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Video Summarization Via Multiview
Representative Selection
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Abstract— Video contents are inherently heterogeneous.
To exploit different feature modalities in a diverse video collection
for video summarization, we propose to formulate the task as a
multiview representative selection problem. The goal is to select
visual elements that are representative of a video consistently
across different views (i.e., feature modalities). We present in this
paper the multiview sparse dictionary selection with centroid co-
regularization method, which optimizes the representative selec-
tion in each view, and enforces that the view-specific selections to
be similar by regularizing them towards a consensus selection.
We also introduce a diversity regularizer to favor a selection
of diverse representatives. The problem can be efficiently solved
by an alternating minimizing optimization with the fast iterative
shrinkage thresholding algorithm. Experiments on synthetic data
and benchmark video datasets validate the effectiveness of the
proposed approach for video summarization, in comparison with
other video summarization methods and representative selection
methods such as K-medoids, sparse dictionary selection, and
multiview clustering.

Index Terms— Video summarization, multi-view, representa-
tive selection.

I. INTRODUCTION

V IDEO summarization can be seen as a representa-
tive selection problem. Although the resulting visual

summaries can take many different forms, such as key
objects [1]–[3], keyframes [4]–[9], key shots [10], [11], mon-
tages [12], dynamic synopses [13], etc., the common goal is
essentially to select representative visual elements that well
delineate the essence of a video. However, the representative-
ness of the selected visual elements can be highly dependent
on their representations, i.e., the specific features used to
describe them. For instance, when a video is represented by
appearance features, the resulting summary could be quite
different from that obtained from motion features.
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To incorporate multiple features, the conventional solution
is to concatenate them in to a single one before selecting
representatives. However, this simple concatenation does not
always produce optimal summaries, as the underlying data
distributions in individual views (i.e., feature modalities) can
be drastically different. In addition, if the feature dimensions
differ greatly, high dimensional features may become domi-
nant thus shadowing low dimensional ones. Moreover, noisy
features could adversely affect the selection results.

Although multi-view sparse subspace/dictionary learning
approaches have been proposed [14]–[19], they require feature
fusion to be conducted in advance to learn a unified data
representation for representative selection. However, when
there are discrepancies between different views, e.g., when
data points belong to different groups in different views, it is
difficult for the unified representation to maintain the under-
lying distribution of the data across multiple feature spaces,
thus affecting the performance of the subsequent representative
selection.

In view of the above limitations, we propose to formulate
video summarization as a multi-view representative selec-
tion problem, which aims to find a consensus selection of
visual elements that is agreeable with all views (i.e., feature
modalities). Figure 1 illustrates the idea in comparison with
direct concatenation. Specifically, we present the multi-view
sparse dictionary selection with centroid co-regularization
(MSDS-CC) method. It optimizes the representative selection
in each view, and enforces that the view-specific selections to
be similar by regularizing them towards a consensus selection
(i.e., centroid co-regularization). Different from our previous
work [20], we introduce a diversity regularizer to encourage
coverage of diverse visual elements in the resulting summaries.
Our formulation provides the following benefits:

1) It can produce a consensus selection of visual ele-
ments across different views, resulting in summaries that
are consistently representative across multiple feature
modalities.

2) As we directly optimize for the consensus selection
weights based on the view-specific selection weights
optimized view-wise, which follow view-specific dis-
tributions, our formulation is better at preserving the
underlying data distributions of individual views and
handling unbalanced feature lengths.

3) Our formulation can better handle noisy features by
incorporating view-specific selection priors (Sec. III-F)
to guide the representative selection towards more rel-
evant visual elements. This permits the use of external
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Fig. 1. An illustration of the proposed video summarization via multi-view
representative selection. The top row shows two views of a video’s frames
side by side. There are 3 clusters (key visual concepts) in each view, and we
hope to capture all the 6 clusters by selecting only 3 representatives. Note
that the features in the two views have different distributions, e.g., the green
cluster in View 1 is scattered in View 2 (similarly for the blue and cyan
clusters). Therefore, representatives selected after concatenating the two views
may miss clusters in View 2 (e.g., the 3 dark blue circles © in each view).
In comparison, red triangles � are better representatives as they cover the
3 clusters in both views.

data or/and supervision to improve summarization qual-
ity, which has been shown to be effective in [3], [4],
and [21]–[23].

4) Comparing with multi-view clustering, which needs to
be re-run to generate a summary of different size,
the proposed multi-view sparse dictionary selection
offers better scalability in that we can produce sum-
maries of various sizes by analyzing the video only once.

Our formulation can be solved efficiently via an alter-
nating minimizing optimization with the fast iterative
shrinkage thresholding algorithm (FISTA) [24]. Comparative
experiments on synthetic and challenging benchmark datasets
demonstrate the efficacy of the proposed approach.

