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To enhance the performance of diffusion tensor imaging (DTI)-based

fiber tractography, this study proposes a unified framework for

anisotropic interpolation and smoothing of DTI data. The critical

component of this framework is an anisotropic sigmoid interpolation

kernel which is adaptively modulated by the local image intensity

gradient profile. The adaptive modulation of the sigmoid kernel

permits image smoothing in homogeneous regions and meanwhile

guarantees preservation of structural boundaries. The unified scheme

thus allows piece-wise smooth, continuous and boundary preservation

interpolation of DTI data, so that smooth fiber tracts can be tracked in

a continuous manner and confined within the boundaries of the

targeted structure. The new interpolation method is compared with

conventional interpolation methods on the basis of fiber tracking from

synthetic and in vivo DTI data, which demonstrates the effectiveness of

this unified framework.
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Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging

modality capable of measuring the diffusive motion of water

molecules in vivo (Basser et al., 1994; Le Bihan et al., 2001). An

important utility of DTI is the tracking of neuronal fiber pathways

(Jones et al., 1999; Conturo et al., 1999; Xue et al., 1999; Lazar et

al., 2003; Ding et al., 2003), which draws upon the principle that the

anisotropy of water diffusion reflects locally the directionality of

fibrous tissues such as the brain white matter. Fiber tracking

commonly starts from seed points predefined in a region of interest

and proceeds along the dominant direction of the local diffusion

tensor. Entire fiber pathways may be tracked in a streamline fashion

by successively following the dominant tensor direction until

certain termination criteria are met (Mori and van Zijl, 2002).
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Fiber tracking with DTI, in essence, is the reconstruction of

continuous curves from a direction field (Basser et al., 2000),

which is typically noisy and discrete in nature. Noise is particularly

harmful to fiber tracking because it deflects the fiber path

directions and the impact accumulates during the tracking process

(Anderson, 2001). To reduce noise, several smoothing algorithms

for DTI data have been proposed, including Gaussian filtering

(Westin et al., 2002), nonlinear smoothing (Parker et al., 2000;

Chen and Hsu, 2005), anisotropic smoothing (Ding et al., 2005)

and regularization approaches based on stochastic relaxation

(Tench et al., 2002), Markovian random field (Poupon et al.,

2000) or variational principles (Coulon et al., 2004; Wang et al.,

2003). The discrete nature of DTI data, on the other hand,

necessitates the interpolation of the direction field for continuous

curves to be obtained. To date, a few well-established methods

from the repository of classical image interpolation techniques

have been empirically chosen for this purpose, such as linear

(Tournier et al., 2002), low order polynomial (Xu et al., 2002;

Gossl et al., 2002), cubic b-spline (Pajevic et al., 2002) and nearest

neighbor interpolations (Mori et al., 1999). Smoothed and

interpolated direction field allows fiber pathways to be tracked

more reliably and in a continuous manner.

While the primary goal of noise reduction and interpolation is

to generate a piece-wise smooth and continuous direction field,

preservation of structural boundaries in DTI data is also a

desirable property that should be considered. Structural bound-

aries define the spatial range of individual structures, and hence

offer a natural means of confining fiber tracking, or any other

region growing processes for image segmentation, within specific

structures. Inadequate boundary preservation often leads to the

spreading of fiber pathways into neighboring structures, which is

manifested as erroneous connections between distinct fiber

bundles encountered in many fiber-tracking algorithms. More-

over, because DTI data inherently contain a large number of

structural boundaries, due to the superior capability of DTI to

provide fine contrast between different fiber bundles, the need for

boundary preservation is particularly imperative for DTI data

processing.
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Although preservation of structural boundaries has been

addressed by some of the smoothing algorithms mentioned above

(Parker et al., 2000; Chen and Hsu, 2005; Ding et al., 2005; Coulon

et al., 2004; Wang et al., 2003), few existing DTI interpolation

methods possess this capability. Indeed, except the nearest

neighbor interpolation, which necessarily incurs discontinuity

artifacts, all other interpolation methods that have been used for

DTI data thus far suffer from boundary blurring. The present study

is therefore motivated by the need for a smooth, continuous and

boundary preserving interpolation of DTI data so that smooth fiber

pathways can be reconstructed continuously and confined within

the boundaries of targeted structures. To this end, we have

developed an anisotropic interpolation technique that preserves

structural boundaries and meanwhile ensures continuity of

interpolated direction field. Similar to the provocative conception

of anisotropic smoothing for enhancing flow-like structures

(Weickert, 1999), the anisotropic interpolation kernel we designed

is adaptable to the local image intensity gradient profile, which is a

function of the strength and orientation of the structural bound-

aries. Furthermore, we integrated the anisotropic interpolation with

image smoothing to establish a single unified framework that has

the functionality of noise reduction as well. We expect improved

fiber-tracking accuracy to be gained with this integrated interpo-

lation and smoothing scheme.

