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ABSTRACT

Alzheimer’s disease (AD) is the most common form of de-
mentia in the elderly. As early detection and diagnosis is im-
perative for the intervention and prevention of its progression
into more detrimental stages, pioneering works have been
proposed that use the resting-state functional MRI (rs-fMRI)
to identify early mild cognitive impairment (EMCI) based
on various convolutional neural networks (CNNs). However
the accuracy is not satisfactory. In this paper, we propose a
multi-view model based on the SlowFast network, a recently
proposed model for video recognition. The rs-fMRI data are
treated as videos from three perspectives (i.e. coronal, hori-
zontal and sagittal, corresponding to three anatomical planes
in human body) and the jointly learned hierarchical repre-
sentations are fused in the fully connected layer. We exam-
ine our model on a publicly accessible Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. Our method sig-
nificantly outperforms other competing methods and achieves
state-of-the-art accuracy. Besides, we also provide a baseline
on the classification task over all clinical phases of AD.

Index Terms— Alzheimer’s disease, resting-state func-
tional MRI, convolutional neural networks

1. INTRODUCTION

Alzheimer’s Disease (AD) is a severe neurological disease
and is also a type of dementia, a slowly progressive mental
deterioration caused by generalized degeneration of the brain,
which can occur in middle or old age, especially for the el-
derly. Although existing methods can temporarily slow down
the degeneration process, currently there is no cure for this
disease. The property of AD makes the detection of it at its
early stage (as early as possible) is of great importance for
early intervention [1].

Recently, the rapid development of deep learning tech-
niques allows an increasing body of researches to use deep
learning methods combined with biological marks to diag-
nose AD [2] more precisely.
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Most of deep learning assisted AD diagnosis methods
leverage structural Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) modal data [3] [4] [5].
MRI exquisitely pictures the anatomy and physiological pro-
cesses of the body [6] [7]. PET biochemically analyzes chang-
ing metabolic patterns of body tissues of brain development.

However, when diagnosing AD at an early stage, MRI
or PET can provide little visible structural and metabolic
changes within the brain. Thus, early AD identification stud-
ies opt to utilize the resting-state functional MRI (rs-fMRI),
which is collected from subjects at resting state without being
engaged in a given task. rs-fMRI reveals more informative
metabolic blood-oxygen-level dependent (BOLD) signals in
dynamic dementia procedure and cerebral functional infor-
mation [8]. Besides, the brain functional networks (BFNs),
generated from functional connectivity (FC) between various
brain regions based on temporal BOLD signals, have been
widely applied for MCI detection [9], [10]. Moreover, pi-
oneering studies have been focusing on a preclinical stage
even earlier than MCI, called Early MCI (EMCI), in order to
prevent potential memory and thinking deterioration progress
[11], [12], [13], [1] [14]. Kam et al. exploit group information
guided ICA derived BFNs to construct basic 3D CNN to do
EMCI diagnosis and fuse the different BFNs to jointly learn
embedded representations [11]. This study was further ex-
tended to take the consideration of both static BFNs (sBFNs)
and dynamic BFNs (dBFNs), assuming the functional con-
nectivity (FC) will not change during scanning period [12].

Although prior studies succeed in making full use of
extensive leading and complicated brain imaging analytical
methods (e.g., BFNs) (which require a lot of clinical or cog-
nitive domain knowledge and expert’s real-world experience),
these approaches adopt mostly 2D convolutional neural net-
works (CNNs) (e.g. DenseNet [15]), which results in unsatis-
factory performance.

Therefore, to overcome these difficulties, in this work, we
propose a novel generic multi-view model to learn highly-
complex representations hidden in spatiotemporal rs-fMRI
data for AD diagnosis. Our work is also motivated by algo-
rithms in video analysis [16], [17], [18], [19], [20] and multi-
view learning [21], [22], [23].
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To summarize, the contributions of the paper are the fol-
lowing:

• Our approach provides an innovative way to model
the spatiotemporal rs-fMRI as 3-dimensional videos
with different spatial and temporal capacity. Thus the
highly-complex and hierarchical features of rs-fMRI
can be captured for better AD diagnosis.

• We propose a multiview network that models the
anatomical planes of human brain in rs-fMRI data and
fuses the jointly learned representations in the fully
connected layer for final prediction.

• We enhance the backbone network [24] with a powerful
channel-wise self-attention module [25] and exploit a
variant of focal loss to alleviate the disequilibrium of
data distribution.

