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Randomized Spatial Context for Object Search
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and Jiebo Luo, Fellow, IEEE

Abstract— Searching visual objects in large image or video
data sets is a challenging problem, because it requires efficient
matching and accurate localization of query objects that often
occupy a small part of an image. Although spatial context has
been shown to help produce more reliable detection than methods
that match local features individually, how to extract appropriate
spatial context remains an open problem. Instead of using fixed-
scale spatial context, we propose a randomized approach to
deriving spatial context, in the form of spatial random partition.
The effect of spatial context is achieved by averaging the
matching scores over multiple random patches. Our approach
offers three benefits: 1) the aggregation of the matching scores
over multiple random patches provides robust local matching;
2) the matched objects can be directly identified on the pixelwise
confidence map, which results in efficient object localization;
and 3) our algorithm lends itself to easy parallelization and also
allows a flexible tradeoff between accuracy and speed through
adjusting the number of partition times. Both theoretical studies
and experimental comparisons with the state-of-the-art methods
validate the advantages of our approach.
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I. INTRODUCTION

HE matching of local visual features plays a critical role
in the state-of-the-art systems for visual object search and
detection. The fundamental problem is to measure the similar-
ity between an object (query) and a sub-region of an image.
Sub-regions with the highest similarity scores are identified
as the detection or search results. One category of methods
represents each image as a collection of local features, and
assume that they are independent from each other. Thus the
matching score of the whole or subimage can be calculated
as the summation of the matching scores of its individual
features. Such a Naive-Bayes assumption, e.g., Naive-Bayes
Nearest Neighbor classifier [1], [2], [23], [39], has led to
successes in visual object recognition, detection and search.
However, as local features are in fact not spatially inde-
pendent, rather than matching local features individually,
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some methods propose to consider the spatial context for
matching. For example, a group of co-located visual fea-
tures can be bundled together and matched as a whole.
The benefits of introducing such a feature group for visual
matching have been proven to generate more reliable and
discriminative results than matching individual features,
thus leading to a higher precision in visual matching and
search [7], [12], [19], [20], [25], [28], [34], [40], [42].

Despite previous successes in employing spatial context
for more discriminative visual feature matching, e.g. visual
phrases [41], [43], [44] or bundled features [13], [36], one
problem remains unsolved: how to select the appropriate
spatial context when matching local features?

In general, there are two ways to select the spatial
context. The first category of methods relies on image
segments or regions to determine the spatial context
[29], [30], [35], [37], [42], where local features located in
the same image region or segment are bundled together
and matched as a whole. Although such spatial context is
reasonable, this approach is highly dependent on the quality
of image segmentation or region detection results, which
require a time consuming pre-process to obtain and are usually
unreliable.

The second category of methods selects the spatial context
at a relatively fixed scale. The most common way is to
bundle each local point with its k spatial nearest neighbors,
namely k-NN group [32], [41]. However, as reported in [42],
unstable local features may be detected when images are
resized or stretched, resulting in varying numbers of detected
local features at different scales. Hence for each local point,
its k-NN group may be totally different from that at a
different scale, as shown in Fig. 2(a). Therefore, spatial
context provided by the k-NN group is not scale invariant.
Furthermore, it is difficult to determine an appropriate k.
Using a larger k reveals more contextual information while
running a higher risk of introducing noise from the

background. Moreover, if the user wants to change
the value of %k, he will need to re-calculate the
spatial threshold and re-index the feature groups all
over.

Grid-based local feature bundling is an alternative to the
k-NN group for the fixed-scale spatial context [13]. An image
is partitioned into fixed-size grids and all features within each
grid are bundled together and matched as a whole. However,
similar to the k-NN selection, the grid-based spatial context
is also not invariant to scale and it is difficult to choose a
proper grid size without knowing the size of the target object.
In addition, as shown in Fig. 2(b), local points near the edges
of the grids may be separated from their nearest neighbors,

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



JIANG et al.: RANDOMIZED SPATIAL CONTEXT FOR OBJECT SEARCH

therefore the grids may not accurately describe spatial
context.

We believe that an ideal spatial context selection for object
search task should satisfy the following requirements:
1) it can support robust object matching despite scale vari-
ations, rotation and partial occlusions; 2) it can support fast
object localization in the cluttered backgrounds; and 3) it can
be efficiently extracted and indexed.

To address the three requirements, we propose a new
spatial context selection approach based on random partition of
images. After extracting local invariant features, we randomly
partition the image multiple times to form a pool of over-
lapping image patches. Each patch bundles the local features
inside it and is characterized by a histogram of visual words.
Essentially, for each individual point, we generate a collection
of random image patches in varying sizes and rectangular
shapes as its spatial context. Instead of matching an individual
feature point, we match its randomized spatial context, i.e., all
local features in a random image patch. Fig. 2(c) explains the
randomized spatial context. For each spatial context (i.e., each
image patch), we independently calculate the similarity score
between it and the query object as its voting weight. The final
confidence score of each pixel in the image is calculated as the
expectation of the voting weights of all patches that contain
this pixel, and we record the pixel-wise confidence scores on a
confidence map. Finally, the matched regions can be identified
on the confidence map as the detected objects.

Our random partition approach provides several benefits.
First of all, compared with the state-of-the-art systems for
object search, our approach results in better matching and
thus better retrieval performance thanks to the randomized
spatial context. Moreover, it is robust to the scale variations
and partial occlusions of the objects. Second, our spatial
random partition-based patch voting scheme indirectly solves
the object localization problem, as the object can be seg-
mented out directly from the confidence map. This largely
reduces the computational cost compared with the subimage
search methods for object localization [6], [17], [18]. Third,
our approach allows the user to make a trade-off between
effectiveness and efficiency through adjusting the number of
partition times on-line without re-indexing the database; this
is important for a practical search system. In addition, the
design of the algorithm makes it ready for parallelization and
thus well suited for large scale applications.

