
Noname manuscript No.
(will be inserted by the editor)

Product Quantization Network for Fast Visual Search

Tan Yu · Jingjing Meng · Chen Fang · Hailin Jin · Junsong Yuan

Received: date / Accepted: date

Abstract Product quantization has been widely used

in fast image retrieval due to its effectiveness of coding

high-dimensional visual features. By constructing the

approximation function, we extend the hard-assignment

quantization to soft-assignment quantization. Thanks

to the differentiable property of the soft-assignment

quantization, the product quantization operation can

be integrated as a layer in a convolutional neural net-

work, constructing the proposed product quantization

network (PQN). Meanwhile, by extending the triplet

loss to the asymmetric triplet loss, we directly opti-

mize the retrieval accuracy of the learned representa-

tion based on asymmetric similarity measurement. Uti-

lizing PQN, we can learn a discriminative and com-

pact image representation in an end-to-end manner,

which further enables a fast and accurate image re-
trieval. By revisiting residual quantization, we further

extend the proposed PQN to residual product quan-

tization network (RPQN). Benefited from the resid-

Tan Yu
Cognitive Computing Lab
Baidu Research, Seattle
E-mail: tyu008@e.ntu.edu.sg

Jingjing Meng
Computer Science and Engineering Department
University at Buffalo, State University of New York
E-mail: jmeng2@buffalo.edu

Chen Fang
Adobe Research, San Jose
E-mail: cfang@adobe.com

Hailin Jin
Adobe Research, San Jose
E-mail: hljin@adobe.com

Junsong Yuan
Computer Science and Engineering Department
University at Buffalo, State University of New York
E-mail: jsyuan@buffalo.edu

ual learning triggered by residual quantization, RPQN

achieves a higher accuracy than PQN using the same

computation cost. Moreover, we extend PQN to tem-

poral product quantization network (TPQN) by ex-

ploiting temporal consistency in videos to speed up the

video retrieval. It integrates frame-wise feature learn-

ing, frame-wise features aggregation and video-level fea-

ture quantization in a single neural network. Compre-

hensive experiments conducted on multiple public bench-

mark datasets demonstrate the state-of-the-art perfor-

mance of the proposed PQN, RPQN and TPQN in fast

image and video retrieval.

Keywords product quantization · image retrieval ·
deep learning · video retrieval

1 Introduction

Visual search has been a fundamental research topic in

computer vision. Given a query (an image or a video),

it aims to retrieve the query’s relevant items from a

database. Accuracy and efficiency are two key aspects

for a retrieval system. These two aspects drive the re-

search on visual search to progress in two directions.

The first direction focuses on representation design-

ing or learning for a higher search accuracy [43,42,26,

3,2,39,16,62,4,5]. A good representation maintains a

large distance between irrelevant items in feature space

and a close distance between relevant ones. Traditional

retrieval systems first extract hand-crafted local fea-

tures like SIFT and then aggregate local features into

a global feature [43,42,26]. With the progress of deep

learning, the convolutional neural network provides an

effective representation [3,2,39,60,63], which is trained

by the semantic information and thus is robust to low-

level image transformations.

2 Tan Yu et al.

The second direction aims to boost the retrieval

speed, especially when dealing with a large-scale dataset.

In this circumstance, a compact visual representation

is necessary. Generically speaking, there are two types

of schemes to gain a compact representation, hashing

and quantization. Hashing maps the real-value vectors

into binary codes, which enables a faster distance com-

putation and lower memory cost. One of widely used

hashing methods is locality sensitivity hashing (LSH)

[10]. Nevertheless, LSH is data-independent, which ig-

nores the data distribution and is sub-optimal to a spe-

cific dataset. To further improve the performance, some

hashing methods [45,54,15] learn the projection from

the data, which caters better to a specific dataset and

achieves a higher retrieval precision. Note that tradi-

tional hashing methods are based on a two-step pro-

cedure. To be specific, they first conduct feature ex-

traction and then carry on Hamming embedding based

on the extracted features. These two steps are inde-

pendently conducted and their mutual influence are ig-

nored. More recently, inspired by the progress of deep

learning, some deep hashing methods [57,31,35,32] are

proposed, which simultaneously conduct feature learn-

ing and feature compression through a unified neural

network, achieving much better retrieval performance

compared with methods based on off-the-shelf features.

Nevertheless, hashing methods are only able to pro-

duce a few distinct distances, limiting its discriminative

power in characterizing distances between data points.

In parallel to hashing methods, another widely used

data compression method in visual retrieval is prod-

uct quantization. It quantizes each feature vector into

a Cartesian product of several codewords and the sim-

ilarity can be efficiently computed through looking up

cached similarity table. Thanks to the asymmetric dis-

tance calculation mechanism, product quantization en-

ables a more accurate distance calculation than hash-

ing methods using the same code length. The prod-

uct quantization (PQ) [25] and its optimized versions

like OPQ [14], CKmeans [40], APQ [1] and CQ [66,

19] are originally designed for unsupervised scenarios

where no labeled data are provided. SQ [53] extends

product quantization to supervised scenarios. However,

SQ is based on the hand-crafted features or CNN fea-

tures from the pretrained model, therefore it might not

be optimal with respect to a specific dataset.

To jointly optimize feature learning and product

quantization, Cao et al [8] propose a deep quantization

network (DQN) which supports an end-to-end training.

It optimizes a weighted sum of similarity preserving loss

and product quantization loss. It iteratively updates

codewords and other parameters of a neural network.

Therefore, in each iteration, the codewords are directly

updated by k-means whereas the label information is

ignored. Recently, Klein et al. [28] propose a deep prod-

uct quantization (DPQ). They learn a cascade of two

fully-connected layers followed by a softmax layer to de-

termine a soft codeword assignment. It is different from

original product quantization as the codeword assign-

ment is no longer determined by distance between the

original feature and codewords. Nevertheless, the ad-

ditional parameters introduced in the cascade of fully-

connected layers make DPQ more prone to over-fitting.

In this paper, we also attempt to incorporate the

product quantization in a neural network and train it

in an end-to-end manner. We construct a soft product

quantization layer through an approximation function

f(x, α), which is differentiable and supports an end-to-

end training. The original product quantization func-

tion q(x) is a special case of the constructed approxi-

mation function when α → +∞. Different from DPQ,

fully-connected layers are no longer needed for code-

book assignment, instead, in our method, the codeword

assignment is determined by the similarity between fea-

tures and the codewords. Therefore, we significantly re-

duce the number of parameters to be trained, making

our product quantization network (PQN) less prone to

over-fitting compared with DPQ. Meanwhile, inspired

by the success of the triplet loss in metric learning and

the advantage of the asymmetric similarity measure-

ment in feature compression, we propose a novel asym-

metric triplet loss to directly optimize the representa-

tion’s adaptability to asymmetric similarity measure-

ment in an end-to-end manner. Interestingly, our exper-

iments show that product quantization not also boosts

retrieval efficiency, but also serves as a regularization

approach, which improves the model’s generalizability

and improves the retrieval precision.

Meanwhile, we revisit the residual quantization and

extend PQN to residual product quantization network

(RPQN). In general, residual quantization cannot achieve

comparable distortion error as product quantization,

which limits its effectiveness in retrieval based on hand-

crafted features. Nevertheless, there are large redun-

dancy in features obtained from deep neural network

and thus the quantization error is less important. Ben-

efited from residual learning triggered through resid-

ual quantization, the proposed RPQN achieves a higher

accuracy than PQN. Fig. 1 visualizes the architecture

of the proposed RPQN. It takes a triplet consisting of

an achor image, a positive image and a negative im-

age [I, I+, I−] as input. The backbone network, e.g.,

AlexNet, obtains the images’ real-value feature vectors

[v,v+,v−]. The feature vectors of the positve image

and negative image are further feed in the proposed

residual product quantization layer (RPQL) to generate

Product Quantization Network for Fast Visual Search 3

RPQN

RPQN

I

I+

I-

v

v+

v-

q+

q-

Asymmetric
Triplet Loss

Fig. 1: The architecture of the proposed residual product quantization network (RPQN). It takes triplets as input.

Each triplet consists of an anchor image I, a positive image I+ and a negative image I−. It obtains real-value feature

vectors [v,v+,v−] through backbone and further generates soft-quantized representations for positive image and

negative image, [q+,q−], by residual product quantization layer (RPQN). [v,q+,q−] constructs asymmetric triplet

loss to train the network.

their quantized features [q+,q−]. The anchor image’s

real-value feature and the quantized features of the neg-

ative image and the positive image constitutes a triplet

[v,q+,q−] to compute the assymetric loss which aims

to enlarge the distance between v and q−, and decrease

the distance between v and q+.

Moreover, we extend PQN to temporal product quan-

tization network (TPQN) by exploiting the temporal

consistency inherited in videos through a temporal pyra-

mid pooling. The temporal pyramid pooling not only

enhances the discriminativeness of the video represen-

tation but also provides a natural feature partition for

product quantization. It integrates frame feature learn-

ing, frame features aggregation and video feature prod-

uct quantization in a single neural network.

This paper is an extension of our conference paper

[64]. New contributions are summarized as follows:

– We give a deeper insight into making the quan-

tization differentiable. We propose to construct a

function to approximate the hard quantization to

achieve the functionality of the quantization. The

softmax function used in the original conference pa-

per [64] is a special case of the proposed approxi-

mation function in this paper. We give a more de-

tailed derivation for the gradient back-propagation

and conduct a more comprehensive ablation study.

– We extend the proposed product quantization net-

work (PQN) in the conference paper to residual

product quantization network (RPQN) by revisit-

ing the residual quantization. The residual quanti-

zation not only brings a finer feature space partition

but also triggers the residual learning, enhancing the

representation’s discriminability. We conduct com-

prehensive experiments on RPQN and demonstrate

that it achieves higher accuracies than the PQN pro-

posed in our conference paper.