The remainder of this paper is organized as follows. Section 2

presents the proposed framework for integrated interpolation and

smoothing in detail. Section 3 describes fiber-tracking experiments

using our integrated scheme on both synthetic and in vivo human

DTI data. Section 4 presents the results of fiber tracking and

compares the effectiveness of our interpolation approach with

conventional interpolation methods. Section 5 discusses relevant

technical issues, followed by concluding remarks.
Fig. 1. (a) Profiles of 1D sigmoid function with different values of shape

control parameter a, and (b) their corresponding frequency responses. Line

styles denote different values of a.
Methods

Interpolation is a classical image processing problem for which

a variety of methods exist (Lehmann et al., 1999). The methods

differ in frequency response, extent of support, computational

complexity and degree of continuity of the interpolated image. The

critical component of any interpolation technique is the interpo-

lation kernel, which distinguishes different interpolation techniques

and determines their performance in the spatial and frequency

domain. Conventional interpolation kernels are isotropic and

space-invariant (kernel profiles are invariable irrespective of

orientation and position) and hence have the drawback of

disregarding local image features, such as structural boundaries.

As mentioned before, DTI data have abundant structural bound-

aries that need to be preserved during interpolation to facilitate

fiber tracking. This evidently requires the interpolation kernel to be

space-variant so that structural boundaries can be handled

differently from homogeneous regions.

Space-variant anisotropic image interpolation

In designing the kernel for boundary preserving interpolation of

DTI data, we bear the following considerations in mind. (1) Space-

variant: the interpolation kernel is a function of local image

features, i.e., it takes on different profiles for structural boundaries

and homogeneous regions. (2) Anisotropy: it retains high-

frequency components (sharp intensity contrast) across structural
boundaries but low-frequency components (smooth intensity

transition) along structural boundaries. (3) Smoothing: it sup-

presses noise without compromising the sharpness of structural

boundaries. Given the above, the interpolation kernel is designed to

be an adaptive sigmoid function with sharpness of the kernel

anisotropically modulated by the local image intensity gradient.

Since the local intensity gradient is directly related to the strength

and orientation of structural boundaries, this adaptive and

anisotropic interpolation kernel can be tuned to satisfy the first

two considerations. As will also become clear soon, the desirable

functionality of boundary-preserving noise suppression can be

served with this interpolation kernel as well.

Eq. (1) below is the sigmoid kernel function that governs the

interpolation process for 1D case:

f xð Þ ¼ 1þ exp a� x� gð Þð Þð Þ�1 ð1Þ

where the range of x is [0, 1). The profile of the function f(x)

depends on the value of a and g, with a regulating the sharpness of

the function and g controlling the position of maximum change in

magnitude. To illustrate, Fig. 1 shows the profiles of f(x) for g =

0.5 with different values of a (Fig. 1(a)) and their corresponding

frequency responses (Fig. 1(b)). It can be seen that a larger a gives

a sharper f whose frequency response has larger high-frequency

components. Evidently interpolation with a sharper f retains more
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high-frequency components (than with a flatter f). In particular,

when a approaches infinity, f becomes a step function which

corresponds to a nearest neighbor interpolation. Conversely, when

a is 0, f becomes a constant with a value of 0.5, which corresponds

to a linear interpolation with averaged neighborhood value

(smoothing). Between the two extremes, the kernel function may

have various degrees of sharpness and smoothing depending on the

choice of a.

For space-variant, anisotropic interpolation of 2D or 3D scalar

images, we may adapt the sharpness of the sigmoid function to the

local image intensity gradient. A simple formulation relates the

parameter a to the magnitude of the intensity gradient along each

spatial direction, i.e.,

ai ¼ gðA3IiAÞ ia 1;2f g or 1;2;3f g ð2Þ

where subscript i denotes the ith spatial direction, AlIA is the

magnitude of the gradient, and g(.) is a linear function.