II. RELATED WORK

A. Video Summarization

Previous work in video summarization can be roughly
grouped into domain-specific [25]–[29], supervised [10], [11],
[23], [30]–[33] and unsupervised methods [1], [4], [21], [22],
[34]–[40]. Domain-specific methods focus on summarizing
videos in specific genres such as surveillance [41], [42],
sports [25], [28] and egocentric videos [26], [27]. Super-
vised methods generate summaries by learning from human
annotations. For instance, to make a structured prediction,
sub-modular functions are trained with user created sum-
maries [31]. Gygli et al. [10] train a linear regression model
to estimate the interestingness score of shots. More recently,
Zhang et al. [11], Sharghi et al. [32], and Gong et al. [43]
define novel models to learn from human-created summaries
to select representative and diverse subsets. In addition,
Zhang et al. [23] show that summary structures can be
transferred between videos that are semantically consistent.
Unsupervised methods summarize videos by seeking the visual
relevance and structure. One popular method is to select rep-
resentative frames by learning a dictionary from videos [36],
[37], [44], [45]. Another popular trend is to leverage additional

information from other sources such as video titles and web
images [5], [22], [38]. Recently, video co-summarization [21],
[46], [47] has also been proposed, which summarizes shots that
co-occur among multiple videos of the same topic.

B. Representative Selection

There are two main categories of methods to find repre-
sentatives: clustering based methods and subspace learning
based methods. Existing clustering based methods include,
for example, K-medoids algorithm [48], sparse selection of
clustering centers [49], [50], affinity propagation [51], [52] and
density peak search [53]. For these methods, representatives
are determined by clustering centers. Subspace learning based
methods are motivated in a different way, where represen-
tatives are required to approximate the data matrix in the
sense of linear reconstruction. Such circumstances fall into
dictionary learning and selection [3], [37], [41], [54]–[57].
Despite the advances in representative selection, most of
the methods are not applicable to multiple features. Feature
fusion such as [14]–[19] and [58] has to be conducted in
advance so that unified data representations can be learned for
representative selection. However, it is difficult for the unified
representations to keep the underlying distribution information
of the data in multiple feature spaces, thus challenging the
subsequent representative selection.

III. THE PROPOSED METHOD

We formulate the problem of video summarization as multi-
view representative selection. Given n shots extracted from a
video sequence, each of them can be represented by V views
of features. Our goal is to find a subset of shots that are
representatives across the multiple views. Below, we arrange
the v-th view of features as the columns of the matrix X(v) ∈
R

d(v)×n , and denote by w(v) = [w(v)
1 , w

(v)
2 , . . . , w

(v)
n ]T ∈ R

n

the vector of selection weights corresponding to the v-th view.
In addition, we use w = [w1, w2, . . . , wn]T ∈ R

n to denote the
vector of consensus selection weights resulting from multiple
views.

A. Preliminaries: Feature Concatenation

Let Y = [X(1); X(2); · · · ; X(V )] ∈ R

∑V
v=1 d(v)×n be the

concatenated feature matrix of multiple views. Then, we have,
∀C ∈ R

n×n ,

‖Y − YC‖2
F =

V∑

v=1

‖X(v) − X(v)C‖2
F. (1)

As a result, the following representative selection objective
in (2) is tantamount to that of feature concatenation for sparse
dictionary selection [41].

min
C∈Rn×n

V∑

v=1

1

2
‖X(v) − X(v)C‖2

F + λ‖C‖1,2, (2)

where ‖C‖1,2 = ∑n
i=1 ‖Ci.‖2, associated with the parameter λ

as a regularization to the sum of reconstruction errors of
multiple views, and ‖Ci,·‖2 is the l2 norm of the i -th row of
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the selection matrix C. In this case, wi = ‖Ci,·‖2, measuring
the selection confidence to the i -th sample. The solution to (2)
can be obtained by the proximal gradient method [24]. Finally,
exemplars can be found by ranking the consensus selection
weights wi , for i = 1, 2, · · · , n.

B. Centroid Co-Regularization

It is worth noting that in (2), features in different views are
treated equally to learn a consensus selection matrix. However,
different views of features can be dramatically different,
which heavily influences the selection result. To better handle
multiple features, we propose to learn individual selection
matrices C(v), v = 1, 2, · · · , V for different features, and
simultaneously unify them to a consensus weighting vector w,
with its i -th entry wi measuring the selection confidence of the
i -th sample. We thus formulate our objective function as multi-
view sparse reconstruction with centroid co-regularization:

min
C(v),w

V∑

v=1

{
1

2
‖X(v) − X(v)C(v)‖2

F + λ(v)‖C(v)‖1,2

+ 1

2
η‖w(v) − w‖2

2

}

, (3)

where the weighting vector w(v) consists of the l2 norms of
rows of C(v), with the i -th entry w

(v)
i = ‖C(v)

i,. ‖2, and the
parameters for selection learning and consensus are {λ(v)}V

v=1,
η, and τ . By solving Problem (3), we optimize a sparse recon-
struction objective for each view to make sure the selection
weights fit the distribution of the features. The final centroid
co-regularization term further enforces selection weights to
match all feature modalities.

