
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Asymmetric Mapping Quantization
for Nearest Neighbor Search

Weixiang Hong, Xueyan Tang, Jingjing Meng and Junsong Yuan

Abstract—Nearest neighbor search is a fundamental problem in computer vision and machine learning. The straightforward solution,
linear scan, is both computationally and memory intensive in large scale high-dimensional cases, hence is not preferable in practice.
Therefore, there have been a lot of interests in algorithms that perform approximate nearest neighbor (ANN) search. In this paper, we
propose a novel addition-based vector quantization algorithm, Asymmetric Mapping Quantization (AMQ), to efficiently conduct ANN
search. Unlike existing addition-based quantization methods that suffer from handling the problem caused by the norm of database
vector, we map the query vector and database vector using different mapping functions to transform the computation of L-2 distance
to inner product similarity, thus do not need to evaluate the norm of database vector. Moreover, we further propose Distributed
Asymmetric Mapping Quantization (DAMQ) to enable AMQ to work on very large dataset by distributed learning. Extensive experiments
on approximate nearest neighbor search and image retrieval validate the merits of the proposed AMQ and DAMQ.

Index Terms—Vector Quantization, Nearest Neighbour Search, Image Retrieval, Distributed Optimization.

F

1 INTRODUCTION

N EAREST neighbor (NN) search has wide applications
in computer vision, machine learning and information

retrieval, e.g., image retrieval, object instance search and k-
NN classifier [31], etc. The straightforward solution, linear
scan, is both computationally and memory intensive in
large scale high-dimensional cases, hence is not preferable
in practice. Consequently, there have been a lot of interests
in algorithms that perform approximate nearest neighbor
(ANN) search.

ANN search is traditionally addressed with hashing
methods that have been comprehensively surveyed in [33].
However, a family of methods based on vector quantization
[2], [11], [20], [40], [41] has recently triggered interests from
computer vision, machine learning and multimedia retrieval
communities, due to its superior accuracy and compara-
ble efficiency compared with hashing techniques. Different
from hashing, these methods perform ANN search by learn-
ing numerous decimal quantizers, hence do not suffer from
the quantization loss from decimal space to binary space,
which is the main reason of their better accuracy compared
with hashing. Meanwhile, quantization-based methods are
also efficient thanks to the smart use of lookup tables.

Vector quantization algorithms can be coarsely classi-
fied into two categories: (1) partition-based quantization
and (2) addition-based quantization. Product quantization
(PQ) is perhaps the most well-known work that belongs
to partition-based quantization [8], [11], [20], [27], [37].
PQ partitions the feature space into a number of disjoint
subspaces and quantizes each subspace separately. A vector
is represented by a short code composed of its subspace
quantization indices. The Euclidean distance between two
vectors can be efficiently estimated from their codes us-

• Weixiang Hong is with National University of Singapore. Xueyan Tang
is with Nanyang Technological University. Jingjing Meng and Junsong
Yuan are with State University of New York at Buffalo.

• Correspondence to Junsong Yuan at jsyuan@buffalo.edu.

ing a lookup table. There have been several attempts to
improve product quantization, such as distance-encoded
product quantization [11], optimized product quantization
[8] and Cartesian k-means (CKM) [27]. On the other hand,
additive quantization (AQ) is one of the pioneer works
for addition-based quantization [1], [2], [40], [41]. AQ im-
proves the vector quantization accuracy by approximating
a database vector using the addition of dictionary words se-
lected from different dictionaries. Since the encoding phase
in AQ is essentially high-order Markov Random Fileds
(MRFs) and NP-hard, several recent works [2], [4], [25]
have been proposed to address this drawback. Composite
Quantization (CQ) [40] is another kind of addition-based
quantization. CQ approximates a database vector using the
summation of dictionary words with the constant inter-
dictionary-element-product constraint.

Generally speaking, addition-based quantization meth-
ods perform better than partition-based ones, because
addition-based quantizations do not decompose data space
into orthogonal subspaces and thus make no subspace
independence assumptions. Nevertheless, an inherent flaw
to addition-based approaches is that the norm of database
vector cannot be efficiently estimated. Specifically, the L-2
distance between the query q and any database vector x can
be expanded as:

||q− x||22 = ||q||22 − 2qTx + ||x||22. (1)

The first term is identical to all database vectors and can be
omitted. Supposing x is approximated by addition-based
quantization approximation such as x ≈

∑M
m=1 Cmkm ,

where Cmkm represents the km-th element from dictionary
Cm, then the second item can be approximately computed
by lookup table. Unfortunately, the third item ||x||22 can-
not be fast computed with addition-based codes. Existing
methods tackle this problem following two different kinds
of strategies. The first one adopted by AQ [1], LSQ [25]
and ArborC [4] utilizes additional memory to encode ||x||22,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

which is straightforward but not scalable since the memory
request grows linearly to the number of database vec-
tors. The second one adopted by CQ [40] and SQ [41]
reformulates Equation (1) and enforces an inter-dictionary-
element-product constraint on the dictionary C to reduce
the computation (See Section 2 for details). Unluckily, the
extra constraint will limit the model capacity and hurt the
performance [40].

In this work, we propose a novel solution, Asymmetric
Mapping Quantization (AMQ), to elegantly eliminate the
computation of database vector norm. By appending an
additional dimension to both database vectors and query
vectors, AMQ transforms the computation of L-2 distance to
inner product similarity, which does not involve the compu-
tation of ||x||22. Meanwhile, the inner product similarity can
be efficiently computed using table lookups in the context of
addition-based quantization. We note that similar approach
has been proposed in [32]. Since we do not enforce any
constraint on the dictionary C, the objective function in our
optimization problem is convex on C and has a closed-form
solution. As shown in Section 4, the convexity on C further
permits us to learn AMQ under a distributed setting by the
alternating direction method of multipliers (ADMM) [12].
We conduct extensive experiments on approximate nearest
neighbor search and image retrieval, and the empirical
results validate the merits of the proposed approach.