At structural boundaries, the sigmoid function is sharper across

the boundary than along it due to a greater gradient across the

boundary. Interpolation with this kernel thus preserves sharp

intensity contrast across the structural boundaries and meanwhile

permits certain smoothing along the boundaries. In homogeneous

regions, the sigmoid function tends to be flat and isotropic which

allows interpolation with similar smoothing along all spatial

directions. This space-variant and anisotropic behavior of the

sigmoid interpolation is illustrated in Fig. 2, which schematically

shows the profiles of two 2D kernels (outer product of 1D kernels)

in a homogeneous region and at a structure boundary respectively.

In our design, the linear function g(.) that relates parameter a

and the image intensity gradient lI is defined as follows:

ai ¼ gðA3IiAÞ ¼ amin þ amax � aminð Þ �
�
�
�
�

3Ii

3Iimax

�
�
�
�

ð3Þ

where A3ImaxA is the maximum intensity gradient of the image;

amax and amin delimit the linear mapping between a and A3IA, so
Fig. 2. Examples of 2D sigmoid interpolation kernel. (a) A gray-level image. (b) A

interpolation kernel at a structure boundary.
that a will fall into a proper range. Well-defined values of amax and

amin allow adjustment of the sharpness across structural boundaries

and smoothness along structural boundaries and in homogeneous

regions to a desired level. Throughout this paper, amin is chosen to

be zero.

Interpolation tests with a 2D scalar image

The anisotropic interpolation technique designed has been

tested with a 2D scalar image (a tile image that contains a large

number of structural boundaries), as shown in Fig. 3. The

objective is to study the performance of this algorithm at

structural boundaries and in homogeneous regions and to

compare with other conventional interpolation methods. First,

zero mean Gaussian noise is added to the original image to

generate a noisy image (Fig. 3(a)) with a signal-to-noise ratio

(SNR, defined as mean signal intensity divided by standard

deviation of noise) of 16.67. This noisy image is then enlarged

eight times using linear, nearest neighbor, cubic polynomial,

spline and anisotropic interpolation (with amax = 30) methods

respectively.

Figs. 3(b–f) are the set of interpolated images of the boxed

area in (a). It can be seen that the anisotropic interpolation is

superior to all the other methods with respect to boundary

preservation and noise reduction. Linear interpolation (b)

produces a smoothly interpolated image with certain effect of

noise reduction, but blurs structural boundaries due to the use of

a space-invariant and isotropic linear kernel. Nearest neighbor

interpolation (c), on the other hand, does not have any noise

reduction capability and meanwhile creates sharp discontinuity

at the structural boundaries (manifested as jagged edges). Both

cubic polynomial (d) and spline (e) interpolations give results

similar to that of linear interpolation, but with less smoothing

effect. In contrast, anisotropic interpolation (f) yields an image

with sharp and continuous structural boundaries (manifested as

clear and smooth edges) and with significantly reduced noise in

homogeneous regions and along structural boundaries. This is
n isotropic interpolation kernel in a homogeneous region. (c) An anisotropic



Fig. 3. Interpolation of a 2D scalar image in panel a using linear (b), nearest neighbor (c), cubic polynomial (d), spline (e) and anisotropic interpolation (f).

Panels b– f correspond to the boxed area in panel a.
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attributable to the use of an anisotropic sigmoid interpolation

kernel that is adaptively modulated by the local image gradient

profile.

Anisotropic interpolation of diffusion tensor images

In DTI, the diffusion of water molecules within a voxel is

characterized by a second order, symmetric 3 � 3 tensor matrix.

Since a symmetric tensor matrix has six degrees of freedom

with six independent components (Westin et al., 2002), to

interpolate the DTI data, we may simply apply the anisotropic

interpolation as described above to each of the six components

separately or to them jointly with a single interpolation kernel.