• We provide a baseline for all-phase AD classifica-
tion task, including clinically normal (CN), subjective
memory concerns (SMC), early mild cognitive impair-
ment (EMCI), mild cognitive impairme (MCI), late
mild cognitive impairment (LMCI) and Alzheimer’s
disease (AD). Experiments conducted on challenging
benchmarks show our proposed approach outperforms
the state-of-the-art techniques.

2. METHOD

This section introduces our proposed pipeline. We propose to
improve AD diagnosis in terms of classification and dementia
detection by applying 3D CNN to operate well-normalized
spatiotemporal rs-fMRI data from three anatomical directions
(see Fig. 1).

2.1. Data normalization

The raw resting-state functional MRI (rs-fMRI) data in DI-
COM format are downloaded from the publicly accessi-
ble Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). Besides, the rs-fMRIs are ob-
tained by 3T Philips scanners at multiple sites with scrupulous
quality control (QC). The parameters of rs-fMRIs are: slice
number = 48, volume number = 140, repetition time (TR) =
3,000 ms, echo time (TE) = 30 ms, voxel size = 3×3×3.3
mm3, flip Angle=80.0 degree.

For normalization of the rs-fMRIs, we use the user-
friendly Data Processing Assistant for Resting-State fMRI
(DPARSF) toolbox in Matlab platform, which handles the rs-
fMRIs in follwing steps [26]: DICOM to NIfTI: converting
the DICOM data into Neuroimaging Informatics Technology
Initiative (NIfTI) data, which contains crucial spatial informa-
tion. Slice timing: correcting the time differences of 2D im-
age acquisition between slices. Head motion correction: ex-

cluding head motion disturbance and adjusting the brain im-
age in each slices to the same area. Normalization: normal-
izing the rs-fMRIs into standard spatial space (i.e. the Mon-
treal Neurosciences Institute space) for objective inter-subject
comparisons. Smoothing and Filtering: applying Gaussian
filter to average image intensity in voxel level to reduce noise
or oscillation.

The spatiotemporal size of rs-fMRI is denoted as
[W,H,S, T ], where W and H are width and height of each
slice, F is the slice number, T is the temporal length (i.e. vol-
umes).

2.2. Framework Overview

2.2.1. Spatial compression and temporal decomposition

The rs-fMRI data goes through above normalization pipeline
still encompasses redundant information, where the voxel in-
tensity equal to or close to zero. Thus, we condense the rs-
fMRI data by discarding first 6 slices and last 6 slices of each
volume in coronal orientation (i.e., the second dimension of
4D rs-fMRI), which also makes rs-fMRI more suitable for our
designed framework. Furthermore, the size of rs-fMRI data is
compressed to [61, 61, 61, T ].

Then we decompose 4D rs-fMRI to multiple 3D volumes
as the input data by using Statistical Parametric Mapping
(SPM) software package. Finally, we adopt Z-Score standard-
ization to further normalize them into 0-1 voxel space.

2.2.2. S3F Network

The CNN used as the backbone of our framework is the Slow-
Fast network [24], which is a dual-stream model for video
recognition, incorporating a Slow stream and a Fast stream.

Slow stream: The Slow stream is designed to capture spa-
tial semantic information by analyzing a video at low frame
rates and slow refreshing speed. It has a large temporal stride
τ (i.e. samples only one out of every τ frames). We denote
the total sampled frames as F , where it is set to 16 in our
experiments.

Fast stream: The Fast stream is good at catching rapid
temporal motions in high frame rates and a refreshing speed.
It holds a comparatively small temporal stride τ/α, where we
assign 1/8 to α in our experiments. It indicates that the tem-
poral capacity of the Fast stream is 8 times as large as that of
the Slow stream.

Meanwhile, the Fast stream maintains a low channel ca-
pacity (fewer kernel channels). The number of output chan-
nels of the Slow stream is C and its Fast to Slow ratio is β,
which is set to 1/8 in our experiments.

High to low frequency connection: As the captured in-
formation of Fast stream is high temporal frequency and Slow
stream is lower temporal frequency, this lateral stream from
Fast to Slow will share and fuse the learned features of Fast to
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Fig. 1. Overview of Multi-view S3F. The red and blue blocks represent the Fast stream and Slow stream respectively, both of
which are equipped with the SE-layer. The Fast stream samples more frames but outputs fewer channels, comparing with the
Slow stream. Lateral information connections from the Fast stream to the Slow stream repeats 4 times. Best viewed in color.