– We tackle a new task, video retrieval. By exploit-

ing the temporal consistency inherited in videos,

we extend the PQN proposed in our conference pa-

per to temporal product quantization (TPQN). The

proposed TPQN integrates frame feature learning,

frame features pooling and video feature compres-

sion in a single network. We conduct systematic ex-

periments based on the proposed TPQN and achieve

state-of-the-art performance in video retrieval task.

The remainder of the paper is organized as follows: Re-

lated work for Hashing, quantization and fast video re-

trieval are discussed in Section 2. Product quantization

network (PQN) is introduced in Section 3. The pro-

posed residual product quantization network (RPQN)

is introduced in Section 4 and temporal product quan-

tization network (TPQN) is introduced in Section 5.

Section 6 and Section 7 provide experimental results in

fast image retrieval and video retrieval, respectively.

2 Related Work

2.1 Hashing

Hashing [10,45,54,15,57,31,35,32,22,21,20,61] aims to

map a feature vector into a short code consisting of a se-

quence of bits, which enables fast distance computation

4 Tan Yu et al.

as well as small memory cost. One of traditional hash-

ing methods, locality sensitivity hashing (LSH) [10], di-

rectly utilizes random projection to map the real-value

vectors into binary codes. Since the random projection

in LSH is independent with data distribution, it might

not be optimal for a specific dataset. To optimize the

projection for a specific dataset, spetral hashing (SH)

[54] and iterative quantization (ITQ) [15] learn the pro-

jection by minimizing the distortion errors in an un-

supervised manner. They achieve better performance

than LSH. To further exploit the supervision informa-

tion, some supervised hashing methods [36,41,47] are

proposed, achieving better performance than their un-

supervised counterpart such as ITQ and SH.

Nevertheless, the above-mentioned hashing methods

all adopt a two-step procedure. They first obtain real-

value image features and then compress the features

into binary codes. In that case, the representation learn-

ing and feature compression are conducted separately

and the mutual influence between them is ignored. Re-

cently, motivated by the success of deep learning, some

works [57,31,35,32] propose deep hashing methods by

incorporating hashing as a layer into a deep neural net-

work. The end-to-end training mechanism of deep hash-

ing simultaneously optimizes the representation learn-

ing and feature compression, achieving better perfor-

mance than traditional hashing methods based on the

two-step procedure.

2.2 Product Quantization

Since the hashing methods are only able to produce a

few distinct distances, it has limited capability of de-

scribing the distance between data points. Parallelly,

another scheme termed product quantization (PQ) [25]

possesses a more powerful representation capability. It

decomposes the space into a Cartesian product of sub-

spaces and quantizes each subspace individually. Thanks

to the product settings, it could partition the feature

space into a huge number of fine cells. By utilizing

the asymmetric similarity measurement, it only causes

quantization error in reference images’ features and uses

the original feature of the query without any distortion.

Meanwhile, through looking up tables, it achieves com-

parable search speed as Hashing methods. Some follow-

ing work [14,1,66] further optimize the product quan-

tization through reducing the distortion and achieve

higher retrieval precision and recall. Note that, pro-

duction quantization and its optimized versions such

as OPQ [14], AQ [1] and CQ [66] are designed for un-

supervised scenarios where no supervision is provided,

limiting their effectiveness in the supervised scenario.

To exploit the labels provided in the supervised sce-

nario, Wang et al [53] propose supervised quantization

(SQ). Nevertheless, SQ conducts feature extraction and

quantization individually, whereas the interaction be-

tween these two steps are ignored. To simultaneously

learn image representation and product quantization,

deep quantization network (DQN) [8] adds a fully con-

nected bottleneck layer in the convolutional network.

It optimizes a combined loss consisting of a similarity-

preserving loss and a product quantization loss. Nev-

ertheless, the codebook in DPQ is trained through k-

means clustering and thus the supervision is ignored.

Recently, deep product quantization (DPQ) [28] is pro-

posed where the codebook and network parameters are

learned in an end-to-end manner. Different from orig-

inal product quantization which determines the code-

word assignment according to distances between fea-

tures and codewords, DPQ determines the codeword as-

signment through a fully connected layer with parame-

ters learned from data. Nevertheless, the additional pa-

rameters in the cascade of fully connected layers make

the network more prone to over-fitting.

Our work is also an attempt of incorporating prod-

uct quantization in a neural network. We propose a

soft product quantization layer and build our product

quantization network (PQN), which can be trained in

an end-to-end manner. Different from DPQ, our PQN

determines the codeword assignment according to the

similarity between features for coding and codewords,

which can be seen as a soft extension of original prod-

uct quantization. Unlike DPQ, we do not need addi-

tional fully-connected layers to determine the codeword

assignment and the only parameters in our soft prod-

uct quantization layer are codewords. Therefore, ours

is less prone to over-fitting. Besides, we exploit residual

quantization besides product quantization in RPQN.

The residual quantization triggers the residual learn-

ing, which boosts the representation’s discriminabilty.

Moreover, we extend product quantization to temporal

product quantization for speeding up video retrieval.

The temporal pyramid used in temporal product quan-

tization not only provides a natural feature partition

but also enhances the representation’s discriminabilty.

2.3 Fast Video Search

Traditional fast video search methods [7,59] follow a

two-step pipeline by extracting the video feature [50,49]

followed by the feature compression. Nevertheless, this

two-step pipeline ignores the interaction between two

steps, feature learning and compression, and thus the

obtained compact video representation might be sub-

optimal. To improve the performance of learned com-

Product Quantization Network for Fast Visual Search 5

pact code, Wu et al. [56] propose a deep video hash-

ing method which jointly optimize frame feature learn-

ing and hashing. Similarly, Liong et al. [34] incorporate

video feature learning and hashing function optimiza-

tion in a single neural network. Recently, Liu et al. [37]

propose a deep video hashing framework as well as a

category mask to increase the discriminativity of hash

codes. Different from these deep hashing methods, we

exploit product quantization to obtain a compact video

representation and incorporate it in a neural network.

Thanks to asymmetric distance measurement, product

quantization results in a smaller distortion error than

hashing. Moreover, we exploit the temporal consistency

inherited in videos and extend the product quantization

to temporal product quantization, constructing the pro-

posed temporal product quantization network (TPQN).

3 Product Quantization Network

3.1 Limitation of Product Quantization

Let us denote by v ∈ Rd the feature of a reference

image I, we divide the feature v into M subvectors

[v1, · · · ,vm, · · · ,vM] in the feature space where vm ∈
Rd/M is a subvector. The product quantization further

approximates v by

q = [q1(v1), · · · , qm(vm), · · · , qM (vM)], (1)

where qm(·) is m-th quantizer defined as

qm(vm) = ck
∗

m , (2)

in which,

k∗ = argmax
k∈[1,K]

〈vm, ckm〉. (3)

In Eq. (3), {c1m, · · · , cKm} are codewords for qm(·). Orig-

inally, the codewords are learned through unsupervised

k-means by minimizing the distortion error between

each data point and its nearest codeword. Neverthe-

less, only minimizing distortion errors between data

points and codewords ignores the supervision informa-

tion. To exploit the provided supervision when incor-

porated product quantization in a neural network, we

seek to learn the codewords through back-propagation

in a end-to-end manner.

Let us attempt to derive the back-propagation of

gradients in product quantization operation. We de-

fine L as the training loss, which we will introduce in

Section 3.5. Let us assume we have already obtained

∂L/∂qm(vm), i.e., the derivative of loss L with respec-

tive to the output. The back-propagation seeks to com-

pute the derivative of loss L with respective to the code-

words, ∂L/∂ck
∗

m , and the derivative of loss L with re-

spective to the input, ∂L/∂vm. From the definition, it is

straightforward to derive that ∂L/∂ck
∗

m = ∂L/∂qm(vm).

Intuitively, it back-propagates the gradients of the out-

put to the codewords it is assigned to and leave the

other codewords unchanged. Nevertheless, qm(vm) is

not a continuous function of vm, making it infeasible

to back-propagate ∂L/∂qm(vm) to ∂L/∂vm. It drives

us to seek other solutions to make the back-propagation

in product quantization feasible.

3.2 From Hard Quantization to Soft Quantization

To overcome the non-differentiable problem, we gener-

alize the quantization defined in Eq. (2) by constructing

a continuously differential approximation function de-

fined as fm(vm, α) which satisfies limα→+∞fm(vm, α) =

qm(vm), where α is a scalar controlling the consistency

between fm(vm, α) and qm(vm). In practice, we can

choose a large α to achieve a good approximation. There

are multiple choices to construct the function fm(vm, α).

Below we specify two instances and the soft quantiza-

tion function proposed in our conference paper [64] cor-

responds to the second one:

f1m(vm, α) =

K∑
k=1

〈vm, ckm〉α∑K
k′=1〈vm, ck

′
m〉α

ckm,

f2m(vm, α) =

K∑
k=1

eα〈vm,c
k
m〉∑K

k′=1 e
α〈vm,ck′

m〉
ckm

(4)

Note that, limα→+∞f
1
m(vm, α) = qm(vm) might not be

satisfied if 〈vm, ckm〉 < 0. To tackle this issue, we clip

〈vm, ckm〉 to ensure it is non-negative. Below we derive

the gradient back-propagation for f1m(vm, α) and that

of f2m(vm, α) can be derived in a similar manner. To

facilitate the derivation, we introduce a series of inter-

mediate variables {akm}
M,K
m=1,k=1 defined as

akm = 〈vm, ckm〉α/
K∑
k′=1

〈vm, ck
′

m〉α. (5)

Meanwhile, let us define qm = f1m(vm, α) as output

of the approximation function taking vm as input. By

plugging Eq. (5) into Eq. (4), we can obtain

qm =

K∑
k=1

akmckm. (6)

6 Tan Yu et al.

Since qm is a function of vm and {ckm}Kk=1, it is straight-

forward to obtain

dL =

M∑
m=1

(
dqm

)> ∂L

∂qm

=

M∑
m=1

(∂qm
∂vm

dvm +

K∑
k=1

∂qm
∂ckm

dckm

)> ∂L

∂qm
.