C. Diversity Regularizer

As pointed out by Elhamifar et al. [37], sparse dictionary
selection tends to keep the vertices of the convex hull spanned
by the data to ensure a low reconstruction cost. Therefore,
nearby data points at the vertices of convex hull are likely
to be selected even though they are similar. To encourage a
diverse selection of dissimilar representatives, we design the
following diversity regularizer

tr{S(v)T
ww(v)T} =

n∑

i

n∑

j

S(v)
i, j wi w

(v)
j , (4)

where tr{·} denotes the trace operator, and S(v) is the similarity
matrix of data points in the v-th view. In practice, we compute
S(v)

i, j using the cosine distance between data points, i.e., S(v)
i, j =

X(v)
i X(v)

j

‖X(v)
j ‖2‖X(v)

j ‖2
. When the selected data points are dissimilar,

(4) is small. Otherwise (4) is large . After adding the diversity
regularizer (4), the objective function becomes (3):

min
C(v),w

V∑

v=1

{
1

2
‖X(v) − X(v)C(v)‖2

F + λ
(v)
1 ‖C(v)‖1,2

︸ ︷︷ ︸
J1

+ 1

2
η‖w(v) − w‖2

2
︸ ︷︷ ︸

J2

+ λ
(v)
2 tr{S(v)T

ww(v)T}
︸ ︷︷ ︸

J3

}

, (5)

D. Optimization

The objective function in (5) (O for short) can be solved by
iterating between: (1) optimizing C(v) by fixing C(u) (u �= v)
and w, and (2) optimizing w by fixing C(v) (v = 1, 2, . . . , V ).

1) Optimize C(v) by Fixing C(u) (u �= v) and w: We rewrite
the objective function in (5) as O = ∑V

v=1 O(v), where

O(v) = 1

2
‖X(v) − X(v)C(v)‖2

F + λ
(v)
1 ‖C(v)‖1,2

+ 1

2
η‖w(v) − w‖2

2 + λ
(v)
2 tr{S(v)T

ww(v)T}. (6)

Therefore, minC(v) O ⇔ minC(v) O(v) when C(u) (u �= v)
and w are fixed. Moreover, Ov can be rewritten as

O(v) = 1

2
‖X(v) − X(v)C(v)‖2

F + λ
(v)
1 ‖C(v)‖1,2

+ 1

2
η(‖C(v)‖2

F + ‖w‖2
2 − 2w(v)T

w)

+ λ
(v)
2 tr{S(v)T

ww(v)T}
= 1

2
tr{X(v)T

X(v) − 2X(v)T
X(v)C(v)

+ C(v)T
(
ηI + X(v)T

X(v)
)

C(v)}
+ (λ

(v)
1 1 − ηw)Tw(v) + 1

2
η‖w‖2

2

+ λ
(v)
2 tr{S(v)T

ww(v)T}. (7)

Then, we let

f (C(v)) = 1

2
tr{X(v)T

X(v) − 2X(v)T
X(v)C(v)

+ C(v)T
(
ηI + X(v)T

X(v)
)

C(v)} + 1

2
η‖w‖2

2, (8)

and

g(C(v)) = (λ
(v)
1 1 − ηw)Tw(v) + λ

(v)
2 tr{S(v)T

ww(v)T}, (9)

which leads to

O(v) = f (C(v)) + g(C(v)). (10)

Since O(v) is decomposed into two convex functions, with
f smooth and g non-smooth, the problem becomes iteratively
solving the following using the proximal gradient method,
FISTA [24]:

proxR (Z) = arg min
C(v)∈Rn×n

1

2

∥
∥
∥C(v) − Z

∥
∥
∥

2

F
+ 1

L(v)
g(C(v)), (11)

where

Z = C(v) − 1

L(v)

∂

∂C(v)
f (C(v))

= C(v) − 1

L(v)

{
−X(v)T

X(v) +
(
ηI + X(v)T

X(v)
)

C(v)
}

.

(12)

Here L(v) is the smallest Lipschitz constant of ∂
∂C(v) f (C(v)),

which is the spectral radius (r(.)) of ηI + X(v)T
X(v), i.e.,

L(v) = r(ηI + X(v)T
X(v)) = η + r(X(v)T

X(v)). (13)
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Algorithm 1 Multi-View Representative Selection via
Centroid Coregulerization (5)

Following the proximal decomposition [59], we can equiv-
alently decompose problem (11) into n pairs of proximal
operators, i.e., for i = 1, 2, . . . , n,

C(v)
i,· = arg min

c∈Rn

1

2

∥
∥c − Zi,·

∥
∥2

2 +
(
λ̂

(v)
1i + λ̂

(v)
2i

)
‖c‖2, (14)

where

λ̂
(v)
1i = 1

L(v)

(
λ

(v)
1 − ηwi

)
,

λ̂
(v)
2i = 1

L(v)
λ

(v)
2 S(v)

·,i
T

w (15)

For problem (14), after applying soft-thresholding [60],
we have,

C(v)
i,· = Zi,· max{(1 − λ̂

(v)
1i + λ̂

(v)
2i

‖Zi,·‖2
), 0}. (16)

2) Optimize w While Fixing C(v): Denote the first term in
the objective function (5) as J1, the second term as J2 and the
third term as J3, then minw O ⇔ minw

∑V
v=1 J2 + J3 when

fixing C(v), and

J2 + J3 = 1

2
η‖w(v) − w‖2

2 + λ
(v)
2 tr{S(v)T

ww(v)T}. (17)

By applying soft-thresholding, we obtain

w = max{ 1

V

V∑

v=1

(I − λ
(v)
2

η
S(v))w(v), 0} (18)

We show the optimization procedure in Algorithm 1,
where we adopt an alternating minimizing strategy and inte-
grate decomposed soft-thresholding into the proximal gradient
iteration.