The latter alternative is chosen in this study as it yields better

data consistency (tensor orientational coherence and positive

definiteness). Specifically, we fix g to be 0.5 but modulate a

linearly with the mean intensity gradient of the six independent

components along each spatial direction according to equations

below and Eq. (3):

A3IiA ¼
1

6
� A3Iic11Aþ A3Iic22Aþ A3Iic33Aþ A3Iic12Að

þ A3Iic13Aþ A3Iic23AÞ
ð4Þ

cjk ti þ Dtið Þ
�
�
� j¼1 N 3
k¼1 N 3

¼ cjk tið Þ � 1þ exp ai � Dti � gð Þð Þð Þ�1

þ cjk ti þ 1ð Þ � ð1� 1þ exp ai � Dti � gð Þð Þð Þ�1Þ
ia 1; 2; 3f g

ð5Þ

where c11,. . ., c23 denote the independent components of the

tensor matrix. Eq. 5 explains the interpolation of the tensor

elements where ti is an integer that denotes the discrete

coordinate of a voxel and Dti Z [0,1] is a real number that

specifies the spatial location for interpolation.
Fiber-tracking experiments

To assess the performance of the anisotropic interpolation

technique, effects of the interpolation on fiber tracking were

examined and compared with other conventional methods using

both synthetic and in vivo DTI data. Fiber tracking was

implemented using the principal diffusion direction method, i.e.,

the so-called ‘‘streamline’’ tracking approach (Basser et al., 2000).

Although more sophisticated fiber-tracking methods could be

used (Lu et al., in press), we deliberately chose this simple,

intuitive fiber-tracking approach because it is widely accepted,

and more importantly, it allows us to evaluate and interpret the

impact of various interpolation techniques without other con-

founds. For all the synthetic and in vivo data, streamline fiber

tracking was performed with a step size of 0.2 voxel and

termination criteria of FA < 0.15 and turning angle >45-. Four
different values of amax, i.e., 5, 10, 15 and 20, were used

respectively for the anisotropic interpolation. Tracking results

obtained using our anisotropic interpolation technique were

compared with those generated by four conventional interpolation

methods that include linear, nearest neighbor, cubic polynomial

and spline interpolations.

Fiber tracking with synthetic data

Two sets of synthetic data were designed to test the efficiency,

accuracy and precision of fiber tracking. The first dataset consisted

of parallel 3D spirals and the second contained parallel straight

lines. These two basic configurations were chosen because of their

simple algebraic constructions and analytically derivable solutions

for the true ‘‘fiber’’ path. The 3D spirals had a rectangular cross-

section of 3 � 9 voxels and spanned two full cycles (from 0 to 4p),
as shown in Fig. 4. Both synthetic ‘‘fiber’’ sets were noise free and



Fig. 4. A 3D view of the synthetic spirals. The spirals have a rectangular

cross-section, span two full cycles and are embedded in isotropic media (not

shown). The line segments are the directions of the principal eigenvector.
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embedded in isotropic media that had zero fractional anisotropy

(FA = 0).

To closely mimic the in vivo conditions, the synthetic tensors

were constructed to have a trace of 2.1 � 10�5 cm2/s, comparable

to that in normal brain parenchyma. Tensors for the ‘‘fiber’’ tracts

were cylindrically symmetric with an FA of 0.9 and aligned with

the local tangential direction of the tract. The whole volume of

each synthetic dataset (including the isotropic region) had a

dimension of 128 � 128 � 30 voxels with a spatial resolution of

2 � 2 � 2 mm3. Diffusion-weighted images were calculated for

both geometries, with diffusion weighting simulated along six non-

collinear directions with a b-value of 1000 s/mm2.

Test of tracking efficiency

Tracking efficiency was tested on the synthetic dataset that

contains the 3D spirals. Fiber tracking was initiated from the base

of the spirals, specifically from the center of each voxel in the

anisotropic region at the starting cross-section. Fibers were

terminated when any of the termination criteria were met.

Performance comparisons between the anisotropic interpolation

and conventional methods were made on the basis of the mean

length of reconstructed ‘‘fibers’’ and similarity coefficient. The

similarity coefficient was defined to be the mean shape similarity

between each ‘‘fiber’’ and the true tract, with the shape similarity

computed according to the equation below for an arbitrary pair of

fibers:

Sij ¼ Rcs I exp �r=Cð Þ ð6Þ

where i, j denote two fibers, Rcs is the corresponding segment

ratio between i and j (motivated by the work of Ding et al.,

2003), r is the standard deviation of the Euclidian distance

between the corresponding segments, and C is a scaling

constant. Like the definition in Ding et al., the corresponding

segment ratio Rcs is the ratio of the overlapping portion of two

fibers to the total length they span; the Euclidian distance

between the corresponding segments is calculated point-wise

along the ‘‘fiber’’ on the basis of the coordinates of

corresponding points. But unlike the previous work, the
standard deviation of the Euclidian distance instead of its mean

is used in Eq. (6). The reason is that the original work of Ding

et al. was focused on bundling of fibers which relies on the

shape similarity as well as spatial proximity between a pair of

fibers, whereas the present work is only concerned with how a

‘‘fiber’’ takes the shape of its true tract. Therefore, the standard

deviation of the Euclidian distance between them better serves

the purpose.