2 BACKGROUNDS

In this section, we briefly introduce Composite Quantiza-
tion [34], [40], [41] and Additive Quantization [1], [4], [25],
which are essential to the understanding of our work.

2.1 Composite Quantization
Composite Quantization [40] aims to approximate a
vector x ∈ Rd by the composition of M vectors
{C1k1 ,C2k2 , . . . ,CMkM }, each of which is selected from
a dictionary with K elements, i.e., Cmkm is the kmth el-
ement in the dictionary Cm, and ∀m ∈ {1, 2, . . . ,M},
Cm = {Cm1,Cm2, . . . ,CmK}.

Let x̄ =
∑M
m=1 Cmkm be the approximation of vector

x. The accuracy of nearest neighbor search relies on the
quality of the distance approximation, i.e., how small is the
difference between the distance of the query q to the vector
x and the distance to the approximation x̄. According to
the triangle inequality,

∣∣||q− x||2 − ||q− x̄||2
∣∣ ≤ ||x− x̄||2,

the distance approximation error in ANN search is bounded
by the vector approximation error, which is formulated as
follows,

min
Cmkm

∑
x∈X
||x−

M∑
m=1

Cmkm ||22, (2)

where Cmkm is the selected element from the dictionary Cm
for the database vector x.

With the approximation x̄ =
∑M
m=1 Cmkm , we have

||q− x̄||22 =
M∑
m=1

||q− Cmkm ||22

− (M − 1)||q||22 +
M∑
i=1

M∑
j=1,j 6=i

CTikiCjkj .

(3)

Given the query q, the first term can be efficiently computed
using lookup tables, and the second term is constant for all
database vectors, hence unnecessary to compute for ANN
search. For the third term, we constrain it to be a constant
ε, i.e.,

∑M
i=1

∑M
j=1,j 6=i CTikiCjkj = ε, which is referred to

as constant inter-dictionary-element-product in Composite
Quantization.

Let C = [C1C2 · · ·CM] ∈ Rd×MK be the whole dic-
tionary, B = [bT1 bT2 · · · bTN] ∈ RMK×N be the matrix con-
sisting of all codes. Furthermore, we impose three extra
constraints on B to fully complete the formulation, namely,
bn = [bn1bn2 · · · bnM] ∈ {0, 1}MK , bnm ∈ {0, 1}K and
||bnm||1 = 1. Finally, the optimization problem is formu-
lated as:

min
C,B,ε

||X− CB||2F

s.t. B = [bT1 bT2 · · · bTN],bn = [bTnib
T
ni · · · bTni]T

bnm ∈ {0, 1}K , ||bnm||1 = 1
M∑
i=1

M∑
j=1,j 6=i

bTniC
T
i Cjbnj = ε

n = 1, 2, . . . , N,m = 1, 2, . . . ,M,

(4)

which is hard to directly solve. CQ relaxes the constant inter-
dictionary-element-product constraint as:

min
C,B,ε

||X− CB||2F + µ(
M∑
i=1

M∑
j=1,j 6=i

bTniC
T
i Cjbnj − ε)2

s.t. B = [bT1 bT2 · · · bTN],bn = [bTnib
T
ni · · · bTni]T

bnm ∈ {0, 1}K , ||bnm||1 = 1

n = 1, 2, . . . , N,m = 1, 2, . . . ,M,

(5)

and solves the dictionary C in (5) by a quasi-Newton al-
gorithm (L-BFGS [26]). Unfortunately, (5) is not convex on
C, thus the L-BFGS algorithm cannot guarantee to reach
the global optimum of (5), which may result in undesirable
performance loss.

2.2 Additive Quantization

Similar to Composite Quantization, Additive Quantiza-
tion [1] also expresses each vector x as the summation of
several dictionary elements x ≈

∑M
m=1 Cmkm , and aims to

minimize the vector approximation error, i.e., Equation (2).
The key difference between CQ and AQ is the way to
estimate the distance between query vector and database
vectors. Specifically, AQ expands ||q− x||22 as:

||q− x||22 = ||q||22 − 2qTx + ||x||22. (6)

The first term ||q||22 is omitted similar to CQ. The sec-
ond term qTx can be approximately estimated using table
lookup, i.e.

qTx ≈ qT x̄ =
M∑
m=1

qTCmkm . (7)

The computational cost of this step for one database vector
is O(M).

For the third item ||x||22, AQ provides two different
solutions to estimate it. The first one is to non-uniformly
quantize the scalar value of ||x||22, which results in additional

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

memory cost that grows linearly to the database size. The
other way is to approximately estimate ||x||22 using table
lookups, i.e.,

||x||22 ≈ ||x̄||22 = ||
M∑
m=1

Cmkm ||22 =
M∑
i=1

M∑
j=1

CTikiCjkj . (8)

Although Equation (8) does not cost additional memory
footprint, the computational cost of Equation (8) for one
database vector is O(M2), which grows quadratically with
M and can slow down the computation of distance consid-
erably [1].

3 ASYMMETRIC MAPPING QUANTIZATION

In this section, we introduce the Asymmetric Mapping
Quantization, which elegantly addresses the drawback of
CQ based methods [34], [40], [41] and AQ based approaches
[1], [4], [25].

3.1 Asymmetric Mapping
First, we define two vector transformation functions P :
Rd 7→ Rd+1 and Q : Rd 7→ Rd+1 as follows:

P (x) = [x; ||x||22],

Q(q) = [q;−1

2
].

