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Abstract—Given a specific object as query, object instance
search aims to not only retrieve the images or frames that
contain the query, but also locate all its occurrences. In this
work, we explore the use of spatio-temporal cues to improve the
quality of object instance search from videos. To this end, we
formulate this problem as the spatio-temporal trajectory search
problem, where a trajectory is a sequence of bounding boxes that
locate the object instance in each frame. The goal is to find the
top- trajectories that are likely to contain the target object.
Despite the large number of trajectory candidates, we build on
a recent spatio-temporal search algorithm for event detection
to efficiently find the optimal spatio-temporal trajectories in
large video volumes, with complexity linear to the video volume
size. We solve the key bottleneck in applying this approach to
object instance search by leveraging a randomized approach to
enable fast scoring of any bounding boxes in the video volume. In
addition, we present a new dataset for video object instance search.
Experimental results on a 73-hour video dataset demonstrate that
our approach improves the performance of video object instance
search and localization over the state-of-the-art search and
tracking methods.
Index Terms—Object instance search, spatio-temporal

trajectory, video.

I. INTRODUCTION

O BJECT instance search aims to search for and locate
instances of a particular object in large image or video

datasets. This problem arises from the needs for object-in-
stance-level annotation and retrieval in big visual data, which
are crucial for applications such as contextual advertising and
embedded marketing in online videos [1]. Specifically, knowing
exactly which frames and locations in these frames where a
particular product appears in a video not only enables closer
correlation of the content of an ad to the content of the video,
but also allows for accurate measurements of the relevance of
the product of interest in specific contexts by tracking users' in-
teractions with it (e.g., click-through rate). Consequently, better
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models for allocating and pricing advertising inventory can be
built to maximize revenues for both the content providers and
the seller of the product.
Although much progress has been made in object instance

search on large-scale image datasets in the past decade [2]–[11],
little has been done on videos, which concerns about locating in-
stances of the query object in the spatio-temporal video volume.
Although named Video Google, [6] treats each video frame in-
dependently and returns a ranked list of keyframes or shots of
a video that contain the object. The temporal consistency be-
tween the video frames is largely ignored except for when re-
jecting unstable regions across frames in a shot. Similarly, the
TRECVID object instance search challenge searches for shots
that contain a topic (i.e., object) without concerning about its
location in each frame or how many frames in the shot contain
the topic [12]–[15]. Therefore, in essence these approaches are
still tailored for images.
In this work, we explore how to efficiently utilize the spatio-

temporal cues to improve object instance search in 3D video
volumes. Inspired by the bounding box search that locates object
instances in images [7], [3], we propose to formulate object in-
stance search in videos as spatio-temporal trajectory discovery
problem, where each trajectory is a temporal series of bounding
boxes that locate the object of interest across frames. Our goal
is therefore to find the top- trajectories that locate and track
the object instances in videos. The trajectories are ranked by the
summations of its bounding box scores.
As an object instance can appear in any frame and at any

location, the number of trajectory candidates is huge. We build
on the recent dynamic programming approach of Max-Path
search [16] to locate the top- trajectories efficiently in large
video corpus, with complexity linear to the video volume size.
However, Max-Path search requires a 3D trellis structure,
which connects per frame bounding boxes that are scored prior
to the spatio-temporal search. Such a trellis is usually built
per frame by a sliding-window based scoring of all considered
bounding boxes across different scales and aspect ratios, which
is computationally expensive. While this may be less of a con-
cern for detection problems, as real-time processing is usually
good enough, it is prohibitive when searching tens of hours
of videos. This bottleneck is the key challenge in adapting
Max-Path search for detection problems to object instance
search in large video volumes. We address this challenge
by leveraging a randomized scheme to efficiently generate
pixel-wise confidence scores. It is achieved by averaging the
matching score of each pixel over a pool of randomly generated
image patches, thus avoiding a sliding-window scanning of
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Fig. 1. Example videos from the 73-hour video dataset (only one keyframe is shown for each video). Videos with annotated object locations are from NTU-VOI.
The remaining are distractors from Stanford I2V [18]. Three example queries are given on the left: KittyB, NTU, and Pokka (Table I). Their ground truth locations
are annotated by magenta, blue, and red bounding boxes, respectively. The NTU-VOI dataset comprises diverse scenes, most of which are cluttered with small
target objects. This makes NTU-VOI a challenging dataset for object instance search and localization. Best viewed in color and magnification.