Fig. 2. The stack of Residual module and SE layer.

Slow by concatenation in channel level. Additionally, to ad-
dress the problem of unmatched feature shapes of Slow and
Fast stream ( [F,W×H,C] for Slow and [αF,W×H,βC]
for Fast), a time-stride 3D convolution layer with 5× 12 ker-
nel, α×12 stride as well as 2βC output channels is performed.

SE-ResNet: We integrate the lightweight SE-Layer [25]
to our 3D Residual Block. Typically, SE-Layer has two steps:
squeeze and excitation, which are designed to learn channel-
wise weights to explore more important information (simi-
lar to attention mechanism). The squeeze operation squeezes
the learned spatial representations into a channel descriptor
by using adaptive average pooling. The excitation operation
opt to catch dependencies across multiple channels by firstly
introducing a dimensionality-reduction fully-connected (FC)
layer followed by ReLU function to learn nonlinear coopera-
tion between channels, where the reduction factor r is used to
reduce model complexity and overall number of parameters.

Secondly, a fully connected layer returns the channel dimen-
sion back and a final sigmoid layer scales the output into 0-1
space. In the end, an emphasized representation will be ob-
tained by multiplying channel scale factors and original input
feature maps. A diagram exhibiting the structure of our SE-
ResNet is shown in Fig. 2.

Multi-View: The Multi-View concept is inspired by hu-
man anatomy structure that human body has three anatomical
planes, we extend the single view input to three anatomical
view inputs, which we call Multi-vie:

Horizontal view: divides the brain into upper to lower
slices. Coronal view: divides the brain into front to back
slices. Sagittal view: divides the brain into left to right slices.

The results in [24] prove that the Slow stream plays a ma-
jor role and the Fast stream brings an auxiliary enhancement
in the SlowFast network. Thus, in our framework, one Slow
stream is used to process the rs-fMRI from a given view (this
view choice will be discussed in ablation study) and three
auxiliary Fast streams are utilized for the three distinctive per-
spectives. We denote this network as S3F.

At the end of our pipeline, four fully connected layers
through the S3F network are fused by concatenation for final
prediction.

3. EXPERIMENTS: EMCI CLASSIFICATION

We first evaluate our framework on the EMCI classification
task using standard evaluation protocols.

3.1. Dataset

We use the raw resting-state functional MRI (rs-fMRI) data
from 54 EMCI subjects and 50 CN subjects from the ADNI
database. And for each subject we download all available
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valid records longitudinally. Thus, following [12],we finally
collect a total of 351 samples (172 and 179 for CN and EMCI,
respectively). Then, by splitting every 4D data to multiple 3D
data, including 140 brain scans, the dataset expand to a total
of 49,140 3D brain scans, consisting of 24,080 and 25,060
samples for CN and EMCI respectively.

3.2. Experimental Settings

To validate the effectiveness of our proposed Multi-View
model and provide fair comparisons with recent methods,
we follow [12] to adopt 5-fold cross-validation. Notice that,
since most subjects have multiple scans and to simulate the
real-world application scenario, we only consider the baseline
scan (i.e., earliest scan) of each subject for testing whereas
the training dataset includes all the scans of all subjects. Our
model is implemented on Pytorch. The Multi-View network
is optimized by the Stochastic Gradient Descent (SGD) algo-
rithm with a learning rate of 1 × 10−3 and a momentum of
0.9. As for loss, we adopt the cross-entropy loss. The batch
size for training is 30, whereas we use the rs-fMRI data with-
out the temporal decomposition for testing.

3.3. Metrics Evaluation

In this paper, CN and EMCI represent positive and negative
instances, respectively. We use the following criteria for quan-
titative evaluation:

• Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

• Sensitivity (SEN) = TP/(TP + FN)

• Specificity (SPC) = TN/(TN + FP)

• Positive Predictive Value (PPV) = TP/(TP + FP)

• Negative Predictive Value (NPV) = TN/(TN + FN)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively.

3.4. Baselines

For a comprehensive evaluation, we perform comparative
studies of our method against the state-of-the-art deep learn-
ing based EMCI diagnosis methods: simple brain functional
networks (BFN) based 3D CNN (SB-CNN) and multiple-
BFN-based 3D CNN (MB-CNN) [11]; static and dynamic
SB-CNN (sdSB-CNN) and static and dynamic multiple SB-
CNN (sdMB-CNN) [12]. Six BFNs have been tested in
their methods, including default-mode network (DMN); two
fronto-parietal networks (FPN 1&2); two attention networks
(AN 1&2); executive control network (ECN). MB-CNN is a
unified model that fuses several or all SB-CNNs to fully con-
nected layers for joint feature learning.