(9)

where [;] is the concatenation operation. P (x) appends the
2-norm ||x||22 at the end of the vector x, while Q(q) simply
extends the vector q by an extra − 1

2 . By observing that

−2Q(q)
T
P (x) = −2[q;−1

2
]T [x; ||x||22]

= −2qTx + ||x||22
= ||q− x||22 − ||q||22,

(10)

Since the 2-norm of the query ||q||22 is constant to any
database vector, we have:

arg min
x∈X

||q− x||22 = arg max
x∈X

Q(q)
T
P (x). (11)

This gives us the connection between solving maximum
inner product search and approximate nearest neighbor
search. To be more specific, if one needs to compute the
rank list of a dataset X with respect to a query q for L-2
distance, it is feasible to first compute the rank list of P (X)
with respect to Q(q) for inner product similarity, followed
by reversing the rank list.

3.2 Fast Inference for Inner Product Similarity
Let ¯P (x) =

∑M
m=1 Cmkm be the approximation of vector

P (x), where Cmkm ∈ Rd+1, P (x) is the mapping from the
database vector x ∈ Rd. With this approximation, we have

Q(q)T ¯P (x) = Q(q)T
M∑
m=1

Cmkm

=
M∑
m=1

Q(q)TCmkm ,

(12)

which can be efficiently computed using lookup tables.
After the rank list for inner product similarity is obtained,
one can simply reverse it to get the rank list for L-2 distance.
Our inference scheme shares the spirit of asymmetric linear
scan [20].

3.3 Objective Function
To boost the ANN search performance under L-2 distance,
one needs to improve the quality of inner product similarity
search, which is conditioned on the approximation quality
of the compositional codes [7]. Therefore, our optimization
objective is:

min
C,B

||Y − CB||2F

s.t. B = [bT1 bT2 · · · bTN],bn = [bTn1bTn2 · · · bTnM]T

bnm ∈ {0, 1}K , ||bnm||1 = 1

n = 1, 2, . . . , N,m = 1, 2, . . . ,M.

(13)

where Y = P (X) ∈ R(d+1)×N . Each dictionary element
should also be one-dimensional longer, i.e., C ∈ R(d+1)×MK .
The shape of the compositional matrix remains unchanged
as B ∈ {0, 1}MK×N . By comparing Equation (13) and
(4), one can immediately observe that the constant inter-
dictionary-element-product constraint has been removed
because the Euclidean distance between the query and
database vectors can now be efficiently computed via Equa-
tion (12) without posing this constraint. Consequently, given
B fixed, the dictionary C can be optimally solved since
Equation (13) is quadratic on C.

3.4 Optimization
The problem formulated in (13) is a mixed-binary-integer
program, which consists of two groups of unknown vari-
ables: dictionaries C and composition matrix B. We use the
alternative optimization technique to iteratively solve the
problem. Each iteration alternatively updates B and C. The
details are given below.

3.4.1 Update C

Because Equation (13) is quadratic on C, a closed-form
solution for updating C can be easily derived as:

C = YBT (BBT)−1. (14)

3.4.2 Update B

Let yn ∈ Rd+1 and bn ∈ {0, 1}MK denote the n-th vector
in Y and B, respectively. Given C fixed, it can be easily
found that bn is independent to {bl}l 6=n for all the other
vectors. Thus, the optimization problem is decomposed to
N subproblems,

min
bn

||yn − Cbn||2

s.t. bn = [bTn1bTn2 · · · bTnM]T

bnm ∈ {0, 1}K , ||bnm||1 = 1

m = 1, 2, . . . ,M.

(15)

The problem is essentially a high-order MRF problem and
NP-hard. To efficiently find a feasible local optimum, we
leverage the Stochastic local search (SLS) method suggested
by [25]. For the local search procedure of SLS, we iteratively
update the M subvectors {bnm} in turn. Specifically, given
{bnl}l 6=m fixed, we exhaustively check all the elements in
the dictionary Cm, and find the element that minimizes
the objective function value in Equation (15), then update
{bnm} by setting the corresponding entry in bnm to be 1 and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

all the others to be 0. For the perturbation procedure of SLS,
we perturb the results of local search procedure by replacing
k segments of bnm with the one-hot coded samples from the
uniform distribution U(1,M). Following [25], the perturbed
solution is used as the starting point for the subsequent
local search procedure if it decreases more objective value
in Equation (15) than the original solution.

3.5 Implementation Details
In practical implementations, we use the transformations as
follows:

P (x) = [x;
||x||22
d2

],

Q(q) = [q;−d
2

2
],

(16)

where d is the feature vector dimension. This is to prevent
the magnitude of vector norm from dominating the objec-
tive value, while the rank of inner product similarity in
inference stage will not be affected.

Unlike CQ based methods [40], [41], our AMQ is
hyperparameter-free. By comparing Equation (5) and (13),
one can observe that our formulation does not require the
penalty weight µ. Different from AQ based approaches [1],
[4], [25], our AMQ does not require additional memory
footprint or computational resource in the inference stage
as discussed in Section 3.2.

4 DISTRIBUTED ASYMMETRIC MAPPING QUANTI-
ZATION

Despite the good performance of AMQ, it is designed
for the centralized setting, or in other words, are single-
machine approaches. Nevertheless, due to the explosion in
size and complexity of modern datasets, more and more
real-world applications need to deal with data distributed
across different locations, such as distributed databases [6],
images/videos over the networks [9], etc. Furthermore, in
some applications, the data is inherently distributed. For ex-
ample, in video surveillance [10] and sensor networks [17],
the data is collected at distributed sites. In such contexts, the
quantizers should be learned based on the entire dataset in
order to get unbiased quantization codes for the data.