all pixels, which is time consuming. Consequently, the score
of any bounding box can be calculated as the summation of
pixel scores inside the bounding box, which is only using
integral images [17].
In this paper, we formulate the problem of object in-

stance search in videos as the problem of finding the top-
spatio-temporal trajectories in videos. Experimentally it
shows that by enforcing spatio-temporal consistency via tra-
jectory search, we can improve search accuracy over other
state-of-the-art methods that treat frames independently.
To efficiently find the top- trajectories, we extend the
Max-Path search to large video volumes by utilizing a ran-
domized scheme to quickly obtain per pixel confidence scores.
Therefore we can efficiently score all possible bounding
boxes to build the 3D trellis that supports Max-Path search.
In addition, we make a new video dataset available to the
research community, called NTU Video-Object-Instance
(NTU-VOI): https://sites.google.com/site/jingjingmengsite/re-
search/ntu-voi/data. It consists of 146 clips captured by mobile
cameras or downloaded from YouTube, with frame-wise
bounding box annotations of object instances. In total 33,018
frames are annotated. More information on this dataset can be
found in Section V-A. To our best knowledge, this is the first
video dataset available that provides per frame bounding box
annotations of object instances. The YouTube-Objects dataset is
another dataset of annotated object videos from YouTube [19].
However it annotates object classes instead of specific object
instances. Also, for each class, the bounding box annotations
are only provided for one frame per shot on 100–290 different
shots, rather than for all ground truth frames. Recent Stanford
I2V dataset [18] is a large-scale video dataset with annotated
ground-truth video clips and precise temporal segments, but the
bounding box locations in ground truth frames are not provided.
We have experimentally evaluated our proposed approach

on a 73-hour video dataset (Fig. 1). It is shown that our ap-
proach improves the performance of object instance search and
localization when compared with the state-of-the-art search and
tracking methods [20], [2], [21]. Its effectiveness in incorpo-
rating spatio-temporal cues into search is also demonstrated by

its ability to find object occurrences in cluttered scenes regard-
less of large appearance variations due to motion blur, occlu-
sions, and changes in viewpoint, illumination and color. The top
100 trajectories of an object instance in the 73-hour dataset can
be found in 200 seconds.

II. RELATED WORK

A. Object Instance Search in Images Versus in Videos
Object instance search in images has received much interest

in recent years [3]–[6]. The seminal work [6] first recasts object
search as text retrieval. It introduces inverted file index on quan-
tized descriptors and the Bag-of-Words (BoW) model to make
fast matching possible on large image datasets. Since then, it has
spawn much work on instance search in large image datasets as
well as in video shots. For instance, TRECVID instance search
challenge aims to locate video shots that most likely to contain
a query topic. Most earlier systems first down-sample videos
to keyframes, and consider the task as an image retrieval or in-
stance search problem to find keyframes that are most likely to
contain the query topics [12]–[15]. Recently, aggregation over
several keyframes per shot into a single global signature has
been shown to boost the search performance, such as repre-
senting each shot by the average of the BoW vectors of its mul-
tiple keyframes [22]–[24].
In comparison, object instance search in videos is at a much

finer grain compared with the problem above. The goal is to
pinpoint the spatio-temporal locations of the object across the
3D video volume in order to enable finer-grain user interac-
tion. The main drawback of directly applying instance search
approaches for images to videos is the loss of spatio-temporal
context across video frames, which results in sub-optimal per-
formance, as will be shown in our experiments (Section VI-A).
Existing approaches focus on the use of temporal continuity to
improve the quality of feature descriptors [6], [25], [26]. The
regions detected in each frame within a shot are first tracked
and then aggregated to describe this scene region throughout the
track. In comparison, we enforce spatio-temporal consistency
at the trajectory level instead of feature descriptor level. Also
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we do not rely on tracking to find correspondences (between
bounding boxes in our case) across frames.
Nevertheless, our approach does benefit from the design of

existing image-based instance search systems in the way we
adopt the feature descriptor quantization and inverted file index
to enable efficient frame-wise filtering and matching [6]. Re-
cently, approaches based on higher order statistics [27]–[30]
have shown to achieve better search performance than the clas-
sical BoW model and its variants [31]. Furthermore, by decom-
posing the global appearance model and similarity measure of
Vector of Locally Aggregated Descriptors (VLAD) and Fisher
vector, [3] permits the application of much larger vocabularies
in these high order descriptors, which were earlier prohibited
by the amount of processing memory it requires. This results
in a substantial improvement of performance in generic object
instance search in images with a single example. Although we
employ the simple quantized SIFT descriptors [32] in this work,
our approach does not forbid the use of decomposed VLAD and
Fisher vectors [3].