To evaluate our spatial random partition approach, we
conduct visual object search first on a movie database, and
then on a benchmark logo database with a million-level image
database from Flickr as distractors. In Fig. 1, we provide some
sample results of visual object search. Although in some cases
it is challenging even for human observers to find and locate
the small query objects in the cluttered scenes, our algorithm
performs very well.

The remainder of the paper is organized as follows:
Section II introduces the background and related work on
object search in recent years. In Section III, we present our
random partition-based object search algorithm to account
for multi-scale spatial context. In Section IV, we provide
theoretical validation of our algorithm, and describe
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Fig. 1. Visual object search is a more challenging problem than whole-image
retrieval, since the target objects in the database can vary greatly in location,
scale, orientation and appearance.

its parallel implementation. The experimental results
are shown in Section V, followed by the conclusions
in Section VI.

II. RELATED WORK

The developments of invariant local visual features and
fast image indexing and search algorithms have led to great
successes in image search and retrieval. Given an image query,
the state-of-the-art image retrieval systems [3], [4], [8]-[11],
[21], [24], [38], [45], [46] have been able to retrieve and
rank similar or near-duplicate images within million-level
databases. Despite rapid progress in whole-image retrieval,
visual object search, whose goal is to find and accurately locate
the target object in image collections, remains a challenging
problem. This is due to the fact that the target objects usually
appear in the cluttered backgrounds, occupying a very small
and unknown portion of an image, and can differ significantly
from the query because of the changes in scale, view point
and color, as well as partial occlusions. In this respect, visual
object search can be viewed as two tasks combined: object
matching and object localization.

For object matching, the bag-of-visual-words (BoVW)
scheme [5], [16], [26], [27], [31], [33] has been widely
adopted although there is the obvious drawback of quantizing
high-dimensional descriptors into visual words. In general,
there are two ways to address the quantization error incurred
by BoVW scheme. One is to match individual descriptors
in the feature space directly, e.g. the Naive-Bayes Nearest
Neighbor (NBNN) classifier proposed in [1] and [2]. The
method in [23] uses the NBNN-classifier and calculates the
mutual information score between each local feature and
the query object independently. However, the NBNN-based
algorithms are all under the Naive-Bayes assumption that each
feature point is independent from the others, therefore they
can fail when the assumption is violated. Besides, searching
nearest neighbors in the feature space is costly both in memory
and time.

Another way to mitigate the quantization error is to consider
spatial context instead of an individual point, which is
also used in other image-related applications. By bundling
co-occurring visual words within a constrained spatial distance
into a visual phrase [41], [43], [44] or feature group [42] as the
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of matched points (including the center point) in them, denoted by N.

basic unit for object matching, the spatial context information
is incorporated to enhance the discriminative power of visual
words. In [32], each local feature is combined with its k spatial
nearest neighbors to generate a feature group. And in [13],
each image is partitioned into non-overlapping grid cells which
bundle the local features into grid features. However, unlike
the whole-image retrieval problem, our target object may
appear at all possible scales. Therefore such feature groups
are not scale invariant and not capable of handling the various
objects without a priori knowledge. Also it is not a trivial
problem to select the optimal k or grid size. Moreover, it
is not convenient if the user wants to change the scale of
feature group because he would need to re-index the whole
database. As an earlier version of this paper, [14] proposes
the Randomized Visual Phrases (RVPs) to consider spatial
context in varying shapes and sizes, and thereby provides a
robust partial matching.

For object localization, in most previous work the relevant
images are retrieved firstly and then the object location is
determined as the bounding box of the matched regions in
the post-processing step through a geometric verification, such
as RANSAC [26] or neighboring feature consistency [32].
Since geometric verification methods are usually computa-
tionally expensive, they are applied only to the top images
in the initial ranking list. Alternatively, efficient subimage
retrieval (ESR) [17] and efficient subwindow search (ESS) [18]
are proposed to find the subimage with maximum similarity
to the query. In addition, spatial random partition is proposed
in [40] to discover and locate visual common objects.
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e Unstable local point having no match
*=** Considered spatial context region
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III. MULTI-SCALE SPATIAL CONTEXT
VIA RANDOM PARTITION

Given a database D = {Z;} of I images, our objective is to
retrieve all the images {Z,} that contain the object, and identify
the object’s locations {Lg}, where L, C Z, is a subimage
of Z,. An overview of our proposed algorithm is presented
in Alg. 1 and Fig. 3.

A. Image Description

We first represent each image Z; € D as a collection of local
interest points, denoted by {f; ;}. Follow the BoVW scheme,
each local descriptor f is quantized to a visual word using a
vocabulary of V words, represented as w = (x, y, v), where
(x, y) is the location and v € {1, ..., V} is the corresponding
index of the visual word. Using a stop list analogy, the most
frequent visual words that occur in almost all images are
discarded. All feature points are indexed by an inverted file so
that only words that appear in the queries will be checked.

B. Spatial Random Partition

We randomly partition each image Z; into M x N
non-overlapping rectangular patches and perform such par-
tition K rounds independently. This results in a pool of
M x N x K image patches for each Z;, denoted as: P; = {P;}.
Note that for a given partition k € {1,2,..., K} the M x N
patches are non-overlapping, while the patches from different
partition rounds may overlap. Since in the k;;, partition, each
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Algorithm 1 Spatial Random Partition for Object Search
Input:
an image database D = {Z;}
the query object ()4 (sometimes the negative query ()_
is also given to model the backgrounds),
Output:
subimages {L,}, which contain the retrieved object.

1: Partition: VZ; € D, partition it into M x N patches for K
times randomly, and obtain a pool of patches P; = {P;}
containing M x N x K patches (Sec. III-B).