E. Parameter Setting

1) Dictionary Selection Parameter λ
(v)
1 in the v-th View: We

introduce this parameter to control the sparsity of dictionary
selection in each single view. As indicated by the thresholding
of Z in (16), when λ

(v)
1 is large enough, we have C(v) = 0,

which results in an empty selection. To avoid such an empty
selection in the initialization, we let λ

(v)
1 ≤ λ

(v)
1 max and solve

λ
(v)
1 max by substituting C(v) = 0 into (16) as follows:

λ
(v)
1 max = L(v) max1≤i≤n ‖Zi,·‖2. (19)

It is worth noting that in Algorithm 1, we initialize C(v) by a
zero matrix, and w by a zero vector. Then according to (12),
after the first iteration, we have

Z = 1

L(v)
X(v)T

X(v). (20)

Therefore,

λ
(v)
1 max = max1≤i≤n ‖x(v)

i

T
X(v)‖2. (21)

In our experiments, we let λ
(v)
1 = λ

(v)
1 max
αλ1

and tune the hyper-

parameter αλ1 . Given λ
(v)
1 , a smaller αλ1 indicates a larger λ

(v)
1 ,

which implies a sparser selection.
2) Centroid Co-Regularization Parameter η: As shown

in (5), this parameter trades-off the first dictionary selection
term J1 and the second centroid co-regularization term J2 (17).
When η → 0, we will immediately reach the consensus by
feeding individual dictionary selection results into (18). When
η → +∞, minimizing (5) will lead to a zero J2, thus making
w(v)(v ∈ [1, V ]) and w to be 0. As a result, we cannot select
anything from the data. Furthermore, we can see from (15),
η balances the contributions of λ

(v)
1 and w to the dictionary

selection of the v-th view in (16). For ease of tuning η, we let

η = minv∈[1,V ]{λ(v)
1 }

αη
, (22)

3) Diversity Regularizer Parameter λ
(v)
2 : We introduce this

parameter to control the diversity of dictionary selection in
each view. As shown in (16) and (18), when λ

(v)
2 → +∞,

minimizing (5) will lead to C(v) = 0 and w = 0. Note that

in (18), λ
(v)
2 balances the contribution of η to the consensus

weighting vector w. Thus, we let λ
(v)
2 = η

αλ2
and tune the

hyper-parameter αλ2 .

F. Extension to Incorporating Priors

As selection priors such as canonical viewpoints [4], visual
co-occurrence [21] and objectness scores [3] have been shown
to improve results, we also extend our method to a weighted
multi-view representative selection to capture view-specific
selection priors. Formally, we propose the new objective as
follows:

min
C(v),w

V∑

v=1

{
1

2
‖X(v) − X(v)C(v)‖2

F + λ
(v)
1

n∑

i=1

ρ
(v)
i w

(v)
i

+ 1

2
η‖w(v) − w‖2

2 + λ
(v)
2

n∑

i=1

n∑

j=1

ρ
(v)
j S(v)

i, j wi w
(v)
j

}

(23)
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TABLE I

AVERAGE RECALL OF SYNTHETIC DATA ON 2 VIEWS. IN EACH VIEW, DATA POINTS ARE PROJECTED TO 3 CLUSTERS, THE FEATURE
DIMENSION OF EACH VIEW IS INDICATED BY D: [d1, d2]. RESULTS ARE AVERAGED OVER 100 TRIALS

where prior ρ
(v)
i is the selection cost for the i -th sample

according to v-th view of features, where the smaller the ρ
(v)
i ,

the more likely it will be selected as the representative. In this
way, those shots of smaller cost in multiple views are more
likely to be selected for summaries.

The optimization of (23) follows a similar procedure as
shown in Subsections III-D1 and III-D2. We only need to
update the non-smooth term g(C(v)) (shown in (9)) to suit
the new objective function in (23) by

g(C(v)) = (�
(v)
1 − ηw)Tw(v) + tr{�(v)

2 S(v)T
ww(v)T} (24)

where �
(v)
1 ,�

(v)
2 ∈ R

n , and its i -th element is λ
(v)
1 ρ

(v)
i and

λ
(v)
2 ρ

(v)
i respectively. Therefore, the solution to C(v) is still

given by (16), but with a different λ̂
(v)
1i , λ̂

(v)
2i compared to (15):

λ̂
(v)
1i = 1

L(v)

(
λ

(v)
1 ρ

(v)
i − ηwi

)
,

λ̂
(v)
2i = 1

L(v)
λ

(v)
2 ρ

(v)
i S(v)

·,i
T

w (25)

For equal prior selection costs with ρ
(v)
i = 1, (25) and (15)

become the same. Problem (23) will perfectly degenerate into
Problem (5).