(7)

Meanwhile, according to the definition of qm in Eq. (6),

∂qm
∂vm

=

K∑
k=1

∂qm
∂akm

(∂akm
∂vm

)>
=

K∑
k=1

ckm

(∂akm
∂vm

)>
,

∂qm
∂ckm

=

K∑
k′′=1

∂qm
∂ak′′m

(∂ak′′m
∂ckm

)>
+ akm

∂ckm
∂ckm

=

K∑
k′′=1

ck
′′

m

(∂ak′′m
∂ckm

)>
+ akmI,

(8)

where I is an identity matrix. By plugging Eq. (8) into

Eq. (7), we further obtain

dL =

M∑
m=1

{ K∑
k=1

ckm

(∂akm
∂vm

)>
dvm

+

K∑
k=1

[K∑
k′′=1

ck
′′

m

(∂ak′′m
∂ckm

)>
+ akmI

]
dckm

}> ∂L

∂qm
.

(9)

Meanwhile, L is the function of vm and ckm, therefore,

dL =

M∑
m=1

[(
dvm

)> ∂L

∂vm
+

K∑
k=1

(
dckm

)> ∂L

∂ckm

]
. (10)

Comparing Eq. (10) with Eq. (9), we obtain

∂L

∂vm
=

K∑
k=1

∂akm
∂vm

(
ckm

)> ∂L

∂qm
,

∂L

∂ckm
=

K∑
k′′=1

∂ak
′′

m

∂ckm

(
ck
′′

m

)> ∂L

∂qm
+ akm

∂L

∂qm
.

(11)

where

∂akm
∂vm

=
α
∑K
k′=1〈vm, ck

′

m〉α−1〈vm, ckm〉α−1ckm〈vm, ck
′

m〉
(
∑K
k′=1〈vm, ck

′
m〉α)2

−
α
∑K
k′=1〈vm, ck

′

m〉α−1〈vm, ckm〉α−1ck
′

m〈vm, ckm〉
(
∑K
k′=1〈vm, ck

′
m〉α)2

,

∂ak
′′

m

∂ckm
=
αI(k = k′′)ck

′′

m 〈vm, ck
′′

m 〉α−1
∑K
k′=1〈vm, ck

′

m〉α

(
∑K
k′=1〈vm, ck

′
m〉α)2

− αckm〈vm, ckm〉α−1〈vm, ck
′′

m 〉α

(
∑K
k′=1〈vm, ck

′
m〉α)2

.

(12)

I(k = k′) = 1 only if k = k′ otherwise 0. In fact, our

experiments in Section 6.1.1 show that, f1m(·, α) and

f2m(·, α) achieve comparable performance. For conve-

nience of implementation, we select f2m(·, α) as default

approximation function.

3.3 Regularization

Interestingly, the quantization mechanism works as a

regularization, effectively suppressing over-fitting. Dif-

ferent from traditional regularization method putting

constraints on the weights of the network such as `1/`2
regularization, quantization, instead, puts constraints

on the activations. We will show that even though the

quantized features can be seen as an approximation

of the original features with inevitable distortion, it

achieves a much better retrieval precision than that us-

ing the original features.

3.4 Initialization

We initialize the parameters of convolutional layers by

fine-tuning a standard convolutional neural network with-

out quantization, e.g., Alexnet, on the specific dataset.

Since we adopt inner-product similarity, we add an intra-

normalization layer after the fully-connected layer to

fine-tune the network to make it compatible with the

proposed product quantization network. After that, we

extract the features from the fine-tuned neural network

and conduct k-means followed by `2-normalization to

obtain the initialized codewords {cmk}K,Mk=1,m=1 in the

soft product quantization layer.

3.5 Asymmetric Triplet Loss

We extend triplet loss originally used in metric learning

to asymmetric triplet loss to boost the performance of

learned representation in asymmetric similarity mea-

surement. We define (I, I+, I−) as a training triplet,

where I+ represents a relevant (positive) image and I−
is an irrelevant (negative) image with respect to I. We

denote by v the feature of I before soft product quan-

tization and denote by q+ and q− the features of I+
and I− after soft product quantization. We define asym-

metric similarity between I and I+ as 〈v,q+〉, where

〈·, ·〉 denotes the inner-product between two vectors.

The proposed asymmetric triplet loss is defined as

LATL = 〈v,q−〉 − 〈v,q+〉. (13)

Product Quantization Network for Fast Visual Search 7

Intuitively, it aims to increase the asymmetric similar-

ity between pairs of relevant images and decrease that

of pairs of irrelevant images. It is a natural extension

of the original triplet loss to asymmetric distance. The

difference is that, a training triplet used in the original

triplet loss consists of three features of the same type,

whereas a training triplet used in the proposed asym-

metric triplet loss consists of one feature without quan-

tization and two features after quantization. In fact,

our experiments in Section 6.1.1 show that a better

performance is achieved by processing the above loss

through a sigmoid function and a revised loss function

is defined as Eq. (14). The better performance might

be attributed to the fact that the sigmoid function can

normalize the original loss so that the training will not

be biased by some samples with huge loss. By default,

the asymmetric triplet loss (ATL) we mention in this

paper is L+
ATL in Eq. (14).

L+
ATL =

1

1 + e〈v,q+〉−〈v,q−〉
. (14)

3.6 Encoding and retrieval

After training the proposed product quantization net-

work, the reference images in the database will be en-

coded by hard product quantization. We define the layer

before the soft product quantization layer as embedding

layer. Given a reference image I, we obtain its feature

from embedding layer v = [v1, · · · ,vm, · · · ,vM] and

then obtain its PQ code i = [i1, · · · , im, · · · , iM] where

im is computed by

im = argmax
k∈[1,K]

〈vm, ckm〉, (15)

where {ckm}
M,K
m=1,k=1 are codewords learned from our

product quantization network. In the retrieval phase,

we obtain the query’s feature from the embedding layer

vq = [vq1, · · · ,vqm, · · · ,v
q
M]. The relevance between the

query and a reference image represented by its product

quantization code i = [i1, · · · , im, · · · , iM] is computed

by the asymmetric similarity s(vq, i) defined as

s(vq, i) =

M∑
m=1

〈vqm, cimm 〉. (16)

Since {〈vqm, ckm〉}Kk=1 is computed only once for all the

reference images in the database and thus obtaining

s(vq, i) only requires to sum up the pre-computed simi-

larity scores in the look-up table, considerably speeding

up the image retrieval process. Meanwhile, storing the

product quantization code i only requires M log2K bits,

which considerably reduces the memory cost.

3.7 Relation to existing methods

DQN [8] is the first attempt of incorporating prod-

uct quantization in the neural network. It alternately

optimizes codewords and other parameters of the net-

work. It is worth noting that when updating codewords,

it only minimizes the quantization errors through k-

means and the supervision information is ignored.

SUBIC [24] integrates the one-hot block encoding layer

in the deep neural network. It represents each image

by a product of one-hot blocks, following the spirit of

product quantization. Nevertheless, the sparse property

limits its representation capability, making it perform

not as well as ours as shown in Table 11.

DPQ [28] is another attempt of incorporating product

quantization into the neural network. It determines the

codeword assignment through a cascade of two fully-

connected layers. In contrast, our method determines

the codeword assignment according to the similarity

between original features and the codewords. Note that,

the additional parameters from these two fully-connected

layers in DPQ not only increase the computation com-

plexity in training the neural network, but also make

the network more prone to over-fitting. Our experi-

ments show that our proposed PQN considerably out-

performs DPQ.

4 Residual Product Quantization Network

Different from PQ, residual quantization (RQ) [11] per-

forms quantization on the entire feature space, and then

recursively applies vector quantization (VQ) to the resid-

uals of the previous quantization level. It is a stacked

quantization model. In other words, different from PQ

conducting VQ independently on several partitioned

sub-spaces, RQ conducts VQ on multiple levels instead.

For the first level, RQ simply applies VQ to quantize

a feature vector v into one of K centroids through

q0(v). The feature vector’s residual vector r1 can be

obtained by subtracting its corresponding centroid as

v− q0(v). After than, r1 will be further quantized into

K centroids through q1(r1). By repeatedly quantizing

the residuals Mr − 1 times, we can approximate v by

q0(v)+
∑Mr−1
m=1 qm(rm). Through combining codewords

in Mr levels, we obtain a considerably huge codebook

consisting of KMr codewords. Generally, residual quan-

tization cannot achieve comparable distortion error as

8 Tan Yu et al.

product quantization, which limits its effectiveness in

retrieval based on off-the-shelf features.

Nevertheless, in a deep learning network, there ex-

isting huge amount of redundancy in activations and

the quantization error is less important. Meanwhile, we

observe that the residual quantization naturally trig-

gers residual learning [18], which can boost the fea-

tures’ discriminability. Based on the above motivation,

we attempt to integrate the residual quantization in a

deep neural network. We demonstrate the advantage of

residual quantization over product quantization when

incorporated into a deep neural network. In fact, the

residual quantization in our framework not only mini-

mizes the distortion error caused by the quantization,

but more importantly, it triggers residual learning and

enhances the discriminability of the learned compact

representation.