The shape similarity defined as above has a range between 0

and 1, with two fibers of comparable length and similar shape

having a higher similarity value. As in this study, the longest fiber

is used as the true tract for similarity calculation, fibers consistent

with this tract in shape and length can have a similarity coefficient

close to one.

To characterize the overall efficiency of fiber tracking, a

measure, tracking efficiency was defined which is the product of

mean fiber length (normalized by the true fiber length) and

similarity coefficient. Because we have selected a narrow

‘‘fiber’’ strip in the synthetic data intentionally, a small deviation

from the true path may result in premature termination of the

‘‘fiber’’. This is due to the anisotropy of the media surrounding

the spirals, which however can provide a rigorous test of

tracking efficiency.

Test of tracking accuracy and precision

To evaluate the accuracy and precision of fiber tracking

using our interpolation approach and other conventional

methods, Monte Carlo simulations were performed on the

second dataset which contains parallel straight ‘‘fiber’’ tracts.

In these simulations, zero mean Gaussian noise was added to

the synthetic data to generate four noisy datasets at SNR of 10,

20, 30 and 40 respectively (independently to each tensor

component with the same variance). Like the first dataset, a

rectangular seed region of 3 � 9 equally spaced grid points was

defined within the starting cross-section of the synthetic

‘‘fibers’’. At each noise level, streamline fiber tracking from

the above seed region was performed 100 times, each time with

a different random realization of zero mean Gaussian noise. A

total of 100 steps were tracked, and the mean Euclidian distance

and standard deviation with respect to the true ‘‘fiber’’ tract

were assessed at each step for all noise levels and interpolation

methods. These two parameters measure the accuracy and

precision or consistency of fiber tracking using different

interpolation methods.

Fiber tracking with in vivo human DTI data

The in vivo DTI data presented for analysis were acquired from

a healthy human volunteer on a 3T GE Signa MR scanner using

diffusion weighted single shot, echo plannar pulsed gradient spin

echo imaging sequence. Diffusion weighting was performed along

six non-collinear directions with a b-value of 1000 s/mm2 and

timing parameters of TR = 9 s and TE = 88.5 ms. Thirty

contiguous, 4-mm-thick slices with a matrix size of 128 � 128 and

a field of view of 240 � 240 mm2 were scanned and reconstructed

into a 256 � 256 matrix, resulting in an in-plane resolution of

0.937 � 0.9375 mm2. A total of 37 repeated acquisitions were

performed, but a small portion of these with motion and other

artifacts were discarded. The remaining high quality data were

used for tensor calculations (Basser et al., 1994), from which FA

maps were computed. Prior to the study, informed consent was
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obtained from the subject in accordance with the protocols

approved by the local ethics committee.

Due to the lack of a ‘‘gold standard’’ which makes it impossible

to quantify the accuracy of fiber tracking, evaluation of the

interpolation methods was based on qualitative assessment of the

fiber bundles reconstructed. For this purpose, two major fiber

bundles, namely the projection pathways (the corticospinal tracts)

and the corpus callosum, were reconstructed which provide the

basis for methods comparison. These fiber bundles were chosen

because of their well-known anatomy which facilitates judgment of

the quality of reconstructed fiber pathways and identification of

possible erroneous connections. Streamline fiber tracking with

different interpolation methods was launched from seed points

defined in the above fiber bundles and terminated when one of the

termination criteria was met.
Fig. 5. ‘‘Fiber’’ tracts reconstructed from the synthetic spirals. Panels a–d are

respectively. Panels e–h are from the anisotropic interpolation with amax = 5, 10
Results