To facilitate setting parameters {λ(v)
1 }V

v=1, {λ(v)
2 }V

v=1 and η,
we also refine the calculation of λ

(v)
1 max in Subsection III-E

when optimizing (23) with the addition of priors. According
to (25) and (16), we calculate λ

(v)
1 max by

λ
(v)
1 max = L(v) max

1≤i≤n

1

ρ
(v)
i

‖Zi,·‖2

= L(v) max
1≤i≤n

1

ρ
(v)
i

‖x(v)
i

T
X(v)‖2. (26)

IV. EXPERIMENTS

A. Baselines

We refer to the proposed method as Multi-view Sparse
Dictionary Selection with Centroid Co-regularization
(MSDS-CC), and compare with the below baselines.

1) Clustering-Based: baselines include the standard
K-medoids [48] and two multi-view spectral clustering meth-
ods: Affinity aggregation spectral clustering (AASC) [16] and
Co-regularized multi-view spectral clustering (CMSC) [15].
We use the centroid-based co-regularization for CMSC.

2) Subspace Learning Based: baselines include the
state-of-the-art Sparse Modeling Representative Selection
(SMRS) [37], Sparse Dictionary Selection (SDS) [41] and
Locally Linear Reconstruction induced Sparse Dictionary
Selection (LLR-SDS) [3].

For the two multi-view clustering methods, AASC and
CMSC, we adapt them for multi-view representative selection
by selecting representatives from the embedding feature space,
where representatives are the closest points to the cluster cen-
ters in that space. For the other baselines, feature concatenation
is performed before representative selection.

In our experiments, we use the authors’ implementation
of each method, except for the K-medoids, for which we
used the MATLAB implementation. α for SMRS and SDS,
and α1 for LLR-SDS are tested on a range of {5, 8, 10, 20, 30}.
In addition, for LLR-SDS, we use the default k = 3 to
construct the locality prior matrix and tune α2 in a range
of {1.5, 1, 0.5, 0}. The default λ = 0.5 is used for CMSC.
For our proposed MSDS-CC, we tune the hyper-parameters
αλ1 ∈ {3, 5, 10, 20, 30}, αη ∈ {0.01, 0.1, 1, 10} and αλ2 ∈
{0.1, 0.2, 0.5, 1, 10}. And we report the best result for each
method.

B. Experiments on Synthetic Data

We first evaluate the effectiveness of our proposed method
on synthetic data in multiple views while varying the number
of clusters and data dimensions (Table I). For simplicity,
we consider the representative selection on two views and
randomly generate (d1 + d2)-dimensional data points, where
di is the dimension of the ambient space of the v-th view.
In each view, data points are uniformly projected to n clusters
whose centers are drawn uniformly from a unit-norm ball.
Each data point is corrupted with independent Gaussian noise
of standard deviation ε = 0.1. Following [3], we evaluate the
performance of the top n representatives by the average recall
and the results are averaged over 100 trials.

We have a few observations from Table I. First, when the
feature dimensions in the two views differ greatly (i.e., D =
[5, 100]), the performance of representative selection from the
concatenated view deteriorates (middle section in Table I).
This can be attributed to the shadowing effects caused by the
higher dimensional feature type. In fact, when D = [5, 100],
results from the concatenated views are worse than those
from the single view (left section in Table I) regardless of the
baseline method chosen (i.e., K-medoids, SMRS, SDS,
LLR-SDS). Second, multi-view clustering baselines
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Fig. 2. Simulation results of data in two views. Data points are projected to three color (blue, yellow and green) and shape (©, � and �) clusters respectively.
Representatives (red circles ©) are found by (a)K-medoids (b) AASC (c) CMSC (d) SMRS (e) SDS (f) LLR-SDS and (i) Ours. Results without (g) centroid
co-regularizer or (h) diversity regularizer are also shown.

(AASC and CMSC in Table I) are not as sensitive to
the discrepancies in feature dimensions as other baselines.
This is understandable, as they first learn a unified data
representation before clustering and representative selection.
Consequently, neither view would dominate. However,
both AASC and CMSC perform worse than the proposed
MSDS-CC. It can be attributed to the difficulty for them
to handle the disagreement in the feature distributions in
different views, e.g., when data points belong to different
groups in different views. This situation may arise in our
simulation as data points in each view are independently
generated. Overall, the proposed MSDS-CC outperforms all
baselines regardless of the feature dimensions in each view.

Fig. 2 visualizes a case of 4D data points projected to two
2D views. As can be seen, in view 1, points are clustered by
color (blue, yellow and green), while in view 2, points are
clustered by shape (©, � and �), respectively. In the ideal
case, we should be able to capture all the 6 properties of data
points (i.e., 3 colors and 3 shapes) by only 3 representatives.
It is shown that the top 3 representatives of AASC (�, ©
and �) miss the square shape �, and CMSC (©, � and �)
miss the blue color. This is because AASC and CMSC assume
that different views have the same underlying clustering of
the data. Therefore, they can not well handle the presence of
view disagreement. On the other hand, the representatives of
K-medoids (�, � and ©), SMRS (©, � and �) and
LLR-SDS (©, � and �) fail to capture all properties likely
because the concatenated view breaks the underlying distribu-
tion of individual views. In contrast, representatives of our
proposed MSDS-CC (�, � and ©) capture all properties,
since our method preserves the distributions of individual

views and produce a consensus selection. We also visualize the
results after removing the centroid co-regularization term J2
(Fig. 2 (g)) or the diversity regularizer J3 (Fig. 2 (h)) in (5).
It shows that both terms are necessary to ensure a consistent
and diverse selection in the two views. In fact, the proposed
method MSDS-CC outperforms all baselines in all tested cases
(Table I).