4.1 Residual Product Quantization Layer

Fig. 2 illustrates the proposed residual product quanti-

zation layer (RPQL). In this case, we set the residual

level Mr = 2. We denote by v ∈ Rd the input feature

vector. RPQL divides v into Mp sub-vectors:

v→ [v1, · · · ,vm, · · · ,vMp
] (17)

For each sub-vector vm, it goes through the following

forward path:

1. q1
m ← f(vm, α)

2. r1m ← vm − q1
m

3. q2
m ← f(r1m, α)

4. qm ← q1
m + q2

m

where f(·, α) is the soft function defined in section 3.

4.2 Indexing and Retrieval

After training the network, in the indexing phase, we

encode each reference image I in the database through

hard-assignment residual product quantization. Let us

define the layer before residual product quantization

layer as embedding layer. We denote by v the output

of embedding layer when input is I. v is partitioned

into [v1, · · · ,vm, · · · ,vMp
] and each sub-vector vm is

indexed as follows:

1. i1m ← argmax
k∈[1,K]

〈xm, c1,km 〉

2. r1m ← xm − c
1i1m
m

3. i2m ← argmax
k∈[1,K]

〈r1m, c2,km 〉

In the indexing phase, for each reference image I, we

only need to store indices of their corresponding code-

words {i1m}
Mp

m=1 and {i2m}
Mp

m=1, taking 2Mplog2K bits

in total. In the retrieval phase, we utilize the asym-

metric similarity scores to rank the reference images in

the dataset. Let denote by vq the output of embed-

ding layer when the input is query image q. Let denote

by [i11, ..., i
1
Mp

] and [i21, ..., i
2
Mp

] indices in two-level resid-

ual product quantization of the reference image I. The

asymmetric similarity is defined as

simasym(q, I) =

Mp∑
m=1

[〈vq, c
1,i1m
m 〉+ 〈vq, c

2,i2m
m 〉]. (18)

In this case, for each query, we only need to compute its

similarity with all the codewords for only once and then

similarity between the query and each reference image

can be efficiently obtained through 2Mp table look-ups.

5 Temporal Product Quantization Network

The proposed PQN and RPQN in the previous section

are designed for fast image retrieval and are not optimal

for video retrieval task. In this section, we introduce

our temporal product quantization network (TPQN)

for effective and efficient video retrieval. The proposed

TPQN is an extension of the proposed product quanti-

zation network by further exploiting the temporal con-

sistency inherited in videos. It integrates frame-wise

feature learning, frame-wise features aggregation and

video-level feature quantization in a single neural net-

work, and supports an end-to-end training. Fig. 3 visu-

alizes the architecture of the proposed TPQN. In Sec-

tion 5.1 and 5.2, we will introduce two core modules

of TPQN sequentially. In Section 5.3, the indexing and

retrieval strategy will be introduced.

5.1 Convolutional and pooling layers

Given a video V , we uniformly sample N frames from

it and define a global set of sampled frames as S =

{f1, · · · , fN}. We feed frames {fi}Ni=1 in parallel into

the backbone network consisting of convolutional and

pooling layers and obtain a set of frame-level features

{F (fi)|fi ∈ S}. We uniformly partition the global set

of frames S into T subsets {St}Tt=1 where St = {fi|i ∈
[bN/T c(t− 1) + 1, bN/T ct]}. Each subset St represents

a continuous interval of the video. Features of frames in

each subset St are max-pooled into an interval’s feature:

vt = maxpool({F (f)|f ∈ St}), t = 1, · · · , T + 1 (19)

Product Quantization Network for Fast Visual Search 9

f

f f

f-

-

+

+

Fig. 2: The architecture of the proposed residue product quantization layer. It splits the real-value feature v to

sub-features [v1,v2]. Through approximation function f(·, α), each sub-feature vm is quantized into q1
m and then

obtains the first-level residual vector r1m ← xm − q1
m. Each residual vector r1m is further quantized into q2

m. After

that, q1
m and q2

m are summed up to obtain the qm. q1 and q2 are concatenated into q.

where ST+1 = S accounts for the global set containing

all sampled frames. All the interval-level features will be

concatenated into a global feature v = [v1, · · · ,vT+1],

which is the input of the proposed temporal product

quantization layer. Intuitively, v is a two-level tempo-

ral pyramid pooling feature which exploits the tempo-

ral consistency inherited in the videos. But more impor-

tantly, the pyramid structure provides a natural feature

partition for product quantization.

5.2 Temporal Product Quantization Layer

For each interval-level feature vt, following the standard

product quantization, we equally split it into M sub-

vectors as vt = [vt1, · · · ,vtM]. Each vtm goes through

the following pipeline consisting of 4 steps:

1. ytm = relu(Wt
mvtm + btm)

2. ȳtm =
yt
m

‖yt
m‖2

3. ztm = f tm(ȳtm, α)

4. z̄tm = β
zt
m

‖zt
m‖2

where Wt
m and btm in step 1 are parameters of a fully-

connected layer used to further boost the feature’s dis-

criminability. β in step 4 is a scalar to speed up the

training and quantizer f tm(ȳtm, α) is defined as Eq. 4.

5.3 Indexing and Retrieval

After training the neural network, we will use the learned

codewords but adopt hard quantization for indexing. To

be specific, given a reference video V in the database,

let vt = [vt1, · · · ,vtm, · · · ,vtM] denote the max-pooled

feature of the intervals It where vtm is the m-th sub-

vector. For each vtm, we obtain its index itm by

1. ytm = relu(Wt
mbtm + btm)

2. ȳtm =
yt
m

‖yt
m‖2

3. itm = argmax
k∈[1,K]

〈ȳtm, ct,km 〉

where K is the number of codewords used by each quan-

tizer qtm(·). It takes log2(K) bits to store itm and (T +

1)Mlog2(K) bits to store all indices {[it1, · · · , itM]}T+1
t=1

for the video V . The advantage of the proposed tem-

poral product quantization over the original product

quantization is that it exploits the temporal consistency

inherited in the video, significantly boosting the repre-

sentation’s discriminability.

In the retrieval phase, given a query video q, we

can directly obtain its concatenated max-pooled feature

[v1
q,1, · · · ,vT+1

q,M] through the trained backbone network,

further post-process each vtq,m through {Wt
m,b

t
m} fol-

lowed by `2 normalization and obtain the final feature

[ȳ1
q,1, · · · , ȳT+1

q,M]. Note that we do not conduct quantiza-

tion on the query’s feature due to the asymmetric sim-

ilarity measurement. The similarity between the query

q and a reference video V is computed by

sim(q, V) =

T+1∑
t=1

M∑
m=1

〈ȳtq,m, c
t,itm
m 〉. (20)

Computing Eq. (20) is considerably efficient by utiliz-

ing look-up table [25]. To be specific, we only need to

compute the similarity between query video’s feature

with each codeword 〈ȳtq,m, ct,km 〉 for one time and then

store the similarity in a look-up table. Computing the

10 Tan Yu et al.

Convolutional and
 pooling layers

Fullyconnected and
 softmax layers

Temporal product
quantization layer

Fig. 3: The architecture of the proposed temporal product quantization network (TPQN). The input video V

is segmented into multiple intervals. An interval’s representation is obtained through convolutional and pooling

layers and the video’s feature is obtained through temporal pyramid pooling. The temporal product quantization

layer takes the obtained representation of the video as input and further conducts soft product quantization.

similarity between the query video q and a reference

video V defined in Eq. (20) only need M × (T + 1)

times similarity table look-ups.

We summarize architectures of PQN, RPQN, and

TPQN in Table 1.

Table 1: Comparisons between PQN, RPQN, and

TPQN. PQN adopts the product quantization architec-

ture, RPQN exploits the residual quantization besides

the product quantization, and TPQN utilizes the tem-

poral structure besides product quantization.

Product Residual Temporal
PQN X

RPQN X X
TPQN X X

6 Experiments on Image Retrieval

We evaluate the performance of our PQN on two pub-

lic benchmark datasets, CIFAR-10 and NUS-WIDE.

CIFAR-10 [29] is a dataset containing 60, 000 color im-

ages in 10 classes, and each class has 6, 000 images in

size 32×32. Different from CIFAR-10, NUS-WIDE [12]

is a dataset for evaluating multi-class classification, in

which one sample is assigned to one or multiple labels.

We follow the settings in [31,8] and use the subset of

195, 834 images that are associated with the 21 most

frequent concepts, where each concept consists of at

least 5, 000 images. We resize all images into 256×256.

On the CIFAR-10 dataset, the performance reported

by different baselines are based on different base con-

volutional neural networks, making it unfair to directly

compare their reported retrieval accuracy. To make a

fair comparison, we evaluate our method based on two

types of convolutional neural networks. The first con-

volutional neural network we use is 3CNet which is also

used by SUBIC [24] and DPQ [28]. 3CNet is proposed

in [35], which consists of L = 3 convolutional layers

with 32, 32 and 64 filters of size 5× 5 respectively, fol-

lowed by a fully connected layer with d = 500 nodes.

The second convolutional neural network we choose is

AlexNet. It is worth noting that the baselines we com-

pare may apply different models. For example, DQN

[8] adopts AlexNet whereas other work [52,32] adopt

VGG-F model. These two models are similar in the ar-

chitecture. To be specific, both the CNN-F and AlexNet

consist of five convolutional layers and two fully con-

nected layers. As shown in [27], the CNN-F generally

performs better than Alexnet in image retrieval, there-

fore, the better performance of ours based on AlexNet

than existing state-of-art methods based on CNN-F

is not owing to better base network. In other words,

our method can achieve better performance even with

Product Quantization Network for Fast Visual Search 11

Table 2: Influence of M and K on PQN.

M 1 2 4 8
K = 23 0.539 0.650 0.741 0.708
K = 26 0.696 0.741 0.782 0.724
K = 29 0.712 0.750 0.787 0.713
K = 212 0.735 0.763 0.786 0.737

Table 3: Influence of α on PQN.