2: Matching: VP; € P;, match it against the query object
Q@+ (or both Q4 and )_), and assign it a weight propor-
tion to its similarity to the query object @+ (Sec. III-C).

3: Voting: VP; € P;, distribute its voting weight to each
pixel it contains, and a pixel-wise confidence map is
generated for each image Z; (Sec. III-C).

4: Localization: VZ; € D, segment out the dominant re-
gion £; from its confidence map as the object location
(Sec. III-D).

Input:

. 3 3i
al i
patchvoting‘

- &

localization

Output:

Fig. 3. [Illustration of object search via spatial random partition (M x N x
K =3 x 3 x 3). The input includes a query object and an image containing
the object, while the output is the segmentation of the object (highlighted
in green).

pixel ¢ falls in a unique patch Pt(k), in total there are K patches
containing the pixel ¢ after K rounds of partitions, denoted as:

Qf =(pP®Py=(p |1tepr), k=1,...,K. (1)

Then each patch P is composed of a set of visual words,
denoted as P : {w|w € P}, and is further characterized as
a V-dimensional histogram % p recording the word frequency
of P.

Given each pixel ¢t € Z;, we consider the collection of
all possible patches containing 7, denoted by Q; = {P:}.
Then after K rounds of partitions, we essentially sample the
collection K times and obtain a subset QX = {P, k)}f: 1 C .
The sizes and aspect ratios of the patches in the subset QX are
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TABLE I
SEVERAL VECTOR DISTANCES FOR PATCH MATCHING

symbol similarity function
Bin(hqg,hp) > min(h”Qh}g, 1)
HI(hg,hp) >, min(hy, hy)
NHI(hg,hp) | X,min(h), )/, max(he), h'p)
dot(hg,hp) S Ry

random since these patches result from K independent random
partitions. Therefore, for the pixel 7, its spatial context at
different scales has been taken into consideration by matching
the random patch set QZK against the query object. To simplify
the problem, we assume the probability that each patch will
be sampled in the k;; partition is the same, which means

Ky _ 1 _ 1 -
p(P") = of = ¥ is a constant.

C. Patch Matching and Voting

Given a pixel ¢, its confidence score s(¢) is calculated as the
expectation of similarity scores of its spatial context, i.e., the
patch P;, and the query object O, denoted as:

s(t) = E(s(P)) = > p(P)s(P)

PreQy

K
~ > p(E)s(p®) = %st}k’), )

Pe X k=1

where the expectation is estimated using the subset QX instead
of the complete collection €2;. Now our problem becomes how
to define the similarity score s(P) for each patch P. And as
mentioned in [23], the input types of a practical search system
could be 1) only positive query Q-+, i.e., the target which user
wants to search; 2) both positive query Q4 and negative query
Q_, i.e., the noise which user wants to avoid. Considering
these two kinds of cases, here we provide two ways to address
the patch matching problem, respectively.

1) Normal Patch Matching: First let us consider the case
that only positive query Q4 is available, which is represented
as the word-frequency histogram hg4 as well. In this case
we can adopt any vector distance listed in Tab. I as the
matching kernel, and match each patch against the query just
like a whole image. Here we use the normalized histogram
intersection N HI(-) as an example:

K K
1 X 1
s(t) = e kE_l S(Pt( )) =z k_El NHI(hP,(k)’hQ+)' 3)

In addition, some other vector distances can be chosen instead
of NHI(-), resulting in reduced computational cost, as shown
in Tab. I. The comparison between all these distances will be
discussed in later experiments.



1752

2) Discriminative Patch Matching: Then we consider the
case in which both positive queries Q4+ and negative queries
Q_ are given. This case is similar to the discriminative
grid matching [13], and we calculate the pixel-wise mutual
information score MI1(Q, P) as the similarity score s(P) as
follows:

_ . p(PlOy)
s(P) =MI(Q4, P)=log TP
~ log p(P|1O+)
p(Q)p(P1Q+) + p(P|Q-)p(Q-)
1

= log : 4)
PlO_
P(0+) + LS p(0-)
We estimate the likelihood p(P|Q) in Eqn. 4 using the
normalized histogram intersection:

lhp Nhol
lhp Uhgl|

Note that according to Eqn. 4, we need to estimate the prior
probability p(Q4) or p(Q_-), which is a constant for all pixels
and patches. In the paper we assume the prior of positive and
negative class are equal, as in [23] and [39]. However this
assumption leads to a bias in results since in fact the negative
class is much larger than the positive class. We will address
the bias when localizing the object.

p(P|Q)=NHI(hp,ho) = €[0,1. ()

D. Object Localization

After assigning each pixel r+ € Z; a confidence score,
we obtain a pixel-wise confidence map for each image Z;.
Object localization then becomes an easy task since we just
need to identify the dominant region £; from Z; as the object
location:

Li = {t|s(t) > thres,Vt € I;}. (6)

In an ideal case if the confidence map is generated by
discriminative patch matching, thres = 0 should be used
as the threshold, which indicates that the mutual information
score between a pixel and the query is zero. However, due to
the invalid assumption made in Eqn. 4 (i.e., p(Q+) equals to
p(Q-)), the threshold has a bias from 0. Therefore we set
the threshold thres adaptively, which is in proportion to the
average confidence score of the whole image Z;:

I;-I > s@),

teZ;

thres; =

)

where |Z;| is the number of the non-zero pixels in Z; and a is
the parameter. Then all the pixels whose confidences are higher
than the threshold will be directly segmented out and finally
compose the detected regions. The score of a detected region is
calculated as the sum of all the scores of the pixels it contains,
and its location is returned as a detected target, regardless of
the size and shape. And by adjusting the coefficient &, we can
modify the bias caused by the assumption to some extent and
obtain more accurate localization results.