Tracking efficiency

Fig. 5 graphically shows the ‘‘fibers’’ tracked from the

synthetic 3D spirals using conventional interpolation methods

(a–d) and our anisotropic interpolation approach with different

values of amax (e–h). It can be seen that results from the

anisotropic interpolation are more favorable because in general it

yields a greater number of ‘‘fibers’’, and the pathways of these

‘‘fibers’’ are more consistent than those obtained with conventional

interpolation methods. These results are quantitatively compared

in Table 1, which summarizes the mean length (normalized by the

ideal length), similarity coefficient, and tracking efficiency for four

conventional interpolations (linear, nearest neighbor, cubic poly-
from linear, nearest neighbor, cubic polynomial and spline interpolations

, 15 and 20 respectively.



Table 1

Comparisons of similarity coefficient, mean length and tracking efficiency

between four conventional interpolation methods and the anisotropic

interpolation with noiseless synthetic spirals

Interpolation

method

Similarity

coefficient

Mean

length

Tracking

efficiency

Linear 0.2924 0.8538 0.2496

Nearest neighbor 0.7548 0.2917 0.2201

Cubic polynomial 0.4092 0.7823 0.3201

Spline 0.4822 1.0000 0.4822

Anisotropic

amax = 5 0.4127 0.8181 0.3376

amax = 10 0.7023 0.9105 0.6394

amax = 15 0.7492 0.8341 0.6249

amax = 20 0.4362 0.6988 0.3048

Bold numbers denote the largest values of tracking efficiency.
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nomial and spline) and the anisotropic interpolation with amax = 5,

10, 15 and 20 respectively. Linear, cubic polynomial and spline

interpolations tend to give reasonably long ‘‘fibers’’, but the

similarity coefficient is quite low; nearest neighbor interpolation

gives more consistent ‘‘fibers’’, but their mean length is much

smaller than that from other methods. By comparison, ‘‘fibers’’

from the anisotropic interpolation with amax = 10 and 15 are both

reasonably long and consistent; this is reflected as higher values of

overall tracking efficiency (last column) than the other interpola-

tion methods.

Tracking accuracy and precision

Tests of the accuracy and precision of fiber tracking using

Monte Carlo simulations found that, at all noise levels and

tracking steps, the anisotropic interpolation with amax > 5 has

smaller mean Euclidian distance and standard deviation than the

conventional interpolation methods. As an example, Fig. 6 shows

variations of the mean Euclidian distance (a) and standard

deviation (b) with the number of tracking steps for a typical

noise level (SNR = 20). Quantitative comparisons of these

measures at 100 tracking steps and four different noise levels

are given in Table 2, which shows overall there is ¨20%

improvement in the mean Euclidian distance and ¨40% improve-

ment in the standard deviation with the anisotropic interpolation

particularly when amax > 5. To better appreciate the improve-
Fig. 6. Variations of mean Euclidian distance (a) and standard deviation (b) vers

different interpolation methods.
ments, the data in Table 2 are plotted as bar graph in Fig. 7 with

both the mean Euclidian distance and standard deviation

normalized to 0.5. These clearly demonstrate that the anisotropic

interpolation gives better tracking accuracy and precision than the

conventional methods.

Fiber tracking with in vivo data

Fig. 8 shows the axial view of the anatomic structure of a fiber

bundle in the corpus callosum using conventional interpolation

methods (a–d) and the anisotropic interpolation approach (e–h)

for fiber tracking. Linear interpolation (a) gives fibers similar to

anisotropic interpolation with amax = 5 but generates fewer fibers

than anisotropic interpolation with amax = 15–20 (pointed by green

arrow in (a)). Nearest interpolation (b) gives fewest fibers than any

other methods due to the inherent noise sensitivity of the method

(see green arrow in (b)). Fibers tracked with cubic polynomial (c)

and spline (d) interpolations have possibly wrong connections

(pointed by green arrows). These questionable connections,

however, are not present in the fibers tracked with the anisotropic

interpolation. In our interpolation approach, although major

patterns of the fiber tracts are grossly similar, different values of

amax bring appreciable differences to the fiber structure, with the

outcomes with amax = 10 (f) and 15 (g) being more plausible.