α 1 5 20 40 80
K = 23 0.731 0.741 0.741 0.732 0.734
K = 26 0.771 0.782 0.782 0.780 0.760
K = 29 0.779 0.787 0.786 0.784 0.780
K = 212 0.785 0.786 0.782 0.782 0.781

Table 4: Performance comparisons between LATL in Eq.

(13) and its sigmoid-version L+
ATL in Eq. (14).

12 bits 24 bits 36 bits 48 bits
LATL 0.732 0.773 0.781 0.781

L+
ATL 0.741 0.782 0.787 0.786

Table 5: Performance comparisons between f1(·, ·) and

f2(·, ·) in Eq. (4).

12 bits 24 bits 36 bits 48 bits
f1(·, ·) 0.745 0.784 0.785 0.783
f2(·, ·) 0.741 0.782 0.787 0.786

an inferior base network. On the NUS-WIDE dataset,

we also adopt AlexNet as our base model. On both

datasets, we report the performance of the proposed

method through mAP, which is a standard metric in

evaluating the performance of retrieval algorithms.

6.1 CIFAR-10 using 3CNet

Following the experimental setup in SUBIC [24] and

DPQ [28], the training is conducted on 50K image train-

ing set. The test set is split into 9K database images

and 1K query images (100 per class).

6.1.1 Ablation study on PQN

We first evaluate the influence of the number of subvec-

tors M and the number of codewords per sub-codebook

K on the retrieval precision of PQN. In experiments,

Table 6: Comparisons with PQ and LSQ.

8bits 16bits 24bits 32bits
TL+Full 0.779
TL+PQ 0.621 0.741 0.773 0.780
TL+LSQ 0.720 0.752 0.753 0.763

PQN 0.729 0.778 0.782 0.786

we change M among {1, 2, 4, 8}, and vary K among

{23, 26, 29, 212}. As shown in Table 2, PQN achieves

the best performance when M = 4. By default, we set

M = 4. Note that when M ∈ {1, 2}, the performance

of PQN increases as K increases. This is expected since

the larger K can partition the feature space into finer

cells. Nevertheless, when M = 4, the performance drops

when K increases from 29 to 212. Meanwhile, when

M = 8, there is also a performance drop when K in-

creases from 26 to 29. The worse performance might be

caused by over-fitting when both M and K are large.

α controls the quantization softness of the soft product

quantization layer.

We further evaluate the performance of our method

when α varies. We test the influence of α by fixing

M = 4 and varying K among {23, 26, 29, 212}. As shown

in Table 3, the performance of the proposed PQN is rel-

atively stable when α increases from 1 to 80. Note that,

when α = 1, the performance is slightly worse than

that when α = 5. The worse performance is due to the

fact a small α will make the quantization too soft and

thus the soft quantization in training phase differs too

much from the hard quantization in the testing phase.

Meanwhile, we also observe a performance drop when

α increases from 5 to 80. This drops might be caused

by the fact that a huge α tends to push the input of

soft-max function to the saturation region and lead to

gradient vanishing. By default, we set α = 5.

We compare the LATL in Eq. (13) and its sigmoid-

version L+
ATL in Eq. (14). As shown in Table 4, L+

ATL

achieves slightly better performance than LATL. The

better performance might be attributed to the fact that

the sigmoid function can balance the losses of different

samples and thus the network training will not be dom-

inated by samples generating huge loss.

We compare the performance of two different ap-

proximation function f1(·, ·) and f2(·, ·) in Eq. (4). As

shown in Table 5, these two approximation functions

achieve comparable performance. Considering the com-

plexity of implementation, we select f2(·, ·) as default

approximation function.

We compare PQN with unsupervised PQ and LSQ

[38] based on fine-tuned features trained through triplet

loss. As shown in Table 6, ours considerably outper-

forms both TL+PQ and TL+LSQ. Meanwhile, we also

show the performance of original features trained through

triplet loss without quantization (TL+Full) in Table 6.

Note that, to make a fair comparison, the triplet loss

we used for full feature without quantization is also the

revised one as Eq. (14). The performance of ours is even

better than that of features without quantization, this

is owing to the regularization imposed by quantization,

which suppresses over-fitting.

12 Tan Yu et al.

We evaluate the proposed PQN in the open-set set-

ting [44] on CIFAR-10 dataset. In the testing phase,

the query and reference images are of different classes

from that in the training phase. We train the PQN us-

ing samples with labels c ∈ [0, 4] and conduct the re-

trieval using samples with labels in c ∈ [5, 9]. In the

training data, each class contains 5000 samples. In the

testing data, each class contains 1000 classes. Among

5000 testing samples, 1000 samples from the testing

data are randomly selected as query and the rest 4000

samples are used as reference images. We compare with

DTSH [52] and Triplet + PQ. To be specific, Triplet +

PQ is implemented by training the backbone without

quantization and then conducted the unsupervised PQ.

As shown in Table 7, our method consistently outper-

forms the DTSH [52] and Triplet + PQ in the open-set

setting.

Table 7: Comparisons with other methods in the open-

set setting.

8bits 16bits 24bits 32bits
DTSH [52] 0.261 0.269 0.297 0.341

Triplet + PQ 0.282 0.316 0.332 0.341
DPQ 0.329 0.349 0.357 0.356

We evaluate the proposed PQN using another two

backbones, ResNet34 and ResNet50. The feature di-

mension of ResNet-34 is 512 and that of the ResNet-50

is 2048. As shown in Table 8, when M ∈ {1, 2}, the

best performance is achieved when K = 64. On the

other hand, when M ∈ {4, 8}, the best performance

is achieved when K = 16. Note that, when K = 256,

the performance is worse than that when K = 64. The

worse performance might be caused by over-fitting.

We evaluate the influence of the sampling strategy

of the triplet loss on the proposed PQN. We compare

the uniform sampling, hard negative sampling and dis-

tance weighted sampling [55]. As shown in Table 9, the

hard negative sampling is worse than uniform sampling,

and the distance weighted sampling is slightly better

than uniform sampling. Considering the effectiveness

and simplicity, we use uniform sampling as default.

6.1.2 Ablation study on RPQN

We then evaluate the influence of residual level Mr

on the performance of our RPQN. Note that, when

Mr = 1, the residual product quantization will degen-

erate to the product quantization. We compare the case

when Mr = 1 and that when Mr = 2, 4. Since the code

length L = MpMrlog2K, to achieve an identical code

length, we set Mp = 4 when Mr = 1, set Mp = 2 when

Mr = 2, and set Mp = 1 when Mr = 4. As shown in

Table 10, the performance when Mr = 2 consistently

outperforms others. By default, we set Mr = 2 on all

testing dataset. Meanwhile, the better performance of

Mr = 2 than Mr = 1 verifies the advantage of residual

product quantization over product quantization.

We also evaluate the influence of Mp. In implemen-

tation, we fix Mr = 2, change Mp among {1, 2, 4}.
We comprehensively test cases when K varies among

{8, 64, 512, 4096}. As shown in Figure 4, when Mp = 2,

it achieves the highest mAP on all cases and meanwhile

it takes only a half number of bits of that when Mp = 4.

By default, we set Mp = 2.

6.1.3 Compare with state-of-the-art methods.

We compare the proposed PQN and RPQN with two

state-of-the-art methods (SUBIC and DPQ), which adopt

the same 3CNet as well as the same experimental set-

tings. We change bit length L among {12, 24, 36, 48}.
We set M = 4 on PQN, and set Mr = 2 and Mp = 2

on RPQN. Since SUBIC adopts cross-entropy loss, it is

unfair to directly compare it with ours using asymmet-

ric triplet loss. Therefore, we report the performance of

our PQN and RPQN based on the cross-entropy loss

(CEL) as well as the proposed asymmetric triplet loss

(ATL). As shown in Table 11, our PQN and RPQN

based on both CEL and ATL significantly outperform

the existing state-of-the-art methods including SUBIC

and DPQ.

6.2 CIFAR-10 using AlexNet

Following the experimental settings in [52,32], we ran-

domly sample 1000 images per class (10000 images in

total) as the testing query images, and the remaining

50000 images are used as the training set as well as

reference images in the database. We set M = 4 on

PQN, and set Mr = 2 and Mp = 2 on RPQN. We vary

K among {24, 26, 29, 212}, and thus the code length L

varies among {16, 24, 36, 48}.

6.2.1 Comparions with state-of-the-art methods.

As shown in Table 12, ours consistently outperforms the

existing state-of-the-art methods, especially when the

bit length is small. For instance, when the bit length

is 16, our PQN/RPQN achieves a 0.947/0.950 mAP

whereas DSDH only achieves a 0.935 mAP.

Product Quantization Network for Fast Visual Search 13

Table 8: The influence of M and K on the ResNet34 and ResNet50 features.

ResNet34 (512-d) ResNet50 (2048-d)
K = 4 K = 16 K = 64 K = 256 K = 4 K = 16 K = 64 K = 256

M = 1 0.353 0.914 0.914 0.908 0.376 0.918 0.919 0.914
M = 2 0.451 0.921 0.924 0.919 0.627 0.928 0.931 0.925
M = 4 0.635 0.935 0.930 0.929 0.797 0.938 0.936 0.933
M = 8 0.773 0.927 0.924 0.922 0.782 0.931 0.930 0.927

4 6 8 10 12
log

2
K

0.5

0.55

0.6

0.65

0.7

0.75

0.8

m
A

P

M
p

=1

M
p

=2

M
p

=4

(a) mAP

4 6 8 10 12
log

2
K

0

20

40

60

80

100

B
it

s

M
p

=1

M
p

=2

M
p

=4

(b) code length

Fig. 4: The influence of Mp.