Moreover, in practice we set the coefficient & > 1 to
degrade the influence of the noisy points in the image
background. From Eqn. 7 it is obvious to see that the
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®)

No Detected Object

Fig. 4. Examples for voting and localization. The query logo is the same as
in Fig. 3. The 15; column shows the original images. The 2,; column shows
the confidence maps after 200 random partitions. The 3,; column shows the
segmentation results with the coefficient & = 5.0. By comparing the last two
rows with the first two rows, we can see that our algorithm is robust to the
noisy points in the background (3,4 row), and can reduce the false alarm
detections as well (4;, row).

threshold cannot be higher than the average confidence score
when a < 1. In the condition, given any a confidence map
there must be some relatively salient regions containing higher
scores than the threshold, even if the regions are just caused by
the isolated points (see the 4,, row in Fig. 4). Therefore, with
the objective to filter the isolated points, we experimentally
use a larger a to heighten the threshold. By doing so, the
thresholding strategy favors the matched points to co-locate
in a local region since the co-located points will reinforce
each other and finally generate a salient enough region to be
segmented out; otherwise, if the matched points are distrib-
uted sparsely in the map, there may be no dominant region
above the same threshold (see Fig. 5). Such a property is
important for searching small object such as a logo, because
the positive matched feature points are usually co-located
in a small local region, while the noisy points are usually
distributed sparsely in the background. Thus this thresholding
strategy can effectively help to reduce the false alarm
detections.

IV. ALGORITHM ANALYSIS
A. Asymptotic Property

The asymptotic property is given below as the theoretical
justification of our algorithm.

Proposition 1 (Asymptotic Property): We consider two
pixels i,j € I, where i € G C I is located inside
the groundtruth region while j ¢ G is located outside.
Suppose Sl.K and S;( are the total votes (or scores)
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20 40 60 30 100 20 40 60

mean = 0.2734
thres = 0.5468

mean = 0.2757
thres = 0.5504

Fig. 5. The simulated experiment for voting and localization. The target
object is the USTC word (denoted in blue) in the left-top image while the
right-top image contains the same letters but not co-located. Their voting maps
after 200 rounds are shown in the second row, from which we can see that
their average confidence scores are almost the same. That is, the thresholds
of the two maps are also very close multiplied by the coefficient (& = 2,
denoted by the surface in the dash). However, the right image will not be
retrieved since it cannot generate such dominant regions above the threshold
with these sparsely distributed points.

for i and j, respectively, considering K times random
partitions. Both SI-K and S;{ are discrete random variables,
and we have:

limgoo(S; —8%) >0 (8)

The above theorem states that when we have enough rounds
of partitions for each image, the groundtruth region G must
receive more votes, so that it can be easily discovered and
located. The explanation of Proposition 1 is given in the
supplementary material because of space limit.

B. Parallel Implementation

One of the most challenging problems for visual object
search is the efficiency and scalability, especially for the
web-scale databases. On the other hand, nowadays the com-
putational capability of PC has been improved significantly
with the advances in hardware. Thanks to the development of
multi-core CPU and programmable GPU, we can now divide
one computation task into several independent threads and
execute them in parallel. However, not all algorithms could
be parallel implemented such as some interactive algorithms,
in which the computational tasks are highly interrelated.
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Fig. 6. An overview of the parallel implementation of our algorithm.

Therefore, whether it can be easily parallelized has become
an important criterion to evaluate the feasibility of an object
search algorithm, although it used to be ignored in previ-
ous work. In this section we briefly describe the parallel
implementation of our random partition algorithm.

Fig. 6 shows the parallel implementation of our algorithm.
There are two parts that can be parallelized on CPU and
GPU, respectively. The first part is for the image partition,
patch matching and voting. Compared with the subimage
search methods [17], [18] which employ the iterative branch-
and-bound search, our algorithm guarantees the independence
of each round of partition, hence the patches from different
partition rounds can be processed simultaneously. In later
experiments we implement the parallelization in C = 16
threads on CPU, denoted as {TC}CC:1 in Fig. 6. So the time
complexity of our algorithm is O(KMN/C). The second
parallelized part is for the pixel-level object segmentation.
After generating a confidence map, in which each pixel has an
independent confidence score, we just need to check whether
the confidence score of each pixel is larger than the threshold
or not. GPU is exactly designed for this job: huge amount
of repeated but simple computation. We configure the thread
hierarchy on GPU as 64 thread blocks with 64 threads in
each block in our experiment, hence the total number of
GPU threads is G = 64 x 64 = 4096.

V. EXPERIMENTS

In this section, our random partition approach is compared
with several previous object retrieval algorithms in terms of
both speed and performance. We compare our approach with



1754

three categories of methods: the first is between the fixed-scale
spatial context methods, i.e., the k-NN group [32] and the
grid feature [13] (Sec. V-B); the second is the individual point
matching method under the Naive-Bayes assumption, i.e., the
DIP algorithm [23] (Sec. V-C); the third is the state-of-the-
art subimage search methods, i.e., ESR [17] and
ESS [18] (Sec. V-E). All these algorithms are implemented
in C++4 and performed on a Dell workstation with 2.67 GHz
Intel CPU and 16 GB of RAM. The algorithms are
implemented without parallelization unless emphasized.
Three challenging databases are used as the testbeds:

Groundhog Day Database: The database consists of
5640 keyframes extracted from the entire movie Groundhog
Day [32], from which 6 visual objects are chosen as
queries. As in [32], local interest points are extracted by the
Harris-Affine detector and the MSER detector respectively,
and described by 128D SIFT descriptors [22]. To reduce
noise and reject unstable local features, we follow the local
feature refinement method in [42]: all the keyframes are
stretched vertically and horizontally, and local interest points
are extracted from the stretched keyframes. Those local fea-
tures that survive image stretching are supposed to be affine
invariant and hence are kept as refined features. All the refined
features, more than 5 million, are clustered into a vocabulary
of 20K visual words using the Hierarchical K-Means (HKM)
method [26].