Another illustration in Fig. 9 shows similar variations of fiber

structures. Fibers from linear interpolation (a) are similar to those

from anisotropic interpolation with amax = 5 (e). Nearest

interpolation (b) again generates fewest fibers than any other

methods (see cyan arrow in (b)). Cubic polynomial (c) and spline

(d) interpolations and to some extent anisotropic interpolation with

amax = 20 (h) have generated dense fibers at the branching points

(pointed by cyan arrows), which is likely due to connection loops

that are erroneously formed. These loops, however, do not exist in

anisotropic interpolation with amax = 5–15. The blue arrows in

Figs. 9(d, e, h) indicate a prominent erroneous pathway at the base

of the fiber bundle. This fiber is absent in anisotropic interpolation

for amax = 10 and 15.
Discussions and conclusion

Image smoothing and interpolation play critical roles in DTI-

based fiber tractography. Smoothing reduces the detrimental effect
us the number of tracking steps with SNR = 20. Different symbols denote



Table 2

Comparisons of the mean Euclidian distance and standard deviation at 100 tracking steps between four conventional interpolation methods and the anisotropic

interpolation

Interpolation methods Mean Euclidian distance (voxels) Standard deviation (voxels)

SNR = 10 SNR = 20 SNR = 30 SNR = 40 SNR = 10 SNR = 20 SNR = 30 SNR = 40

Linear 1.3156 0.6155 0.4193 0.2377 0.2070 0.0966 0.0721 0.0558

Nearest neighbor 1.3089 0.6093 0.3999 0.2515 0.3035 0.1196 0.0929 0.0726

Cubic polynomial 1.3448 0.5970 0.4118 0.2413 0.2653 0.1149 0.0884 0.0636

Spline 1.2768 0.5983 0.4090 0.2464 0.2399 0.1100 0.0815 0.0600

Anisotropic

amax = 5 1.2866 0.6104 0.3927 0.2504 0.1432 0.0701 0.0454 0.0327

amax = 10 1.1337 0.5349 0.3385 0.2053 0.1370 0.0684 0.0423 0.0342

amax = 15 1.0546 0.4976 0.3149 0.1910 0.1554 0.0694 0.0442 0.0356

amax = 20 1.1111 0.5242 0.3317 0.2012 0.1403 0.0666 0.0441 0.0316

Measures are given for four noise levels.
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of noise on fiber tracking, and interpolation allows continuous fiber

tracts to be reconstructed. These two needs are met in this study by

a unified framework for interpolation and smoothing. The core part

of this framework is a sigmoid interpolation function that is

anisotropically modulated by the local profile of image intensity

gradient. The integrated, adaptive scheme not only avoids the

awkward separation of two mutually related processes for fiber

tracking but also preserves structural boundaries which are

important for confining fiber tracts within the specific structure

of interest. Experiments with synthetic DTI data demonstrate that

performance of fiber tracking in terms of tracking efficiency,

accuracy and precision can be enhanced, and fiber tracking with in

vivo data shows that more plausible fiber tracts can be obtained

using this unified framework.
Fig. 7. Bar graph schematically showing the data in Table 2. The values of b

interpolation method with different levels of SNR (a. 10, b. 20, c. 30, d. 40). Num

cubic polynomial, 4. spline, 5–8. anisotropic interpolation with amax = 5, 10, 15
As mentioned before, there are a plethora of classical methods

for image interpolation. Among these, two basic interpolation

methods, i.e., linear and nearest neighbor interpolation, arguably

represent two extremes of interpolation. Linear interpolation is a

‘‘smoothing operator’’ that suppresses high spatial frequencies (due

to noise or presence of structural boundary) to some extent and

therefore tends to allow fiber tracking to naturally cross the

structural boundary. On the other hand nearest neighbor interpo-

lation acts as a ‘‘high pass operator’’ that preserves the boundary

information, but the high-frequency components particularly from

image noise may lead to premature termination of the fibers.

Polynomial and spline interpolation seems to lie between the two

extremes, as is evident from their profiles in the spatial domain (not

shown), but they tend to behave more like linear interpolation in
oth statistical measures are normalized against 0.5 and stacked for each

bers on x-axis represent different methods 1. linear, 2. nearest neighbor, 3.

and 20 respectively.



Fig. 8. Axial view of reconstructed fibers seeded in the corpus callosum.