One intuitive way is to gather all data together at a
central server before training, but it is not a feasible op-
tion because of the huge communication overhead. Besides,
directly training on large-scale data is often prohibitive in
both time and space, which further prevents it from practical
applications. As a consequence, it is important to develop
quantization algorithms that are both powerful enough to
capture the complexity of large scale data, and scalable
enough to process huge datasets in parallel. However, to
our knowledge, this critical and challenging problem has
rarely been explored in the literature. We propose Dis-
tributed Asymmetric Mapping Quantization (DAMQ) for
data that is distributed across different nodes of an arbitrary
network (e.g., Figure 1). Unlike the conventional centralized
methods which require gathering the distributed data from
all nodes to learn common quantizers, our method learns
such quantizers in a distributed manner. Each node learns
a set of dictionaries on its local data, and only exchanges

Fig. 1. A randomly generated network with 10 nodes. Such a network
can be modeled with an undirected and connected graph.

the local dictionaries with other nodes. To this end, we
decompose a centralized quantization model into a set of
decentralized sub-problems with consensus constraints and
the alternating direction method of multipliers (ADMM)
[12]. As a result, these sub-problems can be efficiently
solved in parallel within a few iterations, and all the nodes
obtain consistent quantizers learned from the distributed
data. Since there is no exchange of training data across the
nodes in the learning process, the communication cost of
our DAMQ is low. Moreover, our approach can adapt to
arbitrary network topologies.

Formally, we suppose the data is distributed across a
set of P nodes in a network (e.g., Figure 1). On the s-th
node, there is a local set of Ns data points, denoted in
matrix form as Xs. The global data X = ∪Ps=1Xs is then
a concatenation of the local data matrix. When the data is
distributed across the P nodes in an arbitrary network, the
objective in Equation (13) can be rewritten as:

min
C,B

P∑
s=1

||Ys − CBs||2F

s.t. B = ∪Ps=1Bs, B = [bT1 bT2 · · · bTN],

bn = [bTn1bTn2 · · · bTnM]T

bnm ∈ {0, 1}K , ||bnm||1 = 1,

n = 1, . . . , N,m = 1, . . . ,M.

(17)

where Bs denotes the composition codes that belongs to the
s-th node. We will further use Cs to denote the local copies
of C on the s-th node.

4.1 Update C

When B is fixed, the dictionary C is shared across all
nodes, which makes the problem hard to tackle. In order
to make the objective separable, we enforce the consensus
constraints Cs = Ct, for ∀s, t ∈ {1, 2, . . . , P} for {Cs} on all
nodes, thus, we can transform Equation (17) to the following
form without introducing any relaxation.

min
{Cs}

P∑
s=1

||Ys − CsBs||2F

s.t. Cs = Ct,∀s, t ∈ {1, 2, . . . , P}.
(18)

The consensus constraint implies that all the local dictionar-
ies should be consistent. Thanks to the transitivity between
neighboring nodes in a connected graph, we are allowed
to consider only the constraints between the neighboring
nodes rather than all the constraints. For example, if the
consensus constraints between all neighboring nodes are

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

satisfied in Figure 1, then C3 = C6 is naturally satisfied
due to the fact that C3 = C4 = C7 = C6. Based on this
observation, Equation (18) can be equivalently reformulated
as:

min
{Cs}

P∑
s=1

||Ys − CsBs||2F

s.t. Cs = Cs′ , s
′ ∈ N (s),∀s ∈ {1, 2, . . . , P}.

(19)

where N (s) represents the neighbors of the s-th node.
Next we show how the alternating direction method of

multipliers (ADMM) [13] can be applied to decompose the
global problem in (19) into several local subproblems.

4.1.1 Distributed Learning

ADMM is a variant of the augmented Lagrangian scheme
that blends the decomposability of dual ascent with the
method of multipliers. For our specific problem (19), the
augmented Lagrangian is:

L(Cs,Λs,s′) =
P∑
s=1

||Ys − CsBs||2F

+
P∑
s=1

∑
s′∈N (s)

tr
(

Λs,s′
T (Cs − Cs′)

)

+
ρ

2

P∑
s=1

∑
s′∈N (s)

||Cs − Cs′ ||2F,

(20)

where Λs,s′ is the Lagrangian multipliers corresponding to
the constraints Cs = Cs′ ,∀s ∈ {1, 2, . . . , P} and s′ ∈ N (s).
ρ > 0 is the penalty parameter of augmented Lagrangian.
ADMM solves a problem of this form by repeating the
following two steps [24]:

C(k+1)
s := arg min

Cs

P∑
s=1

||Ys − CsB
s||2F

+
P∑
s=1

∑
s′∈N (s)

tr
(

(Λ
(k)
s,s′)

T (Cs − C
(k)
s′)
)

+
ρ

2

P∑
s=1

∑
s′∈N (s)

||Cs − C
(k)
s′ ||

2
F

(21a)

Λ
(k+1)
s,s′ := Λ

(k)
s,s′ + ρ(C(k+1)

s − C
(k+1)
s′). (21b)

Despite the algorithm’s elegance in form, the subprob-
lems are still difficult to solve.