Belgalogo Database: Belgalogo is a very challenging logo
database containing 10, 000 images covering various aspects
of life and current affairs. As in [15], all images are re-sized
with a maximum value of height and width equal to 800 pixels,
while preserving the original aspect ratio. Since the database
is larger and the image backgrounds are more cluttered,
more than 24 million SIFTs are extracted from the database
and clustered into a large vocabulary of IM visual words
to ensure the discriminative power of visual words. A total
of 6 external logos from Google are selected as the query
objects. Meanwhile, to test our discriminative random partition
approach (DRP), we randomly pick out two images containing
no logos from the database as negative queries.

Belgalogo + Flickr Database: To further verify the scala-
bility and effectiveness of our approach, we build a 1M image
database by adding crawled Flickr images to the
Belgalogo database as distractors. In total about 2 billion
SIFTs (2,000 points per image on average) are extracted.
We randomly pick 1% points from the feature pool to
generate a vocabulary of 1M visual words. All points are
indexed by an inverted file costing about 12G RAM.

For all the databases above, a stop list is made to remove
the top 10 percent most frequent visual words. In this way,
the most frequent but meaningless visual words that occur in
almost all images are suppressed. To evaluate the retrieval per-
formance, in most cases we adopt the Average Precision (AP)
and mean Average Precision (mAP) as the measures. Given a
ranking list including R retrieved results, the AP is calculated
as the area under the Precision/Recall curve:

Zle Prec(r) x rel(r)
#Ground Truth

AP = ©)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 6, JUNE 2015

Fig. 7. Image examples from the three databases. (a) Groundhog Day
database consisting of 5640 keyframes; (b) Belgalogo database, a benchmark
database for logo retrieval; (c) Flickr database, containing nearly 1M images
which are added as the distractors for Belgalogo.

TABLE II
mAP FOR DIFFERENT VECTOR DISTANCES WITH a = 3.0

Bin
0.435

oI
0.444

NHI
0.449

Dot
0.397

Pbhatt
0.406

mAP

TABLE III
mAP FOR DIFFERENT SEGMENT COEFFICIENT a USING Bin(-)

« 1.0 2.0 3.0 4.0 5.0
mAP | 0.403 | 0.422 | 0.435 | 0.434 | 0.420

where Prec(r) is the precision at cut-off r in the list, and
rel(r) is an indicator function equaling 1 if the r'* result
contains the target objects (i.e., ground truth), 0 otherwise;
then the mAP is the mean average precision over all queries.
Since some previous work published their results in different
measures, we will follow their measures when comparing with
them.

A. Sensitivity of Parameters

In this section, the sensitivity of several parameters of the
random partition approach is firstly tested on the Groundhog
Day database.

At first we test vector matching kernel and segment coef-
ficient a. The normal random partition (NRP) approach is
implemented with the partition parameters K x M x N =
200 x 16 x 8, where M x N is set according to the aspect
ratio of the keyframes empirically. The results are evaluated
by mAP over 6 query objects. All the vector matching kernels
in Tab. I are tested, and the results are showed in Tab. II.
NH I(-) performs sightly better than the others although it is
slower. Also, we test the impact of the segment coefficient o,
as shown in Tab. III, from which we can see that a has
marginal influence on the retrieval performance.

Next, we study how the partition parameters affect the
retrieval performance in both accuracy and efficiency. We first
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The influence of the number of partition times. The 15, row lists three pairs of queries (denoted by yellow box on the left) and an example image

containing the object (denoted by blue box on the right). The output includes a confidence map on the left and a segmentation result on the right. The
2nd> 3rd» 4:n Tow are associated with the number of partition times K = 25, K = 50, K = 100, respectively. As the number of partition times increases, the
confidence map becomes more salient and the object is located more accurately.

TABLE IV
mAP FOR DIFFERENT PARTITION PARAMETERS M x N

Query Size 8 X 4 16 x 8 24 x 12 32 X 16
Black Clock 65p X 60p 0.387 0.456 0.470 0.426
Digital Clock 165p x 100p 0.423 0412 0.409 0.405
Frames Sign 297p X 67p 0.426 0.486 0.499 0.508
Microphone 63p X T7p 0.186 0.238 0.229 0.225
Phil Sign 75p X 50p 0.743 0.767 0.757 0.765
Red Clock 60p X 60p 0.204 0.249 0.229 0.221
Avg. 0.395 0.435 0.432 0.425
fix K = 200 and test different M x N, from 8 x 4 to

32 x 16, and compare their performance in Tab. IV. It shows
that the highest AP scores of the query objects Microphone,
Phil Sign and Red Clock are achieved at M x N = 16 x 8.
Given the size of the queries, we can infer that the best
matching accuracy is more likely to be achieved when the
average size of the random patches is close to the target object
size. However, we also note that there is an exception case,
namely the Frames Sign, where the query object is of a relative
large size but the AP decreases with the average size of the
random patches increases. It is because the size of the
Frames Signs in the video varies quite a lot, and most of them
are much smaller than the query one. From this experiment
we can see that although the random partition approach could
handle the scale invariant to some extent, it essentially implies
the assumption on the target object size when partitioning
the images.

Then we fix M x N = 16 x 8 and vary the number of
partition times K from 10 to 200, and record their mAP
and average time cost, as shown in Fig. 9. It shows that
as the number of partition times increases, the retrieval
results improve in accuracy while cost more time. And the
retrieval accuracy tends to convergence when the number
of partition times is large enough. Therefore the approach
based on random partition allows the user to easily make
a trade-off between accuracy and speed since he can adjust
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Fig. 9. Performance of different number of partition times, from 10 to 200:
a) the mAP curve as the number of partition times increases; b) the time cost
for different number of partition times, including patch matching, confidence
map generation and object segmentation (no parallel implementation).

the partition time on-line without re-indexing the database.
Increasing the number of partition times leads to a more salient
confidence map and better object localization, as showed
in Fig. 8.