Panels a–d are from linear, nearest neighbor, cubic polynomial and spline

interpolations respectively, and panels e–h are from the anisotropic

interpolation with amax = 5, 10, 15 and 20 respectively. Arrows in panels

a, b point to missed fibers, and arrows in panels c, d, h point to possibly

wrong connections.
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fiber tracking for the termination criteria used in this study. The

impact of these conventional interpolation methods on fiber

tracking can be seen graphically in Figs. 5–9 and quantitatively

in Tables 1 and 2. The design of our interpolation kernel addresses

two conflicting needs, i.e., suppression of image noise and

preservation of structural boundaries, with a sigmoid function that

is adaptive to the local image intensity gradient. It offers an

augmented capability for reducing random noise typically present

in DTI data. Such an interpolation kernel behaves like an ‘‘adaptive

operator’’, which suppresses random noise in homogenous regions

where image intensity gradient is low and preserves structural

boundaries where intensity gradient is high. This adaptive

operation translates to improved performance in fiber tracking,

which is seen from the experiments on synthetic as well as in vivo

DTI data throughout this study.

The performance gain in fiber tracking with our interpolation

scheme comes from the shape control parameter a of the sigmoid

function, which is linearly modulated with the strength of the local

image intensity gradient in this study. It should be noted that

choosing this simple linear modulation is purely empirical. While

the simplicity offers convenience in implementation and standard-

ization of the interpolation procedure, more sophisticated param-

eter modulation schemes may also be designed without undue

complications. For example, one may relate the parameter a with

the noise level such that image noise can be maximally suppressed

in homogeneous regions and high-frequency information at

structural boundaries maximally preserved, which may further

improve the performance of fiber tracking. Nevertheless, we

reserve these and other refinements of the modulation model for

future studies.

We have studied a range of values for the maximum kernel

sharpness parameter amax, specifically from amax = 5 to 20, for the

anisotropic interpolation kernel. Our fiber-tracking experiments

from synthetic and in vivo DTI data suggest that amax = 10–15

tend to give the best overall tracking performance. However, this

empirical observation is only based on experiments with our

specific geometric and imaging settings; no rigorous theoretical

justification of this choice has been performed. We therefore

caution that, in application of the anisotropic interpolation to a

specific fiber-tracking experiment, fine tuning of this parameter is

warranted to yield the best tracking performance.

It is worth mentioning that the sigmoid interpolation kernel

used in this study has a very compact support. Only eight

neighboring voxels are involved in the case of 3D data

interpolation, similar to linear and nearest neighbor interpolation

but smaller than cubic polynomial and spline interpolation.

Computational efficiency of the interpolation is slightly less than

that of the conventional interpolation methods as it involves

calculations of image intensity gradient, but the amount of

additional computation needed is quite small. It should be noted

that, as the image gradients are calculated along coordinate axes,

the procedure inherently favors boundaries aligned along these

directions. Image gradients in fact can be computed in any

directions so that structural boundaries along an arbitrary direction

can be preserved. However, this may come at the cost of

computational efficiency. It should be also pointed out that,

although the unified framework has a built-in functionality of

noise reduction, its smoothing capability is nevertheless limited.

Therefore, in the case of heavy image noise in DTI data,

presmoothing such as performed in Ding et al. (2005) is still

necessary.



Fig. 9. Oblique view of an axial slice with reconstructed fibers seeded in the projection pathways. Panels a–d are from linear, nearest neighbor, cubic

polynomial and spline interpolations respectively, and panels e–h are from the anisotropic interpolation with amax = 5, 10, 15 and 20 respectively. Arrow in

panel b points to missing fibers, and cyan arrows in panels c, d, h point to possibly erroneous dense fibers. Blue arrows in panels d, e, h indicate another

erroneous fiber pathway at the base.
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In summary, this study has established a unified framework for

anisotropic interpolation and smoothing of DTI data. The integrated

scheme provides a smooth, continuous and boundary preserved

tensor field for reconstruction of fiber tracts. A smooth and

continuous tensor field allows quantification of high order

geometrical properties, such as curvature and torsion, of recon-

structed fiber tracts, and the boundary preservation capability

improves the accuracy of fiber tracking by confining fiber tracts

within the anatomical structure of interest. In addition, the new

interpolation has compact support, reasonably low computational

complexity, andmore flexible frequency response than conventional

interpolation methods. Enhanced performance in fiber tracking with

both synthetic and in vivo DTI data has proven the effectiveness of

this unified interpolation and smoothing framework.
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