We also compare our model with SlowFast (SF) and
Multiview-SlowFast (Multiview-SF), where each anatomical
view simply corresponds to a SlowFast network.

3.5. Results

For each method, We evaluate its performance on using en-
tire brain rs-fMRI data and only white matter region extracted
from corresponding rs-fMRI data by using a unified white
mask. We also report the subject-wise (i.e., majority vote) re-
sults, which are more suitable in real clinical scenarios.

The results compared with state-of-the-art methods are re-
ported in Table 1. In comparison with the previous state-of-
the-art (sdMB-CNN) [9] methods, our best model (SE-S3F-
H) provides about 10% higher accuracy. Notably, almost all
our results are better than existing results.

The results from using only white matter consistently
has a significant overall performance improvement, compared
with that from using entire brain rs-fMRI data, indicating that
the white matter contains more useful clinical information.

The S3F-H (with 37.39M parameters) slightly outper-
forms the straightforward Multiview SF (with 100.67M pa-
rameters) but holds much less parameters. And it is substan-
tially better than the SlowFast (with 33.55M parameters). The
performance of S3F-H is further enhanced by the SE-S3F-H
(embedded with SE-Layer), which leads to 2% improvements
over ACC and about 10% improvements over SPC and NPV,
confirming the strength of the SE layer in detecting and clas-
sifying EMCI subjects.

Table 1. Results
Method ACC (%) SEN (%) SPC (%) PPV (%) NPV (%)
SB-CNN [11] (DMN) 70.11 71.96 68.36 70.03 70.86

(FPN1) 69.45 69.73 69.07 69.75 69.11

(FPN2) 69.04 69.33 68.67 69.33 68.67

(AN1) 68.02 69.42 66.53 68.33 67.94

(AN2) 66.96 68.58 65.29 67.06 67.03

(ECN) 67.19 67.64 66.62 67.65 66.96

MB-CNN [11] (ALL) 73.85 73.91 73.69 74.38 73.79
sdSB-CNN [12] (DMN) 73.17 73.91 72.44 73.70 73.03

(FPN1) 72.80 73.07 72.44 73.30 72.86

(FPN2) 71.53 71.07 72.13 72.51 71.62

(AN1) 70.27 70.98 69.42 70.59 70.64

(AN2) 69.08 68.27 70.00 70.69 68.48

sdMB-CNN [12] (ALL) 76.07 76.27 75.87 76.55 75.93

Ours (SF)

(ALL) 76.03 68.71 82.61 76.81 81.51
(ALL-VOTE) 76.91 70.00 83.09 77.99 82.21
(WM) 77.92 79.51 75.93 85.92 77.02
(WM-VOTE) 77.81 80.00 75.27 86.13 76.53

Ours (Multiview-SF)

(ALL) 77.79 79.23 76.13 83.24 75.92
(ALL-VOTE) 77.91 80.00 75.64 83.47 75.65
(WM) 84.05 79.66 87.86 85.87 86.76
(WM-VOTE) 84.67 80.00 88.73 86.56 89.39

Ours (S3F-H)

(ALL) 78.24 73.5 82.46 78.96 81.51
(ALL-VOTE) 78.81 74.00 83.09 79.45 82.43
(WM) 84.51 79.61 88.75 85.57 87.05
(WM-VOTE) 86.52 82.00 90.36 88.89 91.34

Ours (SE-S3F-H)

(ALL) 80.70 67.83 92.47 77.26 91.13
(ALL-VOTE) 80.81 68.00 92.55 77.16 90.81
(WM) 86.91 88.36 85.33 91.97 86.92
(WM-VOTE) 87.48 90.00 84.91 93.75 87.13

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 01:52:32 UTC from IEEE Xplore.  Restrictions apply. 



3.6. Ablation Study

We also provide an ablation study on varying the Slow stream
of the SE-S3F network and the results are shown in Table 2.
When using the whole brain region or white matter region as
input, the H (i.e. Horizontal) view is better than the other two
views, especially in terms of using only white matter region.
However, SE-S3F-S achieves more balanced results across
five metrics (i.e. ACC, SEN, SPC, PPV and NPV), where each
of them is around 80%. Moreover, all variants of our SE-S3F
network are better than the state-of-the-art methods.