B. Comparison With Fixed-Scale Spatial Context Methods
First, we compare our NRP approach with the spatial
k-Nearest Neighbor (k-NN) method [32]. Here we set
k = 5,10, 15, 20 to test the retrieval performance when con-
sidering spatial context at different scales. Bin(-) is selected
as the matching kernel. As in [32], random patches or
k-NN regions are rejected if they have less than two visual
words matched with the query, which means no spatial
support. We fix partition parameters K x M x N =
200 x 16 x 8 and o = 3.0 for all queries in this database.
The experimental results are shown in Fig. 10, from which
we can see that: 1) the optimal scale of spatial context
differs for different query objects. As k increases, the retrieval
performance improves for most queries while it drops for
the Frames Sign. The reason is that the Frames Sign objects
in groundtruth keyframes are much smaller than the query
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TABLE V
INTERACTIVE SEARCH RESULTS FOR DIP [23] AND DRP. SINCE BASE AND KIA ARE NOT OPTED IN [23], HERE WE ONLY
COMPARE THE RESULTS ON THE OTHER 4 LOGOS. TO MAKE A FAIR COMPARISON, WE COMPARE THE
PRECISIONS AT THE SPECIFIC RECALL LEVEL GIVEN IN [23]

| | [ Dexia | Ferrari | Mercedes | President [| Average |
1s¢ round recall 0.096 0.013 0.145 0.357
DIP [23] precision 0.810 0.010 0.917 0.050 0.359
DRP precision 0.667 1.000 0.917 1.000 0.896
24 round recall 0.060 0.039 0.184 1.000
DIP [23] precision 0.100 0.750 1.000 0.826 0.669
DRP precision 1.000 1.000 1.000 1.000 1.000
Blackclock \ __ Digitalclock Further, our discriminative random partition (DRP)
R W Ty 2SN AP:0.20200 approach is compared with the discriminative grid-based
o i\ 20NN AP0 396304 o 20NN AP0 377861 algorithm [13] on the Belgalogo database. The partition para-
[ - NRP_AP:0.455649 - NRP_AP:0.411830 .
Sos b 5o meters are set to K x M x N = 200 x 16 x 16 for this
g P g database and the segment coefficient & = 5.0 is fixed for
=0 | = .. all queries. Similar to the k-NN methods, 4 different grid
02 02 L 1 sizes, from 8x8 to 32x32, are tested. Normalized histogram
M intersection NHI(-) is chosen as the similarity function.
O L T Mt T The top 100 retrieval results are used for evaluation. The
Frames Sign , Microphone comparison results are given in the 2,4 to 5;, columns and
‘ ;3;*,7,,::;35;33;} ‘ e Apdaames 9, column of Fig. 11, which show that the mAP of DRP
o \ 20NN AP0 442214 ”‘,_’ annapossss| | 1S improved by more than 40% over that of the grid-based
- NRP_AP:0.487503 o - NRP AP:0.238133 . .
Sos 50 approach using the same local features and matching kernel.
g 3 It validates that the random spatial context is superior to fixed-
0.4/ . . .
* * scale spatial context bundled by grids.
0.2 1
"“M§ C. Comparison With Naive-Bayes Point Matching Methods
R e 0T N e P In this section, we employ the interactive search strategy
Philsign ; Redclock and make a comparison between DRP and [23], in which
ok 0N AP0 145722 an interactive object search algorithm based on discrimina-
* B! °? 200N AP 167575 tive individual point (DIP) matching is proposed. After the
4". NRP AP:0.248850
§os s Sos I;; round DRP search, the top R = 5 returned results
§ 3 'éu » are verified manually. Denoting by {L,} the collection that
a 0. i a 0. bk . . .
" | contains R verified segments, and representing each segment
5 oy e ’ as a word-frequency histogram s _, a new query Q4 is con-
~ e structed by averaging the word-frequency histograms of {£,}:
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 . . .
Recall Recall hor =% > hr,. Similarly, we can construct an new negative
5-NN [ 10-NN | 15-NN | 20-NN | NRP query and repeat the DRP search in the 2,4 round. Since the
Black Clock || 0.385 | 0.386 | 0.392 | 0.399 ] 0.456 published DIP results are reported in Precision/Recall scores,
Digital Clodk I 0295 | 0550 | 0572 | WA | GE here we compare with their precisions given the same recall
Frames Sign || 0.556 | 0474 | 0.465 | 0.442 | 0.436 e V. From b et .
Microphone || 0.138 | 0.158 | 0.186 | 0.154 | 0.238 as shown i 7ab. V. rrom this experimental resutt, we can
Phil Sign 0545 | 0718 1 0727 | 0.739 10767 see that our DRP approach outperforms the DIP approach
Red Clock 0122 | 0144 | 0.150 | 0.157 | 0.249 in both the 1;; and 2,4 rounds except for Dexia in the first
| mAP [0.340 | 0.373 | 0.382 | 0.378 [ 0.435 | round. Because in [23] the local descriptors are matched in

Fig. 10. Precision/Recall curves and AP scores for the six query objects in
the Groundhog Day database. Each plot contains 5 curves, referring to the
5-NN, 10-NN, 15-NN, 20-NN and NRP approach respectively. In the bottom
table, the red number in each row is the best result for the given query object
while the blue one is the second best.

so that it is easier to introduce the noise with a larger
context scale; 2) although the optimal scale is unknown, our
NRP approach is stable and robust to the scale variations of
the objects, therefore achieves a better performance over the
k-NN methods.