B. Object Localization

For instance search in images, locations of object instances
are usually obtained by post-processing through geometric
verification, such as Random sample consensus (RANSAC)
[8]. However RANSAC requires sufficient number of matched
points to reliably estimate a transformation. Alternatively,
efficient subimage retrieval (ESR) [7] and efficient subwindow
search (ESS) [33] have been proposed to find the subimage with
maximum similarity to the query, which are much faster than
the exhaustive sliding window approach. In addition, spatial
random partition is proposed in [34] to discover and locate
visual common objects. The common limitation of the above
approaches is that the localization is performed independently
on individual images or frames. Therefore, these approaches do
not enforce spatio-temporal consistency across video frames.
Recently, category-independent object proposals have become
a popular approach, which enhances the efficiency of object
detection by only evaluating bounding box locations that are
likely to contain an object [35]–[38]. References [39] and
[40] extend recent 2D object proposal methods to generate
spatio-temporal video tube proposals for action detection
and localization. As [39] uses optical flow as a cue to derive
similarity for both supervoxel and proposal generation, it is
more effective when the object is in motion with respect to
the background. Similarly, [40] relies on the estimation of the
dominant motion and an independent motion evidence map to
compute initial supervoxels.
Besides video proposal methods [39], [40], Max-Path search

[41], [16] has also been proposed for spatio-temporal event
detection. It uses dynamic programming to search for the
optimal path over the 3D trellis connecting bounding boxes
that are scored prior to the spatio-temporal search. The key
challenge to extend Max-Path to the problem of object instance
search in videos, however, is the computational cost of scoring
all considered bounding boxes in order to construct such a
trellis. A sliding-window based scoring of bounding boxes is
viable for detection problems, as real-time processing is usually

good enough [16]. But it is infeasible for any practical search
systems. We tackle this challenge in this work by leveraging a
randomized approach to quickly obtain pixel-wise confidence
scores, which in combination with integral images [17] permits
the application of Max-Path search to large video datasets.
We are the first to extend Max-Path search to the problem

of finding object trajectories in large video volumes. Some pre-
liminary results on a 5.5-hour consumer video dataset have been
published in [42]. Our previous work [43] is closest to this work
in that it combines Hough Voting and Max-Path search to lo-
cate object centers in a video sequence. However, it can only
produce trajectories of the object center rather than the object
itself. Moreover, it is not efficient for large scale videos.

III. SPATIO-TEMPORAL SEARCH OF OBJECT INSTANCES

A. Problem Formulation

Consider the entire video database as a long video sequence
, where is the frame with a

size of . Given a query object , our goal is to find in a
number of spatio-temporal trajectories of bounding boxes such
that each trajectory captures one instance of in .
Denote a trajectory as a temporal sequence of

spatial bounding boxes that locate the object instance in each
frame , where and are the center
coordinates, and are the scale and aspect ratio of bounding
box , and is its temporal index. Then each trajectory

should satisfy the following constraints: 1) the
smoothness constraint of the trajectory: ,

, , where
is the valid neighborhood size that the center of one bounding
box can move to in the next frame; 2) the smoothness constraint
of the bounding box scale: , where

and a bounding box is only allowed to change to one
of these three relative scales in the next frame.
These two constraints ensure the spatio-temporal trajectory

can track and accurately locate the object in the video, despite
the camera motion, object motion and scale variations. It is also
worth noting that for each trajectory of bounding boxes, it can
start and end at any temporal or spatial location within the 3D
video volume, as long as the temporal index of the start point is
before that of the end point.
Assume we can score any bounding box in a given video

frame, and denote as its discriminative score, i.e., a pos-
itive score of shows positive evidence of the object in-
stance's presencewhile a negative score of shows negative
evidence. Given a trajectory , its confidence score is cal-
culated as the sum of the discriminative scores of the bounding
boxes along , i.e.

(1)

Similarly, a large positive score indicates that the object
is highly likely to appear along , and a negative score indi-
cates otherwise. Given a video database and a query object
, our objective is to find the top trajectories that capture
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instances of the object query. Our top- trajectory search is
then formulated as the following optimization problem:

s.t.
(2)

Here indicates the set of all possible trajectories in , while
is a subset of trajectories we are searching for. We also

assume that trajectories do not overlap with each other, which
simplifies the search and is also a reasonable assumption for
object instance search. As the trajectories do not overlap with
each other, the top- search will boil down to the search of the
individual best trajectories

(3)

The search is repeated times by removing the current best
path from once discovered.
However, the search of optimal spatio-temporal trajectory is

still a non-trivial problem given the huge number of trajectory
candidates in , which can start and end at any spatio-temporal
location in the video and also carry bounding boxes of arbitrary
sizes. The search space of all possible trajectories is

, where is the size of the 3D video volume, and
is the smoothness constraints of , as defined in the previous

section. In the following section, wewill explain how to perform
the fast spatio-temporal trajectory search.