4.1.2 Simplification of Lagrange Multipliers

In the above update rule (21), assuming each node has t
neighboring nodes in average in the network, about Pt
Lagrange multipliers have been introduced into the opti-
mization. Such a large number of multipliers remarkably
enlarge the computation load of algorithm. However, due
to the symmetry of an undirected graph, it is clear that if
s′ ∈ N (s) then s ∈ N (s′). That is to say, every available
constraint in the Equation (19) has been considered at least
twice, i.e., Cs = Cs′ and Cs′ = Cs, which suggests that we
can simplify the update rules in Equation (21). First of all,

we can rewrite the second term of Equation (21a) in another
form as:

P∑
s=1

∑
s′∈N (s)

tr
(

Λ
(k)
s,s′

T
(Cs − C

(k)
s′)
)

=
P∑
s=1

∑
s′∈N (s)

tr
(

(Λ
(k)
s,s′)

TCs
)
−

P∑
s=1

∑
s′∈N (s)

tr
(

(Λ
(k)
s,s′)

TCs
′
)

=
P∑
s=1

∑
s′∈N (s)

tr
(

(Λ
(k)
s,s′)

TCs
)
−

P∑
s=1

∑
s′∈N (s)

tr
(

(Λ
(k)
s′,s)

TCs
)

=
P∑
s=1

tr
(∑
s′∈N (s)

(Λ
(k)
s,s′ − Λ

(k)
s′,s)

TCs
)
.

(22)
In addition, owing to the symmetric characteristics, we can
easily write down the symmetrical counterpart of Equation
(21b) as follows:

Λ
(k+1)
s′,s := Λ

(k)
s′,s + ρ

(
C

(k+1)
s′ − C(k+1)

s

)
. (23)

For any two adjacent nodes, with Equation (21b) and (23),
we have:

Λ
(k+1)
s,s′ − Λ

(k+1)
s′,s :=

(
Λ
(k)
s,s′ − Λ

(k)
s′,s

)
+ 2ρ

(
C(k+1)
s − C

(k+1)
s′

)
.

(24)
Therefore, by defining P new Lagrange Multipliers Λs as:

Λs =
∑

s′∈N (s)

(Λs,s′ − Λs′,s). (25)

The update rule of ADMM in Equation (21) can be simpli-
fied as:

C(k+1)
s := arg min

Cs

P∑
s=1

||Ys − CsBs||2F

+
P∑
s=1

tr
(

(Λ(k)
s)TCs

)
+
ρ

2

P∑
s=1

∑
s′∈N (s)

||Cs − C
(k)
s′ ||

2
F

(26a)

Λ(k+1)
s := Λ(k)

s + 2ρ(C(k+1)
s − C

(k+1)
s′). (26b)

Obviously, the updates of local variables Cs and Λs in
Equation (26) can be separated into P subproblems, and
thus can be carried out independently in parallel across the
nodes.

4.1.3 Solution to subproblems
At last, we show how to solve the subproblem on each
node. Formally, the s-th subproblem on the s-th node can
be written as following:

φ(Cs; Bs) = ||Ys − CsBs||2F
+ tr

(
(Λ(k)

s)TCs
)

+
ρ

2

∑
s′∈N (s)

||Cs − C
(k)
s′ ||

2
F,

(27)
which is an unconstrained quadratic problem with respect
to Cs. The derivative with respect to Cs is as follows:

d

dCs
φ(Cs; Bs) = −2 (Ys − CsBs)Bs

T

+ Λ(k)
s + ρ

∑
s′∈N (s)

(Cs − C
(k)
s′).

(28)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

By setting Equation (28) to 0, we obtain the following update
rule for Cs as:

Cs :=
[
2YsBs

T − Λ(k)
s + ρ

∑
s′∈N (s)

C
(k)
s′

][
2BsBs

T + ρtI
]−1

,

(29)
where t stands for the number of neighbors of the s-th node.

4.2 Update B

When C is fixed, each Bs can be locally updated in parallel
on each node. For example, to update bn, the codes for the
n-th data vector yn on the s-th node, the subproblem to
tackle is as following:

min
bn

||yn − Csbn||2

s.t. bn = [bn1
Tbn2

T · · · bnMT]T

bnm ∈ {0, 1}K , ||bnm||1 = 1

m = 1, 2, . . . ,M.

(30)

We adopt the same iterative update method as Section 3.4.2
to solve this problem.

4.3 Analysis

We have presented the whole procedure of our proposed
DAMQ. Note that the update of local Cs, Bs and Λs can
all be conducted in parallel on each node, which is the key
factor for our method to work in a distributed setting.

4.3.1 Analysis on Convergence
It is easy to verify that Equation (17) is lower-bounded (not
smaller than 0), and the updates for B always decreases the
value of Equation (17), hence, the convergence of DAMQ
is conditioned on the convergence of ADMM for Equa-
tion (20). Clearly, Equation (20) is convex with respect to C,
which the theoretical convergence property of the ADMM
is guaranteed [12]. In practice, it takes around 15 iterations
to converge as shown in Figure 2.

4.3.2 Analysis on Communication Complexity
Here we analyze the communication complexity of the
proposed distributed composite quantization. Recall that M
denotes the number of dictionaries, K denotes the number
of elements in each dictionary, d denotes the dimension of
data, andNs is the number of local samples in the s-th node.

In our algorithm, each node only shares the dictionary
Cs with its neighboring nodes. Supposing the s-th node has
t neighbors, the communication complexity is O(tMKd),
which is independent to Ns.

5 EXPERIMENTS

We compare our AMQ with several state-of-the-art meth-
ods: Product Quantization (PQ) [20], Optimized Product
Quantization (OPQ) [8], Cartesian k-means (CKM) [27],
Composite Quantization (CQ) [40], Additive Quantiza-
tion [1], iterated Local Search for AQ (LSQ) [25], Arbores-
cence Coding (ArborC) [4] and MultiScale Quantization
(MSQ) [37]. We evaluate these algorithms in ANN search
and image retrieval task by performing linear scan search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#Iteration

2.4

2.45

2.5

2.55

2.6

o
b

je
c

ti
v

e
 v

a
lu

e

10
10

AMQ

DAMQ

Fig. 2. Convergence of our AMQ and DAMQ on SIFT1B dataset with
64-bit codes.

using asymmetric distance [20]. We note that our algo-
rithm are also useful in other applications, such as dis-
tance/similarity learning [5], [30], feature map approxima-
tion [36], clustering [29] and cross-modal retrieval [23].