C. Proof of Concept

1) Subject and Pose Selection: We further validate the effec-
tiveness of the proposed multi-view representative selection
on the EPFL stereo face dataset [61]. The dataset consists
of 100 subjects, each recorded from 8 different viewpoints
by a pair of calibrated stereo cameras. We randomly select
n subjects and n poses to form a dataset of n × n images,
where n ∈ {2, 4, 6, 8, 10, 12, 14, 16}. Our goal is to capture
all the subjects and poses by selecting a few representative
faces. For example, when we randomly select 4 subjects and
4 poses to form a dataset of 16 images, in the ideal case,
as few as 4 face images should capture all the 4 subjects and
the 4 poses. Similar to [3], we evaluate the performance of
representative selection by the average recall of the subjects
and poses.

To capture the face appearance and pose, for each face
image we extract both the 4096D CNN feature extracted from
the fc7 layer of the pre-trained model VGG-Face [62] and
the 136D facial landmark/fiducial points extracted from dlib
(68 face landmarks with (x,y) coordinates). As can be seen
in Fig. 3, in addition to the highly different feature dimensions,
the distribution of the two types of features are drastically
different as well.
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Fig. 3. Distribution of the (a) appearance features and (b) pose features on
EPFL stereo face dataset (visualized by t-SNE [63]). Features of the same
color indicate the same subject in (a) and the same pose in (b).

TABLE II

AVERAGE RECALL ON EPFL STEREO FACE DATASET. RANDOMLY SELECT

N SUBJECTS AND N POSES TO FORM A DATASET OF n × n IMAGES.
THE RESULTS ARE AVERAGED OVER 100 RUNS

Fig. 4. EPFL stereo face: visualization of the first 4 representatives
selected by each method (column-wise). Duplicate subjects or poses in each
column are highlighted by bounding boxes of the same color. (a) K-medoids,
(b) AASC, (e) SDS and (f) LLR-SDS capture 3 subjects and 3 poses (Average
Recall@4 = 0.75). (c) CMSC and (d) SMRS capture all 4 subjects but
only 3 poses (Average Recall@4 = 0.875). In comparison, (g) our proposed
MSDS-CC captures all the 4 subjects and 4 poses (Average Recall@4 = 1).

Table. II compares the performance of our approach in terms
of average recall on the EPFL stereo face dataset. For each n,
we tune the parameters and average the results over 100 trails.
As shown, except for the case of 2 subjects and 2 poses, where
CMCS and SMRS outperform the proposed MSDS-CC, ours
achieves the highest recall in all other cases.

Fig. 4 shows an example of qualitative results from different
approaches when selecting 4 representative faces with corre-
sponding Average Recall@4. Our approach captures all the
4 subjects and 4 poses with the 4 selected faces, outperforming
the other methods with an Aver age Recall@4 = 1. In com-
parison, K-medoids, AASC, SDS and LLR-SDS capture

TABLE III

COMPARISON OF RECALL WITH VARYING NUMBER OF
REPRESENTATIVES ON THE UCF SPORTS DATASET

3 subjects but only 3 poses (Average Recall@4 = 0.75); both
CMSC and SMRS capture 4 subjects but 3 poses (Average
Recall@4 = 0.875).

2) Action and Scene Selection: Next we evaluate the
effectiveness of the proposed MSDS-CC on UCF Sports
dataset [64]. The UCF Sports dataset consists of 150 videos
of 10 actions in different scenes. Our goal is to capture the
variety of actions and scenes with as few representatives as
possible.

We manually label the scenes with a list of semantic cate-
gories (as shown in Fig. 5) and remove scene categories with
fewer than three videos. This leads to a subset of 127 videos
with 10 actions and 10 scenes. Fig 6 visualizes the correlation
between the actions and scenes. It is shown that some human
actions (e.g., Running) may take place in different scenes
(e.g., Golf Course, Soccer Field, Road). On the other hand,
the same scene may have different actions, e.g., Golf Swing,
Walking and Running can all happen at a Golf Course.

For the representation of actions, we first extract the
improved dense trajectory features [65]. Then we perform
PCA on the resulting HOG, HOF and MBH descriptors to
reduce their dimensions to 1/4 of the original sizes, which
results in 24D, 27D and 48D vectors, respectively. After
concatenating them into 99D descriptors, we encode this
concatenated descriptors by the Fisher Vector with a Gaussian
mixture model (GMM) of 128 Gaussians, producing 25, 344
dimensional features [38]. For the scene representation, we use
pre-trained VGG model on scene recognition [66] and take the
4096D features from the output of the fc7 layer. The scene
representation of each video is obtained by averaging the CNN
features of all frames. Fig. 7 plots the distributions of the two
feature types.