the high-dimensional feature space independently (i.e., under
the Naive-Bayes assumption), DIP could avoid quantization
error completely but considers no spatial context. Therefore,
the experiment indicates that considering spatial context is a
better way to mitigate the quantization error from BoVW and
enhance the discriminative power of local features. Since the
low recall level limits our observation, we also evaluate the
performance of interactive search by AP and P/R curve, as
shown in the 10, column of Fig. 11. It shows that the mAP
of DRP in 2,4 round (DRP-2,4) has a 52% improvement over
that in 1y, round, and hence highlights the effectiveness of our
straightforward interactive strategy.
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8-Grid | 16-Grid | 24-Grid | 32-Grid ESR [17] RANSAC [26] NRP DRP DRP-2,,4

Base 0.079 0.093 0.099 0.116 0.179 0.194 0.208 0.215 0.440
Dexia 0.144 0.143 0.151 0.145 0.117 0.151 0.153 0.165 0.366
Ferrari 0.023 0.015 0.011 0.010 0.052 0.051 0.013 0.013 0.046
Kia 0.365 0.355 0.358 0.364 0.497 0.473 0.506 0.506 0.612
Mercedes 0.185 0.184 0.183 0.181 0.180 0.139 0.215 0.216 0.275
President 0.346 0.368 0.353 0.424 0.446 0.537 0.675 0.680 1.000

| mAP || 0.190 | 0.193 | 0.192 | 0.207 | 0.245 | 0.258 | 0.295 | 0.299 | 0.457 |

Fig. 11. Precision/Recall curves and AP scores of grid-based approach with different grid sizes (8x8, 16x16, 24x24 and 32x32), ESR [17], RANSAC [26],

NRP, DRP and DRP-2,,; for the 6 query logos on the BelgalLogos database.

D. Comparison With RANSAC Methods

As one of the most popular geometric verification
algorithms, RANSAC has been usually adopted as the
post-processing step in the state-of-the-art image retrieval
system [4], [26]. In this section, we compare our random
partition approaches with the RANSAC-based system on the
Belgalogo database.

As done in [4] and [26], firstly all the images in the database
are fast ranked by their HI scores with the help of the
inverted file. Then for the top 100 images in the initial ranking
list, we employ the RANSAC algorithm to estimate an affine
transformation model with 6 degrees of freedom between the
query and each of the retrieved images. Finally the number
of the inliers according to the affine transformation model
is regarded as the new similarity score (the position error
tolerance is set to 3 pixels), by which the initial retrieved
images are re-ranked as the final result.

The performance of RANSAC is shown in the 7;; column
in Fig. 11. From the mAP over all 6 queries we can see
that our random partition approaches have an about 14%
improvement over RANSAC on the database. Moreover, after
carefully studying the performance of RANSAC on different
query logos, we find some interesting results: for most queries,
e.g., the Base, Dexia, Kia and President logos, RANSAC

performs comparably to or sightly worse than NRP; but the
Ferrari logo and the Mercedes logo are two extremes. For the
Ferrari logo, RANSAC has a much better performance than
NRP, and in fact it gets the highest AP among all algorithms;
but for the Mercedes logo, its performance is even much worse
than the grid-based algorithms. The reason is that the
Ferrari logos appearing in the database are usually of a
much larger size, while the Mercedes logos are usually tiny
(see Fig. 12). When the target object is large, the object
search problem is close to the traditional whole-image retrieval
problem, where RANSAC has proven successful but NRP
may fail due to its assumption on the object size; however,
when the target object is relatively small, there may be no
enough matched points to estimate an exact transformation
model by RANSAC. On the contrary, NRP is less strict
since it only requires the matched points are distributed in a
local region. Therefore, compared to RANSAC, the proposed
random partition approaches are more competent in searching
small objects.

We also compare the time cost of NRP and RANSAC. The
NRP algorithm is implemented parallelized as proposed
in Section IV-B. All algorithms are re-run for 3 times to
calculate the average retrieval time, and the results are shown
in Tab. VI. Because only the top 100 images in the initial
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After RANSAC
Matched points: 0

Fig. 12.  There are two examples for the Ferrari and Mercedes logos,
respectively. For the Ferrari logo (left), RANSAC works well since it has
enough matched points to estimate the transformation model and does not
constrain on the size of the objects; however, for the much smaller
Mercedes logo (right), there are not enough matched points to estimate an
accurate transformation model by RANSAC. On the contrary, the random
partition method is less strict since it only assumes the target object appears
in a compact local region. That means, when the target object is too larger
than its assumption on object size, the random partition method may fail to
accurately segment an entire object out. Instead, it tends to over-segment an
entire object into a set of smaller regions. Therefore, compared to RANSAC,
the proposed approaches are more competent for the small object search job.

TABLE VI
RETRIEVAL TIME OF NRP, RANSAC AND ESR
ON THE BELGALOGO DATABASE

ESR [17] | RANSAC [26] | NRP
297 .17 2.84

NRP (parallel)
0.44

Time (s)

list are processed, the total time cost of the RANSAC-based
system is reduced sharply, and it is in fact not a fair
comparison. Even though, we can see that the NRP algo-
rithm has a significant advantage in efficiency with parallel
implementation.

E. Comparison With Subimage Search Methods

Subimage search algorithms employing the branch-
and-bound scheme are the state-of-the-art for object search,
e.g., the efficient subimage retrieval (ESR) algorithm [17]
and the efficient subwindow search (ESS) [18] algorithm. The
advantage of this category of algorithms is that it can find the
global optimal subimage very quickly and return this subimage
as the object’s location. In this section we compare our random
partition approach with ESR on the Belgalogo database and
with ESS on the Belgalogo+Flickr database in both accuracy
and speed.

The implement details of ESR and ESS are as follows: for
both ESR and ESS, we relax the size and shape constraints on
the candidate subimages, to ensure that the returned subimage
is global optimal; N H I (+) is adopted as the quality function f,
and for a set of regions R, the region-level quality bound f

: . 7 _ g0kl 7
is defined as: f = m > f, where hr and Ay are the
histograms of the union and intersection of all regions in R;

for ESR, given a set of images Z, the image-level quality

~ . L7 |ﬁzﬂhQ|.

bound f is defined as: f = Ty Uhigl’
used to quickly calculate the visual word histograms.