To make comparisons between DCQ [13] and DAMQ,
we randomly distribute the training data to different nodes
in a network. We construct a network with 10 simulated
nodes, as shown in Figure 1. Our machine is equipped with
24 Intel Xeon CPUs E5-2630 (2.30GHz) and 96 GB memory.
We empirically set the penalty parameter = 100 and the
number of ADMM iterations I = 5. Ideally, the learned local
dictionaries are supposed to be consistent with sufficiently
large. In practice, we use the local dictionaries to perform
linear scan search for both DCQ and DAMQ following [13].

5.1 Evaluation on ANN Search
We perform the ANN experiments on three datasets:
SIFT1M [20], consisting of 1M 128-dimensional SIFT features
as base vectors, 100K learning vectors and 10K queries;
DEEP1M [3], containing 1M 256-dimensional PCA-projected
deep features as base vectors, 500K learning vectors and
1K queries; and SIFT1B [22], composed of 1B SIFT features
as base vectors, 100M learning vectors and 10K queries.
Following the convention [1], [40], we measure the search
quality by recall@R, i.e., for varying R, the average rate
of queries for which the 1-nearest neighbor is ranked in
the top R positions. Similar to [14], [16], the ground-truth
nearest neighbors are computed over the original features
using linear scan.

Table 1 presents the comparison on SIFT1M and
DEEP1M using 64-bit codes. One can see that partition-
based methods such as PQ [20], OPQ [8] and CKM [27]
performs not as well as addition-based methods like CQ [40]
and LSQ [25], because they do not well exploit the data
distribution during subspace partitioning. Our approach
outperforms other methods except for recall@1 on SIFT1M
dataset. Also, it can be observed that the performance of
DAMQ is very close to that of AMQ, which suggests that
learning composite quantizers in a distributed setting does
not compromise much quality compared to the centralized
version. Meanwhile, our DAMQ consistently outperforms
DCQ, thanks to the superior performance of AMQ to CQ.
Our method DAMQ even outperforms the centralized quan-
tization algorithms CQ, which demonstrates the power of
the proposed distributed learning scheme.

Table 2 shows the results of large scale datasets: SIFT1B.
Similar to [40], we use the first 1M learning vectors for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 1
The recall@R for different algorithms on SIFT1M and DEEP1M datasets with 64-bit codes.

Method SIFT1M Method DEEP1M
recall@1 recall@2 recall@5 recall@10 recall@20 recall@50 recall@1 recall@2 recall@5 recall@10 recall@20 recall@50

PQ [20] 22.53 32.34 46.99 60.14 72.03 83.49 PQ [20] 20.13 30.24 44.69 57.84 69.83 81.09
OPQ [8] 24.34 35.71 52.47 63.89 74.20 86.50 OPQ [8] 21.14 31.21 49.27 60.09 70.80 84.50
CQ [40] 29.48 42.97 58.40 71.09 82.41 93.02 CQ [40] 27.48 40.17 55.80 70.09 80.41 90.62
AQ [1] 31 - - - - - AQ [1] - - - - - -
LSQ [25] 29.37 43.71 60.72 72.54 84.63 94.72 LSQ [25] 27.37 40.71 57.72 71.54 82.63 91.72
ArborC [4] 31.60 - - - - - ArborC [4] 24.30 - - - - -
MSQ [37] 32.77 39.50 55.88 71.22 78.88 83.77 MSQ [37] - - - - - -
AMQ 32.15 46.39 62.04 75.30 86.52 96.41 AMQ 28.37 42.59 60.38 73.62 84.28 94.17

DCQ [13] 28.03 41.47 57.72 70.69 81.30 92.34 DCQ [13] 26.48 39.17 54.80 68.09 78.41 87.62
DAMQ 31.17 45.39 61.88 73.22 85.88 94.79 DAMQ 27.64 41.28 58.84 71.63 81.45 91.50

TABLE 2
The recall@R for different algorithms on SIFT1B datasets with 64-bit and 128-bit codes.

Method SIFT1B, 64-bit codes Method SIFT1B, 128-bit codes
recall@1 recall@2 recall@5 recall@10 recall@20 recall@50 recall@1 recall@2 recall@5 recall@10 recall@20 recall@50

PQ [20] 6.81 10.47 17.90 24.58 33.12 45.70 PQ [20] 26.91 38.34 56.63 70.24 81.09 91.75
OPQ [8] 7.27 11.85 19.95 27.75 36.54 49.69 OPQ [8] 28.96 41.49 59.15 72.76 82.97 92.06
CKM [27] 8.95 12,72 21.48 30.54 39.80 53.03 CKM [27] 28.14 41.19 60.42 73.18 84.91 93.57
CQ [40] 9.79 13.22 23.95 33.53 45.19 59.67 CQ [40] 34.03 48.57 68.84 81.91 90.53 95.40
LSQ [25] 10.67 15.87 24.75 37.77 46.74 60.31 LSQ [25] 36.39 52.22 72.65 83.55 91.17 97.12
AMQ 11.70 16.60 25.03 39.18 48.27 63.69 AMQ 38.04 57.62 75.09 85.71 95.82 98.35

DCQ [13] 8.13 12.86 22.49 31.43 43.24 56.73 DCQ [13] 32.84 46.07 66.24 78.43 87.81 92.24
DAMQ 9.24 14.35 24.92 35.77 46.67 60.41 DAMQ 35.21 53.47 71.33 82.35 91.18 95.26

TABLE 3
The mAP on the Holidays dataset with distractors.