Table 9: Comparisons among different sampling meth-

ods.

method 8bits 16bits 24bits 32bits
Uniform 0.729 0.778 0.782 0.787

Hard Negative 0.632 0.679 0.692 0.701
Distance Weighted 0.733 0.783 0.786 0.788

Table 10: Influence of Mr. When Mr = 1, the product

residual product quantization degenerates into product

quantization.

Mr 12 bits 24 bits 36 bits 48 bits
1 0.741 0.782 0.787 0.786
2 0.758 0.799 0.796 0.797
4 0.711 0.762 0.765 0.776

Table 11: mAP comparisons with state-of-the-art meth-

ods using 3CNet.

Method 12 bits 24 bits 36 bits 48 bits
SUBIC [24] 0.635 0.672 0.682 0.686
DPQ [28] 0.673 0.692 0.695 0.693

PQN+CEL 0.737 0.771 0.768 0.762
RPQN+CEL 0.742 0.785 0.784 0.786
PQN+ATL 0.741 0.782 0.787 0.786

RPQN+ATL 0.758 0.799 0.796 0.797

6.2.2 Extremely short code evaluation.

As shown in Table 12, the mAP achieved by our method

does not drop when the bit length decreases from 48 to

Table 12: mAP comparisons with existing state-of-the-

art methods using AlexNet base model on the CIFAR10

dataset.

Method 16 bits 24 bits 36 bits 48 bits
DRSCH [65] 0.615 0.622 0.629 0.631
DSCH [65] 0.609 0.613 0.617 0.686
DSRH [68] 0.608 0.611 0.617 0.618
VDSH [67] 0.845 0.848 0.844 0.845
DPSH [33] 0.903 0.885 0.915 0.911
DTSH [52] 0.915 0.923 0.925 0.926
DSDH [32] 0.935 0.940 0.939 0.939

PQN 0.947 0.947 0.946 0.947
RPQN 0.950 0.949 0.949 0.948

16. In contrast, the performance of other methods in Ta-

ble 12 all turn worse due to decrease of the bit length.

To fully exploit the potential of the proposed prod-

uct quantization network on the CIAFR-10 dataset, we

evaluate it by setting the code length L extremely small.

We vary M among 1, 2 and 4, and meanwhile vary the

code length (bit number) L within {4, 6, 8, 10, 12}. As

shown in Table 13, when code length is extremely small,

e.g., L = 4, the performance of PQN when M = 1

significantly outperforms that when M = 2, 4. Mean-

while, when M = 1, there is not significant performance

drop when L decreases from 12 to 4. Note that, when

M = 1, the proposed PQN achieves a 0.945 mAP when

using only 4 bits per code. It considerably outperforms

the existing state-of-art method DSDH [32] which only

achieves 0.935 mAP using 16 bits.

14 Tan Yu et al.

Table 13: Evaluation on the extremely short code.

L 4 bits 6 bits 8 bits 10 bits 12 bits
M = 1 0.945 0.945 0.946 0.946 0.946
M = 2 0.674 0.882 0.946 0.946 0.947
M = 4 0.672 − 0.947 − 0.947

Table 14: mAP comparisons with existing state-of-the-

art methods using AlexNet base model on the NUS-

WIDE dataset. The mAP is based on top 5000 nearest

neighbors.

Method 12 bits 24 bits 36 bits 48 bits

SH + CNN [32] 0.621 0.616 0.615 0.612
ITQ + CNN [32] 0.719 0.739 0.747 0.756
LFH + CNN [32] 0.695 0.734 0.739 0.759
KSH + CNN [32] 0.768 0.786 0.790 0.799
SDH+ CNN [32] 0.780 0.804 0.815 0.824

FASTH+CNN [32] 0.779 0.807 0.816 0.825

CNNH [57] 0.611 0.618 0.625 0.608
NINH [31] 0.674 0.697 0.713 0.715
DHN [69] 0.708 0.735 0.748 0.758
DQN [8] 0.768 0.776 0.783 0.792

DPSH [33] 0.752 0.790 0.794 0.812
DTSH [52] 0.773 0.808 0.812 0.824
DSDH [32] 0.776 0.808 0.820 0.829

PQN 0.795 0.819 0.823 0.830
RPQN 0.797 0.822 0.829 0.831

6.3 NUS-WIDE

Following the experiment setup in [52,32], we randomly

sample 100 images per class (2100 images in total) as

the test query set and the remaining images are used

as database images. 500 database images per label are

randomly sampled as training images. The mAP is cal-

culated based on the top 5000 returned neighbors. Due

to multi-label settings, the cross-entropy loss used in

SUBIC [24] and the softmax loss in DPQ [28] are no

longer feasible, which explains neither SUBIC [24] nor

DPQ [28] conducts the experiments on the NUS-WIDE

dataset. Inspired by the success of label embedding pro-

posed in [32], we also adopt a combined loss, which is a

weighed sum of our asymmetric triplet loss and a mean

square loss defined as

L =
1

1 + e〈v,q+〉−〈v,q−〉
+ β‖Wv − y‖22, (21)

where W represents the weights of an additional fully-

connected layer and y is the label of the sample I. We

set β = 10 by default.

We compare our method with two types of base-

lines. The first type extracts the features from CNN and

then convert the extracted features into binary codes.

We directly copy the reported results in [32] which con-

ducts experiments on several traditional hashing meth-

Table 15: Comparisons with state-of-the-art methods

on ImageNet100 dataset.

16bits 32bits 48bits
HashNet [9] 0.506 0.631 0.663
MIHash [6] 0.569 0.661 0.685

TALR-AP [17] 0.589 0.669 0.699
PQN 0.613 0.682 0.707

RPQN 0.624 0.691 0.712

ods such as SH [45], ITQ [15], KSH [36], SDH [46],

etc. The baselines of the second type are deep hash-

ing/quantization methods, where the binary codes are

learned in an end-to-end manner. We compare several

methods of the second type such as DQN [8], DPSH

[33], DTSH [52], DSDH [32], etc. As shown in Table

14, the proposed PQN consistently outperforms these

two types of baselines when code length L varies among

{12, 24, 36, 48}. The advantage of our PQN over other

methods is more obvious when the code length L is

short. For instance, when L = 24, our PQN/RPQN

achieves a 0.819/0.822 mAP whereas DSDH [32] only

achieves a 0.808 mAP.

6.4 ImageNet100

ImageNet100 [9] randomly select 130K images from 100

categories of ImageNet. All images in the validation set

as the queries and 100 images per category are selected

from the database as the training points. We conduct

experiments based on AlexNet backbone and the eval-

uation metric is mAP@100. We compare with three

recent state-of-the-art methods including HashNet [9],

MIHash [6] and TALR-AP [17]. As shown in Table 15,

our PQN and RPQN consistently outperform the com-

pared methods.

7 Experiments on Video Retrieval

We evaluate our method on two public benchmark datasets:

UCF101 [48] and HMDB51 [30]. UCF101 dataset con-

sists of 101 categories containing 13320 total realis-

tic videos. HMDB51 dataset contains 6766 clips di-

vided into 51 categories, each containing a minimum of

101 clips. Both UCF101 and HMDB51 provide 3 train-

ing/testing splits. Following [37], we use the third split

of UCF101 and first split of the HMDB51. The train-

ing data not only is used for training the network but

also serves as the reference videos in the database for

retrieval. The testing data are the query videos. A ref-

erence video is related to the query video if they share

the same semantic label.

Product Quantization Network for Fast Visual Search 15

5 6 7 8 9 10 11
log

2
K

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

T = 1
T = 2
T = 3

(a) UCF101

5 6 7 8 9 10 11
log

2
K

0.3

0.4

0.5

0.6

m
A

P

T = 1
T = 2
T = 3

(b) HMDB51

Fig. 5: The influence of T .

5 6 7 8 9 10 11
log

2
K

0.8

0.85

0.9

0.95

m
A

P

M = 1
M = 2
M = 4

(a) UCF101

5 6 7 8 9 10 11
log

2
K

0.4

0.45

0.5

0.55

0.6

0.65

0.7

m
A

P

M = 1
M = 2
M = 4

(b) HMDB51

Fig. 6: The influence of M .

Table 16: Regularization function of the product quantization structure.

UCF101 HMDB51
Quantization? T = 1 T = 2 T = 3 T = 1 T = 2 T = 3

NO 0.8547 0.8642 0.8622 0.4628 0.4927 0.4945
YES 0.8639 0.9035 0.9023 0.5352 0.6012 0.5801

Backbone network we adopt is an old-fashioned net-

work, BN-Inception [23], but we remove its last fully-

connected layer and softmax layer. To suppress over-

fitting, we add a dropout layer with ratio r = 0.8 after

the last layer of the backbone network. Even though

there are many more advanced deep learning architec-

tures available, we select BN-Inception due to the the

limitation of our computing resources. Laterly, we will

show that the performance achieved by ours using BN-

Inception is considerably better than another work [37]

using a deeper ResNet50 as the backbone. Despite that

a temporal stream network taking optical flow as in-

put can achieve higher performance in action retrieval,

we do not do that since the baselines we compare only

take the RGB frames as input. On both datasets, we

set N , the number of sampled frames per video, as 9.

The batch size is set to be 128. The initial learning rate

is 0.001 and the learning rate will be divided by 10 af-

ter every 30 epochs and the training process finishes in

120 epochs. We use SGD as the optimizer and set the

momentum as 0.9. The loss function used in training

the model is standard cross-entropy loss.

7.1 Ablation Study

In this section, we conduct ablation study and evaluate

the influence of T , M and α on the proposed TPQN,

respectively.

16 Tan Yu et al.

Table 17: Comparison with existing hashing methods.