Similar to [3], we evaluate the performance by the average
recall of the actions and scenes. As shown in Table III,
MSDS-CC outperforms all baselines on the UCF sports
dataset. Specifically, MSDS-CC captures diverse actions and
scenes with no duplicates with 8 representatives, and only
misses one action and two scenes with 10 representatives.

D. Video Summarization

1) Datasets: To evaluate the effectiveness of our approach
on video summarization, we experiment on two benchmark
datasets, TVSum [22] and SumMe [10]. TVSum contains
50 videos within 10 categories representing various genres
(e.g., news, how-tos, documentaries and egocentric). It also
provides shot-level importance scores obtained from user
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Fig. 5. Samples from the UCF Sports scene categories (From left to right, top to bottom): Diving Hall, Stadium, Field Wild, Arena, Corridor, Soccer Stadium,
Golf Course, Racecourse, None and Road.

Fig. 6. Action/Scene correlation. Blue blocks indicate the co-existence of a
specific action and scene in some videos. It is shown that human actions may
take place in different scenes and vice versa.

Fig. 7. Distribution of the (a) action features and (b) scene features on UCF
Sports dataset (visualized by t-SNE [63]). Features of the same color indicate
the same action in (a) and the same scene in (b).

annotations. SumMe consists of 25 short user videos covering
a variety of events. Each video has multiple user-summaries in
the form of key shots. The average duration of ground-truth is
13.1% of the video length. In our experiments, we summarize
videos into key shots and evaluate the performance accord-
ingly to facilitate comparisons with prior works on these two
datasets [10], [11], [22], [23], [31].

2) Settings: To capture both low-level visual informa-
tion and high-level semantics, which complement each other
well, we extract both frame-wise GIST features [67] and
C3D features [68] with a step size of 16 frames. The former
has been shown to be capable of capturing the gist of a
scene by summarizing the gradient information at different
scales and orientations. The latter is a deep feature learned
by a 3D convolutional network, which has been shown to be
effective in exploiting the semantic information in videos [68].
The GIST descriptors are computed with 32 Gabor filters
at 4 scales, 8 orientations and 4 × 4 blocks, resulting in

512D features. The C3D features (4096D) are extracted from
the fc6 layer of the pre-trained model.

Since neither of the datasets provides ground-truth tempo-
ral segmentations, we first temporally segment videos into
disjoint intervals by Kernel Temporal Segmentation(KTS)
method [30]. The average length of these segments (i.e., shots)
are around 5 seconds. Both GIST and C3D features are
averaged within each shot to produce the shot features.

To generate a video summary of length l, we follow [10],
[22] to solve the knapsack problem:

max
s∑

i=1

uiφi s.t.
s∑

i=1

ui ni ≤ l, ui ∈ {0, 1} (27)

where s is the total number of shots, φi is the importance
score of the i -th shot, and ni is the length of the i -th shot.
The summary is produced by concatenating shots with ui = 1
chronologically. As in [10], [22], and [31], we set the length
budget l to be 15% in duration of the original video for both
datasets.

3) Implementation Details: Similar to the protocols in [22],
for the subspace learning based baselines (i.e., SMRS [37],
LLR-SDS [3]) and our proposed MSDS-CC, we predicts the
importance score φi of each shot directly. The shot-level scores
φi in (27) is calculated by the consensus weighting w in (5).

We follow [46] to evaluate clustering based baselines
(i.e., K-medoids, AASC [16] and CMSC [15]). As in [46],
clustering is performed on the shots with the number of
clusters set to 20. Then the summary is generated by selecting
the shots that are closest to the centroids of top largest clusters,
with a length budget l.

4) Evaluation: Following prior work [10], [11], [22], [23],
we evaluate the generated summaries by the F-score (F).
Pairwise precision (P) and recall (R) are computed between
the resulting summary and each human-created summary
according to the temporal overlap. Then F-score is computed
as F = P×R

0.5(P+R) . As in [11], we follow [10], [22] to compute
the metrics when there are multiple human-created summaries
of a video.

5) Results: We first validate the effectiveness of multi-
view representative selection for video summarization on both
datasets, in comparison with single-view selection. Summa-
rization by a single feature modality (i.e., GIST or C3D) is



2142 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 5, MAY 2018

Fig. 8. Sample results on TVSum. For each video, the first colorbar shows the Ground Truth (i.e., user annotated importance scores); the second colorbar
shows our summarization results, where yellow intervals indicate shots selected by our proposed MSDS-CC. The bottom row shows sampled frames from
selected shots. (a) Making Sandwich (MS). The averaged F-score is 53.4. (b) Grooming an Animal (GA). The averaged F-score is 60.1.

Fig. 9. Visual comparisons of the summaries produced by different methods on SumMe. The summary from the proposed MSDS-CC method better matches
the ground truth and is able to capture shots that are representative both in motion and appearance with high diversity.