#Bits PQ [20] OPQ [8] CKM [27] LSQ [25] CQ [40] AMQ DCQ DAMQ

Fisher
32 0.451 0.469 0.497 0.505 0.501 0.512 0.503 0.508
64 0.471 0.492 0.538 0.564 0.560 0.570 0.554 0.561

128 0.496 0.517 0.568 0.610 0.602 0.625 0.595 0.607

VLAD
32 0.484 0.493 0.506 0.512 0.508 0.517 0.506 0.518
64 0.519 0.526 0.548 0.577 0.572 0.581 0.575 0.580

128 0.538 0.562 0.576 0.619 0.614 0.634 0.610 0.626

efficient training. It can be seen that our approach consis-
tently performs the best across different code lengths, and
the curves of our DAMQ and AMQ almost overlap, which
again validates the efficacy of our generalization of AMQ to
the distributed settings. These results are consistent with the
findings in Table 1.

5.2 Evaluation on Image Retrieval Application

We report the results of different quantization methods on
image retrieval. The images are represented as an aggre-
gation of local descriptors, often thousands of dimensions.
We evaluate the performances over the 4096-dimensional
Fisher vectors [28] and the 4096-dimensional VLAD vectors
[21] extracted from the INRIA Holidays data set [19] that
contains 500 query and 991 relevant images. Following
common practice [19], we use extra one million MIRFlickr-
1M images [18] as distractors.

The search performances in terms of mean Average
Precision (mAP) [15], [35] are shown in Table 3. Our method
performs the best thanks to its effective ANN search. The
performance of our approach DAMQ is close to AMQ,
overall better than DCQ, which is consistent with what we
have observed in ANN search experiments in Section 5.1.

5.3 Evaluation on Efficiency

Although both DAMQ and AMQ require around 15 itera-
tions to converge, DAMQ could largely reduce the training
time by exploiting parallel computation, which is beneficial

to large-scale datasets like videos [38], [39]. To quantitatively
show the efficiency advantages of DAMQ, we evaluate the
training time of DAMQ and AMQ on the SIFT1B dataset
using different code lengths. We also vary the number of
nodes to see how training time can be shortened with more
nodes. When the same number of nodes are employed,
the training time might be affected by the topology of the
network. For convenience, we choose two representative
topologies in this experiment, i.e., binary tree topology and
line topology.

Due to the lack of a real computing cluster, we measure
the training time by simulating each node sequentially on
a single machine. To be more specific, each simulated node
solely occupies the entire machine in turn for training on its
local data, e.g., updating the local dictionaries, and the time
cost for the slowest node to update its local dictionaries will
be regarded as the training time for the simulated cluster
to update all local dictionaries. Similar protocols are also
applied to obtain the time for updating B. The communi-
cation time is neglected due to the small communication
complexity as analyzed in Section 4.3.2. For instance, the
dictionary size is only 2.09 MB with the code length as 128
bits (M = 16,K = 8) for SIFT1B dataset.

Figure 3 presents the training time under different set-
tings. Roughly speaking, the training time seems to increase
quadratically as the code length increases. Meanwhile, the
more nodes involved in computation, the shorter the train-
ing time. This phenomenon is intuitive. With more nodes
involved in the computation, the size of data distributed to
each node becomes smaller, thus the corresponding training
time is less. Take 128-bit code length as an example, the
training time of DAMQ with 16-node binary tree topology
is about 30.4 hours on the learning set of SIFT1B of 100M
samples, while AMQ takes 82.8 hours using a single ma-
chine. Also, it could be observed that the line topology takes
a few more minutes to converge than binary tree topology,
but the total training time is still acceptable considering that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

16 32 64 128

Bits

10

20

30

40

50

60

70

80

90

T
ra

in
in

g
 T

im
e

 (
h

o
u

r)

1-node (AMQ)

4-node tree

4-node line

8-node tree

8-node line

16-node tree

16-node line

Fig. 3. The vertical axis stands for the training time (minute), the hori-
zontal axis for different code lengths.

TABLE 4
The results are obtained on SIFT1B dataset using 64-bit codes.

nodes / topology 1 4 8 16
tree line tree line tree line

iters to converge 12 13 15 11 12 14 17
objective value (×1010) 2.4203 2.4259 2.4241 2.4197 2.42055 2.4271 2.4288
recall@100 (/%) 77.51 74.19 75.07 74.86 74.39 75.11 75.32

line topology is already the most undesirable case among
all topologies. These results demonstrate the potentials of
DAMQ for massive data in real-world applications.

Note that the number of iterations to convergence, the
objective value at convergence, and the recall@R in testing
phase are slightly different under different settings. We
measure those 3 quantities on SIFT1B dataset using 64-
bit code. As shown in Table 4, those 3 quantities do not
vary a lot with the network topology or the number of
nodes, which demonstrates the robustness of DAMQ. For
the number of iterations to convergence, line topology takes
more iterations than binary tree topology, probably due to
the larger diameter of line topology. However, we do not
observe correlations between the objective value at conver-
gence and the recall@R in testing phase, and the network
topology or the number of nodes.

6 CONCLUSION

In this paper, we present a compact coding approach,
Asymmetric Mapping Quantization (AMQ), to approximate
nearest neighbor search. The superior search accuracy stems
from the novel formulation of AMQ, which avoids the
computation of the norm of database vectors by an efficient
inner product similarity via lookup tables. A distributed
generalization of AMQ is proposed to accelerate the training
on large-scale dataset. Empirical results on various tasks and
datasets validate the merits of the proposed approach.

ACKNOWLEDGMENTS

This work is supported in part by start-up funds from
University at Buffalo.