UCF101 HMDB
6 bits 12 bits 18 bits 36 bits 6 bits 12 bits 18 bits 36 bits

LSH 0.090 0.220 0.326 0.521 0.068 0.116 0.149 0.231
SH 0.234 0.448 0.613 0.777 0.155 0.255 0.344 0.440

ITQ 0.282 0.588 0.728 0.828 0.206 0.360 0.449 0.521
SPBE 0.266 0.532 0.717 0.805 0.209 0.327 0.408 0.512
KSH 0.450 0.752 0.842 0.878 0.325 0.436 0.532 0.572
DSH 0.513 0.807 0.856 0.882 0.331 0.457 0.546 0.586

Unsupervised PQ 0.562 0.831 0.862 0.891 0.485 0.533 0.568 0.582
Ours 0.626 0.864 0.888 0.904 0.535 0.563 0.591 0.601

Table 18: Comparison with deep video hashing methods.

SUBIC [24] DHCM [37] TPQN (Ours)
64 128 256 64 128 256 12 18 36

UCF101 0.324 0.432 0.449 0.759 0.817 0.843 0.864 0.888 0.904
HMDB51 0.192 0.247 0.298 0.356 0.367 0.368 0.563 0.591 0.601

7.1.1 Influence of T

We vary T among {1, 2, 3}. Note that when T = 1, it

will be equivalent to a one-level global max-pooling. In

this case, the temporal product quantization network

degenerates to product quantization network. On both

datasets, we fixM = 1 and increase the number of code-

words K from 32 to 2048. As shown in Figure 5, when

T = 2, 3, it consistently outperform that when T = 1,

which validates the advantage of the proposed tempo-

ral product quantization network over product quanti-

zation network. Nevertheless, a higher T will take more

bits, leading to a higher memory and computation cost.

To balance the precision and efficiency, we set T = 2

by default on both datasets. Meanwhile, from Figure 5

we can also observe that as K increases, the mAP in-

creases in the early stage and then drops. The increase

of mAP is due to that a higher K is capable of rep-

resenting richer information. In contrast, the mAP de-

creases when K > 128 is caused by over-fitting. We will

show in section 7.2 that the quantization can serve as

a regularization mechanism which suppresses the over-

fitting. How to select K is dependent on the scale of

the dataset. As a rule of thumb, we pick a larger K for

a larger dataset. As shown in Figure 5, when T varies

among {1, 2, 3}, it consistently achieves the best per-

formance when K = 128 on UCF101 dataset and when

K = 64 on HMDB51 dataset.

7.1.2 Influence of M

A larger M brings a richer codebook as well as a greater

complexity. We varyM among {1, 2, 4}. On both datasets,

we set T = 2 and increase K from 32 to 2048. In this

scenario, the number of bits required for representing

a video is 3Mlog2K. As shown in Figure 6, when K

is small, M = 2, 4 achieves much better performance

than M = 1, this is expected since a small K will have

a limited capability of representing and therefore need

a larger M to enrich the codewords. On the contrary,

when K is large, the advantage of M = 2, 4 over M = 1

is not so obvious. Meanwhile, in consistency with the

previous experimental results shown in Figure 6, when

M varies among {1, 2, 4}, it continuously achieves the

highest precision on UCF101 dataset when K = 128

and on HMDB51 when K = 64.

7.1.3 Influence of α

α controls the consistency between the approximation

function ftm(·, α) and original quantization function

qtm(·). We fix T = 2 and M = 2 and test our TPQN by

increasing α from 2 to 10 and varyK among {32, 64, 128}.
As shown in Figure 7, the performance, when α is within

the range [5, 10], the performance of TPQN is consid-

erably stable. Nevertheless, we can observe a signifi-

cant performance drop when α decreases from 5 to 2.

This drop is due to the fact that a small α brings a

large inconsistency between the approximation function

ftm(·, α) in the training phase and the hard quantiza-

tion in the indexing phase. Meanwhile, on the HMDB51

dataset, we also observe a slight performance drop when

α increases from 7 to 10. This performance drop is

caused by the fact that a large α will tend to make

the training unstable. By default, we set α = 5 on both

datasets.

7.1.4 Action recognition.

We also evaluate the performance of the proposed TPQN

for action recognition. To be specific, we also the near-

Product Quantization Network for Fast Visual Search 17

2 4 6 8 10
0.7

0.75

0.8

0.85

0.9

0.95

m
A

P

K = 32
K = 64
K = 128

(a) UCF101

2 4 6 8 10
0.4

0.45

0.5

0.55

0.6

0.65

0.7

m
A

P

K = 32
K = 64
K = 128

(b) HMDB51

Fig. 7: The influence of α.

est neighbor classifier for recognition. We compare with

TSN [51], using the same backbone network, BN-Inception

[23]. To make a fair comparison, both ours and TSN

only take RGB frames as input and do not use optical

flows. As shown in Table 19, benefited from temporal

pyramid pooling, our TPQN considerably outperforms

TSN in the action recognition.

Table 19: The performance in action recognition.

UCF101 HMDB51
TSN [51] 85.3 51.0

Ours 90.9 62.3

7.2 Complexity Analysis and Regularization

In this section, we analyze the complexity reduction

brought by quantization and also show the regulariza-

tion functionality of the quantization. We will show that

our TPQN not only significantly boosts the efficiency

but also serves as a regularization mechanism, improv-

ing the precision. To make a fair comparison, we com-

pare with a baseline by directly removing the quantiza-

tion operation, i.e., the third step in temporal product

quantization layer and keep other parts of TPQN fixed.

As for our TPQN, we set M = 2 and K = 64 on both

datasets.

Without quantization, the video features are high-

dimension real-value vectors. For instance, when T = 2,

the feature dimension isD(T+1) = 1024×3 = 3072 and

it takes 3072 × 4 = 12288 bytes to store the feature in

a float-type array. In contrast, using the quantization,

it only takes (T + 1)Mdlog2K/8e = 6 bytes, achieving

an approximate 2000× memory reduction.

Meanwhile, we find the quantization also signifi-

cantly improves the retrieval precision as shown in Ta-

ble 16. This is due to the regularization mechanism

brought by the quantization, which suppresses overfit-

ting and improves the generalization capability of the

trained model. For instance, when T = 2, our TPQN

achieves 0.9035 mAP on UCF101 dataset and 0.6012

mAP on HMDB51 dataset. In contrast, after remov-

ing the quantization, it only achieves 0.8642 mAP on

UCF101 dataset and 0.4927 mAP on HMDB51 dataset.

7.3 Comparison with state-of-the-art methods

To further demonstrate the effectiveness of the pro-

posed TPQN, we compare it with the state-of-the-art

methods. The compared methods can be categorized

into two types. The first type of methods are based on
a two-step process: video feature extraction followed by

hashing. To make a fair comparison, we directly use the

features without quantization used in Table 16 for hash-

ing. We implement multiple hashing methods including

LSH [13], SH [54] , ITQ [15], SPBE [58], KSH [36], SDH

[47]. Among them, LSH [13], SH [54] , ITQ [15] and

SPBE [58] are unsupervised hashing methods, whereas

KSH [36] and SDH [47] are supervised hashing methods.

Meanwhile, we also compare with unsupervised PQ. As

show in Table 17, our method consistently outperforms

other methods on both UCF101 and HMDB51 datasets,

especially when bit length is small. For instance, on

UCF101 dataset, our method achieves a 0.864 mAP

when bit length is only 12 whereas the second best

DSH only achieves a 0.807 mAP using the same bit

length. On HMDB51 dataset, our method achieves a

0.535 mAP when bit length is only 12 whereas the sec-

ond best DSH only achieves a 0.331 mAP.

The second type of methods is deep video hashing.

We mainly compare with two most recent methods,

18 Tan Yu et al.

SUBIC [24] and Deep Hashing with Category Mask

(DHCM) [37]. Note that even if SUBIC and DHCM

are based on a deeper ResNet50 backbone, our result

consistently outperforms both of them using a shallower

backbone BN-Inception as show in Table 18. To be spe-

cific, on the UCF101 dataset, we achieve a 0.904 mAP

using only 36 bits, whereas DHCM only achieves a 0.843

using 256 bits. Meanwhile, on the HMDB51 dataset, we

achieve a 0.563 mAP using only 12 bits, whereas DHCM

only achieves a 0.368 using 256 bits.

8 Conclusion

In this paper, by constructing an approximate function,

we make the product quantization differentiable and

feasible to be incorporated in a neural network. Prod-

uct quantization nework (PQN) is introduced, which

learns a discriminative and compact image representa-

tion in an end-to-end manner. Asymmetric triplet loss

extended from triplet loss is introduced, which directly

optimizes the representation’s adaptability to retrieval

based on asymmetric distance. By revisiting residual

quantization, we extend PQN to residual product quan-

tization (RPQN) which triggers the residual learning

and further improves the discriminativeness of the rep-

resentation. Moreover, by exploiting the temporal con-

sistency inherited in videos, we extend PQN to tempo-

ral product quantization network (TPQN) for fast video

retrieval. Interestingly, our experiments show that the

product quantization not only improves the retrieval

efficiency but also improves the model’s generalizabil-

ity and retrieval accuracy. Systematic experiments con-

ducted on benchmark datasets demonstrate state-of-
the-art performance of the proposed PQN, RPQN and

TPQN in fast image and video retrieval.

Acknowledgements This work is supported in part by a
gift grant from Adobe and startup funds from University at
Buffalo.