Table 2. Ablation Study

Method ACC (%) SEN (%) SPC (%) PPV (%) NPV (%)

Ours (SE-S3F-H)

(ALL) 80.70 67.83 92.47 77.26 91.13

(ALL-VOTE) 80.81 68.00 92.55 77.16 90.81

(WM) 86.91 88.36 85.33 91.97 86.92

(WM-VOTE) 87.48 90.00 84.91 93.75 87.13

Ours (SE-S3F-C)

(ALL) 76.20 64.76 86.46 73.53 85.86

(ALL-VOTE) 76.86 66.00 86.55 74.56 86.00

(WM) 82.98 76.94 88.26 86.11 88.80

(WM-VOTE) 82.76 76.00 88.73 85.85 89.11

Ours (SE-S3F-S)

(ALL) 81.20 80.33 81.97 82.16 81.79

(ALL-VOTE) 80.76 80.00 81.46 81.76 81.35

(WM) 81.35 75.67 86.22 80.68 85.44

(WM-VOTE) 81.67 76.00 86.55 80.82 86.13

4. CLASSIFICATION ON ALL PHASES OF AD

In this part, we carry out the experiment on a dataset over all
clinical phases of Alzheimer’s Disease, with the same evalu-
ation metrics as aforementioned.

4.1. Dataset

This dataset is taken from AD’s all clinical phases from
ADNI, consisting of clinically normal (CN), subjective
memory concerns (SMC), early mild cognitive impairment
(EMCI), mild cognitive impairme (MCI), late mild cognitive
impairment (LMCI) and Alzheimer’s disease (AD). We nor-
malize the raw rs-fMRI data from 119 CN subjects, 43 SMC
subjects, 83 EMCI subjects, 35 MCI subjects, 33 LMCI sub-
jects and 34 AD subjects. The total decomposed sample sizes
of CN, SMC, EMCI, MCI, LMCI and AD are 23524, 8009,
13588, 6751, 5610 and 5168, respectively.

4.2. Experimental Settings

We follow previous 5-fold cross-validation to evaluate our
model. Other settings are the same as in previous experiments.

Here, we embed the GHM-C loss into the cross-entropy
loss to address the imbalance problem of data distribution
[27]. The mechanism of the GHM-C loss is that it can dynam-
ically harmonize the overall gradient contribution of diverse

Table 3. Results: all stages of AD

Method ACC (%) CN (%) SMC (%) EMCI (%) MCI (%) LMCI (%) AD (%)

Baseline (SF) 50.91 70.84 20.96 53.64 40.30 8.57 58.02

Multiview-SF 52.88 77.47 29.15 49.65 30.50 8.50 63.34

SE-S3F-H 56.44 86.75 33.15 53.25 20.67 0.00 70.08

SE-S3F-H + GHMC 56.98 83.25 21.05 59.33 24.80 7.69 83.54

SE-S3F-S 53.57 82.80 29.45 51.05 25.17 8.90 48.39

SE-S3F-S + GHMC 57.85 84.65 33.69 53.16 28.47 9.03 77.69

classes, where the large samples as well as the outliers are
down-weighted gradually.

4.3. Results

We have trained the SlowFast network as the baseline of this
task. Table 3 reports the performance of all above-mentioned
methods. Note that we only use sagittal and horizontal views
for SE-S3F, due to their better performance in previous exper-
iment. It is seen that both SE-S3F-H and SE-S3F-S exhibit
better performance compared with the Multiview-SF, which
generally outperforms the baseline. Additionally, the GHM-
C loss brings mild improvements for both SE-S3F-H and SE-
S3F-S networks. The performance of the GHM-C loss SE-
S3F-S is better than that of SE-S3F-H, which indicates that
GHM-C improves the S3F model with different views of Slow
stream to different degrees.

5. CONCLUSION

In this paper, we proposed a multi-view learning (i.e. S3F)
model for Alzheimer’s disease diagnosis. Motivated by the
SlowFast network [24], a recently proposed model for video
recognition, our model views spatiotemporal rs-fMRIs from
three perspectives (i.e., coronal, horizontal and sagittal, cor-
responding to three anatomical planes in human body) and
fuses the jointly learned deep representations in the fully con-
nected layers for final prediction. Experimental results verify
the effectiveness of the proposed model with state-of-the-art
accuracy over other competing methods.
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