REFERENCES

[1] A. Babenko and V. Lempitsky. Additive quantization for extreme
vector compression. In CVPR, 2014.

[2] A. Babenko and V. Lempitsky. Tree quantization for large-scale
similarity search and classification. In CVPR, 2015.

[3] A. Babenko and V. Lempitsky. Efficient indexing of billion-scale
datasets of deep descriptors. In CVPR, 2016.

[4] A. Babenko and V. Lempitsky. Annarbor: Approximate nearest
neighbors using arborescence coding. In ICCV, 2017.

[5] S. Chang, G.-J. Qi, C. C. Aggarwal, J. Zhou, M. Wang, and T. S.
Huang. Factorized similarity learning in networks. In ICDM, 2014.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 2013.

[7] C. Du and J. Wang. Inner product similarity search using compo-
sitional codes. arXiv preprint arXiv:1406.4966, 2014.

[8] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization.
TPAMI, 2014.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.
In ACM SIGOPS operating systems review. ACM, 2003.

[10] S. Greenhill and S. Venkatesh. Distributed query processing for
mobile surveillance. In ACM conf. on Multimedia, 2007.

[11] J.-P. Heo, Z. Lin, and S.-E. Yoon. Distance encoded product
quantization. In CVPR, 2014.

[12] M. R. Hestenes. Multiplier and gradient methods. Journal of
optimization theory and applications, 1969.

[13] W. Hong, J. Meng, and J. Yuan. Distributed composite quantiza-
tion. In AAAI, 2018.

[14] W. Hong, J. Meng, and J. Yuan. Tensorized projection for high-
dimensional binary embedding. In AAAI, 2018.

[15] W. Hong and J. Yuan. Fried binary embedding: From high-
dimensional visual features to high-dimensional binary codes. In
TIP, 2018.

[16] W. Hong, J. Yuan, and S. D. Bhattacharjee. Fried binary embedding
for high-dimensional visual features. In CVPR, 2017.

[17] A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem. In Distributed Autonomous
Robotic Systems. Springer, 2002.

[18] M. J. Huiskes and M. S. Lew. The mir flickr retrieval evaluation.
In ACM conf. on Multimedia Information Retrieval, 2008.

[19] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and
weak geometric consistency for large scale image search. In ECCV,
2008.

[20] H. Jegou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. TPAMI, 2011.

[21] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local
descriptors into a compact image representation. In CVPR, 2010.

[22] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in
one billion vectors: re-rank with source coding. In ICASSP, 2011.

[23] K. Li, G.-J. Qi, J. Ye, and K. A. Hua. Linear subspace ranking
hashing for cross-modal retrieval. TPAMI, 2017.

[24] J. Liang, M. Zhang, X. Zeng, and G. Yu. Distributed dictionary
learning for sparse representation in sensor networks. TIP, 2014.

[25] J. Martinez, J. Clement, H. H. Hoos, and J. J. Little. Revisiting
additive quantization. In ECCV, 2016.

[26] J. Nocedal. Updating quasi-newton matrices with limited storage.
Mathematics of computation, 1980.

[27] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR, 2013.
[28] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies

for image categorization. In CVPR, 2007.
[29] G.-J. Qi, C. C. Aggarwal, and T. S. Huang. On clustering heteroge-

neous social media objects with outlier links. In ACM conf. on Web
Search and Data Mining, 2012.

[30] G.-J. Qi, X.-S. Hua, and H.-J. Zhang. Learning semantic distance
from community-tagged media collection. In ACM conf. on Multi-
media, 2009.

[31] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. MIT Press,
2006.

[32] J. Wang and T. Zhang. Composite quantization. CoRR, 2017.
[33] J. Wang, T. Zhang, N. Sebe, H. T. Shen, et al. A survey on learning

to hash. TPAMI, 2017.
[34] X. Wang, T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Supervised

quantization for similarity search. In CVPR, 2016.
[35] Z. Wang and J. Yuan. Simultaneously discovering and localizing

common objects in wild images. TIP, 2018.
[36] Z. Wang, X.-T. Yuan, Q. Liu, and S. Yan. Additive nearest neighbor

feature maps. In ICCV, 2015.
[37] X. Wu, R. Guo, A. T. Suresh, S. Kumar, D. N. Holtmann-Rice,

D. Simcha, and F. X. Yu. Multiscale quantization for fast similarity
search. In NIPS, 2017.

[38] J. Ye, K. Li, G.-J. Qi, and K. A. Hua. Temporal order-preserving
dynamic quantization for human action recognition from multi-
modal sensor streams. In ACM conf. on Multimedia Retrieval, 2015.

[39] J. Ye, G.-J. Qi, N. Zhuang, H. Hu, and K. A. Hua. Learning compact
features for human activity recognition via probabilistic first-take-
all. TPAMI, 2018.

[40] T. Zhang, C. Du, and J. Wang. Composite quantization for
approximate nearest neighbor search. In ICML, 2014.

[41] T. Zhang, G.-J. Qi, J. Tang, and J. Wang. Sparse composite
quantization. In CVPR, 2015.

	Introduction
	Backgrounds
	Composite Quantization
	Additive Quantization

	Asymmetric Mapping Quantization
	Asymmetric Mapping
	Fast Inference for Inner Product Similarity
	Objective Function
	Optimization
	Update C
	Update B

	Implementation Details

	Distributed Asymmetric Mapping Quantization
	Update C
	Distributed Learning
	Simplification of Lagrange Multipliers
	Solution to subproblems

	Update B
	Analysis
	Analysis on Convergence
	Analysis on Communication Complexity

	Experiments
	Evaluation on ANN Search
	Evaluation on Image Retrieval Application
	Evaluation on Efficiency

	Conclusion
	References