First we compare our NRP approach with ESR on

the Belgalogo database. We set the partition parameters

the inverted files are
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Fig. 13. Examples of the search results by ESR and our approach. The images
in the first column are retrieved by ESR, in which the red bounding boxes are
returned as the object location; the second column are the confidence maps
generated by our NRP approach, and the third column are the segmentation
results (highlighted in green). Note that each row stands for a specific case
(from top to bottom): multiple target objects, noisy background and discrete
matched points (false alarm by ESR).

KxMxN =200x16x16 and a = 5.0, and choose NH I (-)
as the matching kernel as well. The retrieval performance is
given in the 6,, and 8;, columns of Fig. 11. We can see
that the NRP approach leads to a better retrieval performance
compared with the state-of-the-art ESR algorithm, although
ESR could return the top 100 optimal subimages with highest
NHI scores as detections. The reason is that ESR only
searches for the subimage of the most similar word-frequency
histogram with the query, but does not require these matched
visual words fall in a spatial neighborhood region. In other
words, as long as an image has several matched visual words,
even if these words may be distributed very dispersedly, it
is likely to be retrieved by ESR. On the contrary, the NRP
approach bundles the local features by random patches.
It favors matched points that are distributed compactly,
otherwise the confidence map will not produce a salient
enough region. Therefore, compared with our NRP approach,
ESR leads to more false alarms, especially when the
background is noisy. Moreover, our approach could more
easily handle the case in which one image contains mul-
tiple target objects. Fig. 13 gives a comparison between
ESR and NRP by several examples. In addition, by com-
paring the performances of NRP and DRP, shown in the
8n and 9y, columns of Fig. 11 respectively, we see
that negative queries will help to improve the retrieval
accuracy.

Next, the NRP algorithm is compared with ESR in retrieval
speed (see Tab. VI). As we can see, without parallel imple-
mentation NRP is comparable with ESR in speed; and the
parallel implementation for NRP achieves about 7 times
speedup.

Finally to verify the scalability of our algorithm, we further
perform the NRP approach on the Belgalogo-+Flickr database
consisting of 1M images. Both HI(-) and NHI(-) are tested
in NRP approach with parallel implementation. Since ESR is
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Fig. 14. Examples of our search results on the Belgal.ogos database for 5 logos: Base, Dexia, Mercedes, Kia and President (from top to bottom). Queries from
Google are in the first column. The selected search results are in the right columns. The correct detections are denoted in green while the wrong detections
are in red. We can see that our random partition approach is able to produce satisfactory results even for challenging images, such as non-rigid deformation
(row 1, column 5) and bad partial occlusion (row 3, column 5). Moreover, it can handle the multiple objects case (row 4, column 2).

essentially an extension of ESS to improve efficiency and we
have compared NRP with ESR on the Belgalogo database,
here we compare our NRP approach with ESS on this
IM database. The speed of the algorithms is evaluated by
the average processing time per retrieved image. Tab.VII
shows the comparison results between ESS and NRP on this
1M database, in which our NRP algorithm beats ESS in both
accuracy and speed. This experimental results shows that:
1) employing either HI(-) or NH I (-) as the matching kernel,
our NRP approach produces a more than 120% improvement
of mAP over ESS. It highlights the effectiveness of our
approach; 2) compared to the results on the Belgalogo database
consisting of only 10K images, the retrieval performances of
both NRP and ESS/ESRbecome worse. However, the mAP
of ESS/ESR decreases much more sharply than that of NRP.
It verifies the analysis we made above that compared with
our approach, ESR is not robust to a cluttered database and

TABLE VII
COMPARISON ON THE BELGALOGO-+FLICKR DATABASE

ESS [18] | NRP(HI) | NRP(NHI)

Base 0.050 0.165 0.189

Dexia 0.029 0.105 0.118

Ferrari 0.017 0.020 0.023

Kia 0.244 0.406 0.418

Mercedes 0.032 0.115 0.148
President 0.165 0.386 0.543

| mAP [ 0.090 [ 0200 [ 0240 |
Time cost per
retrieved image (ms) 25.4 1.8 7.8

leads to more false alarms; 3) HI(-) kernel is much faster
(about 4 times) than NH I(-) but has a lower mAP. With the
parallel implementation our NRP approach adopting HI(-)
kernel could process more than 500 images in one second,
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Fig. 15.
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Besides the logo queries, more general objects are tested by our search system. Here we give several examples for 5 general query objects: service

cap, football, car, helmet and woman face. Similarly to Fig. 14, the queries are denoted in the yellow bounding boxes shown in the left column, and the

selected results are shown in the right.

therefore it has a great potential in large-scale applications
such as online detection.

VI. CONCLUSIONS

In this paper, we propose a scalable visual object search
system based on spatial random partition. Our main contri-
bution is the introduction of randomized spatial context for
robust sub-region matching. We validate its advantages on
three challenging databases in comparison with the state-of-
the-art systems for object retrieval. It is shown that compared
with systems using only individual local features or fixed-
scale spatial context, our randomized approach achieves better
search results in terms of accuracy and efficiency. It can also
handle object variations in scale, shape and orientation, as well
as cluttered backgrounds and occlusions. We also describe
the parallel implementation of our system and demonstrate its
performance on the one million image database. Moreover, we
can use discriminative patch matching and interactive search
to further improve the results.

Although we have only used quantized SIFT descriptors to
match the random patches, other regional features, e.g., color
histogram, can also be incorporated into the similarity score
for patch matching. Furthermore, we believe that as a novel

way to select suitable spatial context, random partition can be
applied to other image-related applications as well.
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