References

1. Babenko, A., Lempitsky, V.: Additive quantization for
extreme vector compression. In: CVPR, pp. 931–938
(2014)

2. Babenko, A., Lempitsky, V.: Aggregating local deep fea-
tures for image retrieval. In: ICCV, pp. 1269–1277 (2015)

3. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.:
Neural codes for image retrieval. In: ECCV, pp. 584–599.
Springer (2014)

4. Bai, S., Bai, X., Tian, Q., Latecki, L.J.: Regularized diffu-
sion process on bidirectional context for object retrieval.
TPAMI (2018)

5. Bai, S., Zhou, Z., Wang, J., Bai, X., Latecki, L.J., Tian,
Q.: Ensemble diffusion for retrieval

6. Cakir, F., He, K., Bargal, S.A., Sclaroff, S.: Mihash: On-
line hashing with mutual information. In: ICCV (2017)

7. Cao, L., Li, Z., Mu, Y., Chang, S.F.: Submodular video
hashing: a unified framework towards video pooling and
indexing. In: Proceedings of the 20th ACM international
conference on Multimedia, pp. 299–308. ACM (2012)

8. Cao, Y., Long, M., Wang, J., Zhu, H., Wen, Q.: Deep
quantization network for efficient image retrieval. In:
AAAI (2016)

9. Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: Deep
learning to hash by continuation. In: ICCV (2017)

10. Charikar, M.S.: Similarity estimation techniques from
rounding algorithms. In: Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, pp.
380–388 (2002)

11. Chen, Y., Guan, T., Wang, C.: Approximate nearest
neighbor search by residual vector quantization. Sensors
10(12), 11259–11273 (2010)

12. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.:
Nus-wide: a real-world web image database from national
university of singapore. In: Proceedings of the ACM in-
ternational conference on image and video retrieval, p. 48
(2009)

13. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.:
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In: Proceedings of the twentieth annual sym-
posium on Computational geometry, pp. 253–262 (2004)

14. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quan-
tization for approximate nearest neighbor search. In:
CVPR, pp. 2946–2953. IEEE (2013)

15. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Itera-
tive quantization: A procrustean approach to learning bi-
nary codes for large-scale image retrieval. IEEE T-PAMI
35(12), 2916–2929 (2013)

16. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep
image retrieval: Learning global representations for image
search. In: ECCV, pp. 241–257. Springer (2016)

17. He, K., Cakir, F., Bargal, S.A., Sclaroff, S.: Hashing as
tie-aware learning to rank. In: CVPR (2018)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learn-
ing for image recognition. In: Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778 (2016)

19. Hong, W., Meng, J., Yuan, J.: Distributed composite
quantization. In: AAAI (2018)

20. Hong, W., Meng, J., Yuan, J.: Tensorized projection for
high-dimensional binary embedding. In: AAAI (2018)

21. Hong, W., Yuan, J.: Fried binary embedding: From high-
dimensional visual features to high-dimensional binary
codes. IEEE Transactions on Image Processing 27(10)
(2018)

22. Hong, W., Yuan, J., Bhattacharjee, S.D.: Fried binary
embedding for high-dimensional visual features. CVPR
11, 18 (2017)

23. Ioffe, S., Szegedy, C.: Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

24. Jain, H., Zepeda, J., Perez, P., Gribonval, R.: Subic: A
supervised, structured binary code for image search. In:
ICCV, pp. 833–842 (2017)

25. Jegou, H., Douze, M., Schmid, C.: Product quantization
for nearest neighbor search. IEEE T-PAMI 33(1), 117–
128 (2011)

26. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating
local descriptors into a compact image representation. In:
CVPR, pp. 3304–3311 (2010)

Product Quantization Network for Fast Visual Search 19

27. Jiang, Q.Y., Li, W.J.: Asymmetric deep supervised hash-
ing. AAAI (2018)

28. Klein, B., Wolf, L.: In defense of product quantization.
arXiv preprint arXiv:1711.08589 (2017)

29. Krizhevsky, A.: Learning multiple layers of features from
tiny images (2009)

30. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre,
T.: Hmdb: a large video database for human motion
recognition. In: Computer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2556–2563. IEEE (2011)

31. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous fea-
ture learning and hash coding with deep neural networks.
arXiv preprint arXiv:1504.03410 (2015)

32. Li, Q., Sun, Z., He, R., Tan, T.: Deep supervised discrete
hashing. In: NIPS, pp. 2479–2488 (2017)

33. Li, W.J., Wang, S., Kang, W.C.: Feature learning based
deep supervised hashing with pairwise labels. arXiv
preprint arXiv:1511.03855 (2015)

34. Liong, V.E., Lu, J., Tan, Y.P., Zhou, J.: Deep video hash-
ing. IEEE Transactions on Multimedia 19(6), 1209–1219
(2017)

35. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised
hashing for fast image retrieval. In: CVPR, pp. 2064–
2072 (2016)

36. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Su-
pervised hashing with kernels. In: 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2074–
2081. IEEE (2012)

37. Liu, X., Zhao, L., Ding, D., Dong, Y.: Deep
hashing with category mask for fast video re-
trieval. CoRR abs/1712.08315 (2017). URL
http://arxiv.org/abs/1712.08315

38. Martinez, J., Clement, J., Hoos, H.H., Little, J.J.: Revis-
iting additive quantization. In: European Conference on
Computer Vision, pp. 137–153. Springer (2016)

39. Ng, J.Y.H., Yang, F., Davis, L.S.: Exploiting local fea-
tures from deep networks for image retrieval. arXiv
preprint arXiv:1504.05133 (2015)

40. Norouzi, M., Fleet, D.J.: Cartesian k-means. In: CVPR,
pp. 3017–3024 (2013)

41. Norouzi, M., Fleet, D.J., Salakhutdinov, R.R.: Hamming
distance metric learning. In: Advances in neural infor-
mation processing systems, pp. 1061–1069 (2012)

42. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-
scale image retrieval with compressed fisher vectors. In:
CVPR, pp. 3384–3391 (2010)

43. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.:
Object retrieval with large vocabularies and fast spatial
matching. In: CVPR, pp. 1–8 (2007)

44. Sablayrolles, A., Douze, M., Jégou, H., Usunier, N.: How
should we evaluate supervised hashing? In: ICASSP
(2017)

45. Salakhutdinov, R., Hinton, G.: Semantic hashing. RBM
500(3), 500 (2007)

46. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised dis-
crete hashing. IEEE T-PAMI 35(12), 2916–2929 (2013)

47. Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised dis-
crete hashing. In: CVPR, vol. 2, p. 5 (2015)

48. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv
preprint arXiv:1212.0402 (2012)

49. Tu, Z., Li, H., Zhang, D., Dauwels, J., Li, B., Yuan, J.:
Action-stage emphasized spatio-temporal vlad for video
action recognition. IEEE Transactions on Image Process-
ing (2019)

50. Tu, Z., Xie, W., Qin, Q., Veltkamp, R.C., Li, B., Yuan,
J.: Multi-stream cnn: Learning representations based on
human-related regions for action recognition. Pattern
Recognition (2019)

51. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang,
X., Van Gool, L.: Temporal segment networks: Towards
good practices for deep action recognition. In: European
Conference on Computer Vision, pp. 20–36. Springer
(2016)

52. Wang, X., Shi, Y., Kitani, K.M.: Deep supervised hashing
with triplet labels. In: ACCV, pp. 70–84. Springer (2016)

53. Wang, X., Zhang, T., Qi, G.J., Tang, J., Wang, J.: Su-
pervised quantization for similarity search. In: CVPR,
pp. 2018–2026 (2016)

54. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In:
NIPS, pp. 1753–1760 (2009)

55. Wu, C.Y., Manmatha, R., Smola, A.J., Krähenbühl, P.:
Sampling matters in deep embedding learning. In: ICCV
(2017)

56. Wu, G., Liu, L., Guo, Y., Ding, G., Han, J., Shen, J.,
Shao, L.: Unsupervised deep video hashing with balanced
rotation. IJCAI (2017)

57. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Super-
vised hashing for image retrieval via image representation
learning. In: AAAI, pp. 2156–2162. AAAI Press (2014)

58. Xia, Y., He, K., Kohli, P., Sun, J.: Sparse projections for
high-dimensional binary codes. In: Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp. 3332–3339 (2015)

59. Ye, G., Liu, D., Wang, J., Chang, S.F.: Large-scale video
hashing via structure learning. In: Proceedings of the
IEEE International Conference on Computer Vision, pp.
2272–2279 (2013)

60. Yu, T., Meng, J., Yuan, J.: Is my object in this video?
reconstruction-based object search in videos. In: Pro-
ceedings of the 26th International Joint Conference on
Artificial Intelligence, pp. 4551–4557. AAAI Press (2017)

61. Yu, T., Wang, Z., Yuan, J.: Compressive quantization
for fast object instance search in videos. In: ICCV, pp.
833–842 (2017)

62. Yu, T., Wu, Y., Bhattacharjee, S.D., Yuan, J.: Effi-
cient object instance search using fuzzy objects matching.
AAAI (2017)

63. Yu, T., Wu, Y., Yuan, J.: Hope: Hierarchical object pro-
totype encoding for efficient object instance search in
videos. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2424–2433
(2017)

64. Yu, T., Yuan, J., Fang, C., Jin, H.: Product quantization
network for fast image retrieval. In: Proceedings of the
European Conference on Computer Vision (ECCV), pp.
186–201 (2018)

65. Zhang, R., Lin, L., Zhang, R., Zuo, W., Zhang, L.: Bit-
scalable deep hashing with regularized similarity learning
for image retrieval and person re-identification. IEEE
TIP 24(12), 4766–4779 (2015)

66. Zhang, T., Du, C., Wang, J.: Composite quantization for
approximate nearest neighbor search. In: ICML, 2, pp.
838–846 (2014)

67. Zhang, Z., Chen, Y., Saligrama, V.: Efficient training of
very deep neural networks for supervised hashing. In:
CVPR, pp. 1487–1495 (2016)

68. Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic
ranking based hashing for multi-label image retrieval. In:
CVPR, pp. 1556–1564 (2015)

69. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing net-
work for efficient similarity retrieval. In: AAAI (2016)

