernels,
PSMK and LSMK, both of which emphasize the pairs con-
sisting of relevant patches and suppress the pairs of irrelevant
patches. To further boost the efficiency and obtain global
features, we embed the set-to-set matching kernel in local fea-
ture aggregation phase. By exploiting the connection between
local feature pooling and set-to-set matching kernel, we dis-
cover bilinear pooling embeds PSMK and VLAD embeds
LSMK. To balance the contribution of different components
in aggregated global feature, we propose the harmonized
bilinear pooling. For end-to-end training, we use harmo-
nized bilinear pooling and VLAD as two layers to construct
MHBN and MVLADN. Systematic experiments conducted on
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public benchmark datasets demonstrate the effectiveness of our
MHBN and MVLADN.
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