TABLE IV

PERFORMANCE COMPARISON OF SINGLE AND MULTIPLE FEATURES

performed by solving minC
1
2‖X − XC‖2

F + λ‖C‖1,2 [41] and
the multi-view selection (i.e., GIST + C3D) is solved by the
proposed MSDS-CC. The results are presented in Table IV
and shows that our multi-view approach achieves better per-
formance than either view alone on both datasets.

Next, we compare the proposed MSDS-CC with the
baselines on TVSum and SumMe (Table V). Our method
outperforms all clustering-based and subspace-based baselines
on both datasets. For comparison, we also report results
of other summarization methods from published prior
works [10], [11], [11], [22], [31]. It is shown that the proposed
MSDS-CC performs competitively without relying on external

images [22] or learning from user annotated summaries [10],
[11], [31].

Specifically, on TVSum, our approach performs better than
the TVSum benchmark results [22], which uses additional
title-based image search results to help identify canoni-
cal visual concepts shared between the video and images.
Although dppLSTM (Canonical) [11] performs slightly better
than ours, it uses the user annotations on 80% videos from
TVSum for training and the remaining 20% for testing. Fig. 8
shows sample visual results of our method in comparison with
the ground truth annotations.

On SumMe, our proposed MSDS-CC outperforms the
SumMe benchmark results [10], Submodular [31] and
dppLSTM (Canonical) [11], and is comparable to Summary
Transfer [23], all of which use additional videos for training.
Fig. 9 shows visual comparisons of the video summarization
results from different methods.

Additional results from the proposed MSDS-CC on the two
datasets are shown in Fig. 10.
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Fig. 10. Additional summarization results on SumMe (1st row) and TVSum (2nd and 3rd rows). The proposed method is able to capture representative
visual elements that capture the important appearance and motion in these videos.

TABLE V

PERFORMANCE (F-SCORE) OF VARIOUS VIDEO SUMMARIZATION

METHODS ON TVSUM AND SUMME. THE TOP SECTION LISTS

THE PERFORMANCE OF CLUSTERING-BASED AND SUBSPACE
BASED METHODS. THE BOTTOM SECTION LISTS RESULTS

FROM PUBLISHED WORKS. †DENOTES METHODS THAT

USE ADDITIONAL WEB IMAGES AND ‡ DENOTES

METHODS THAT USE ANNOTATED VIDEO
SUMMARIES FOR TRAINING. DASHES

DENOTE UNAVAILABLE DATASET-
METHOD COMBINATIONS

E. Discussions

Comparing to the baselines that use concatenated features
(i.e., K-medoids, SMRS and LLR-SDS), the proposed MSDS-
CC method is better at (1) preserving the underlying data
distributions of individual views and (2) managing unbalanced
feature lengths. Therefore, it performs better when different
feature modalities have disparate distributions (e.g., Sec. IV-B,
Sec. IV-C1, Sec. IV-C2, Sec. IV-D), and/or have highly dif-
ferent dimensions (e.g., Sec. IV-C1, Sec. IV-C2).

Comparing with multi-view spectral clustering baselines
(AASC and CMSC), MSDS-CC can better handle the discrep-
ancies across views, e.g., when data points belong to different
groups in different views (Sec. IV-B). This is because our
method encourages a consensus selection based on the view-
specific selection weights, which are optimized view-wise
thus respect view-specific distributions. Contrarily, AASC and
CMSC look for a consensus clustering via the embedding fea-
ture space, thus may not handle the disagreement in different
views well.

Similar to SMRS and SDS, a drawback of the proposed
method is that it may be sensitive to the outliers at the border
of the convex hull. A possible solution is to perform outlier

removal (similar to [37]) after obtaining the view-specific
selection matrix C(v) in each iteration.

It is also worth noting that using low-level features alone
may produce sub-optimal results for the task of video summa-
rization. For instance, we have examined the performance of
the proposed MSDS-CC when using GIST and HOF features
on TVSum and SumMe. Although the proposed multi-view
selection based summarization using two low-level features
(i.e., GIST + HOF) performs better than each single feature
alone (GIST or HOF), it performs worse than that achieved by
GIST + C3D (low-level + high-level features). Empirically,
we have found that a combination of low-level and high-
level features perform well for the task of video summa-
rization, as they can complement each other well. As shown
in Table IV, the low-level feature GIST performs better than
the high-level feature C3D on the SumMe dataset, while
the opposite is observed on the TVSum dataset. Using the
proposed MSDS-CC approach, we are able to produce a
consensus selection of visual elements across multiple feature
modalities, producing better summaries than using each single
feature alone on both datasets.

V. CONCLUSION

Video summaries can be produced by selecting represen-
tative visual elements (e.g., objects, frames, shots) from a
video. However, as the representativeness depends on the
visual representation (i.e., features), the question becomes
how to derive a consensus selection across multiple views
(i.e., feature modalities). To this end, we propose to formulate
the video summarization problem as the multi-view sparse dic-
tionary selection with centroid co-regularization (MSDS-CC),
which optimizes the selection in each individual view while
regularizing the view-specific selections towards a consensus
selection (i.e., centroid co-regularization). Experimental results
on synthetic and challenging benchmark datasets demonstrate
the effectiveness of the proposed approach for video summa-
rization and its applicability to other applications.
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