B. Fast Spatio-Temporal Trajectory Search
Exhaustively searching for the globally optimal trajectory

(2) is infeasible due to the exponential complexity
of the problem. To reduce the search complexity, we propose
to employ the Max-Path search approach proposed in [41],
[16], which uses dynamic programming to obtain the globally
optimal trajectory.
Here we briefly explain the procedure of Max-Path search.

Max-Path search runs on a 3D trellis structure that connects
per frame bounding boxes that are scored prior to the spatio-
temporal search. The Max-Path search starts from all possible
bounding boxes in the first frame, where each bounding box
initiates a trajectory and tries to propagate it from the current
frame to the next. Given the smoothness constraint of the tra-
jectory, each bounding box will only search for bounding boxes
in its neighborhood in the next frame. Whether the trajectory
can continue or cannot depends on the accumulated score of the
trajectory . If is positive, then the trajectory continues
to grow; otherwise, a new path will be initiated from the current
bounding box. During the search, each bounding box carries
the positive score , which is the best score of all possible
trajectories ended at , and passes it to the next bounding box
in the trajectory. Once the search reaches the final frame, we
can find the best trajectory by the highest score . Multiple
trajectories can be found by removing the current best trajec-
tory at the end of each round before searching for the next best
trajectory. As proven in [41], [16], such a dynamic program-
ming strategy can guarantee to find the best trajectory among

all candidates, with complexity linear to the video volume size
.

Despite the successes of applying the Max-Path search to
the action detection problem, its extension to object instance
search is however not straightforward. As we are searching a
large video corpus, it will be computationally expensive to use
a sliding-window approach to obtain the bounding box score

at all locations and scales [41]. This is less of a concern
for detection problems, where real-time processing is usually
good enough. Particularly, note that with a single example, we
do not train a discriminative classifier, but directly match the
query against the dataset. Exhaustively matching the query at

locations and varying scales in each frame is prohibitive
for large video volumes.
In the following section, we will explain how to efficiently

obtain the confidence scores of any considered bounding boxes
in order to extend Max-Path search to video instance search.

C. Efficient Confidence Map Generation

We observe that efficient calculation of any bounding box
score requires an additive scoring scheme. In other words, if
the score of any bounding box can be calculated as the sum
of the scores of its containing pixels or interest points [10], we
can quickly obtain the score of any bounding box using integral
images [17]. Note that image search methods based on global
descriptors cannot serve this purpose, as they do not provide
matching scores at such a fine level. Hence, we propose to use
Randomized Visual Phrases (RVP) to efficiently obtain pixel-
wise confidence scores in each frame [4]. Moreover, scoring on
the resulting confidence maps from RVP satisfies the additive
property.
Specifically, given a query, we match it with a collection of

overlapping random patches in each database image, generated
by partitioning the database image using a set of random tem-
plates. Each random patch bundles a collection of visual words
and is called a visual phrase. We independently calculate the
matching score between each RVP and the query object, and
treat it as the voting weight of the corresponding patch. The con-
fidence score of a pixel can then be calculated as the average
of the voting scores of the RVPs that cover this pixel

(4)

where is the total number of RVPs (i.e., patches) covering
pixel , which is equal to the partition rounds, and
is the matching score of a patch. In our implementation, we
use histogram intersection as the similarity measure
to compute . Given the histogram representation of
the query, , and that of a patch, , which describe the
respective visual word frequency, the histogram intersection

.
This randomized approach offers two benefits. First, it re-

sults in more accurate matching, as spatial context of varying
sizes has been taken into consideration. Second, it generates
pixel-wise confidence scores efficiently, as only a few patches in
each image are evaluated and aggregated to produce the confi-
dence map. However, the original RVP relies on a heuristic seg-
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Fig. 2. Overview of proposed approach to find object trajectories in videos. Video keyframes are first matched with the query to produce confidence maps with
pixel-wise matching score ( row, Section III-C). Next, low confidence videos (the gray cuboids in the row) are filtered by ranking videos based on the
keyframe scores (Section III-D). Max-Path search then finds the globally optimal object trajectories in top ranked videos and re-ranks them according to the trajec-
tory scores (Section III-B). Ground truth locations are highlighted in dashed blue boxes in the found trajectories ( row). Best viewed in color and magnification.

mentation coefficient to rank images and locate target objects
in each image [4]. On the contrary, in this workwe useMax-Path
search to jointly evaluate confidence maps across video frames
(Section III-B), instead of segmenting individual frames inde-
pendently. Our approach not only removes the dependency of
search and localization on the segmentation coefficient , but
also boosts the search performance by leveraging the spatio-
temporal cues (Section VI-A3).
As the resulting confidence maps are not discriminative

for Max-Path search [41]. Similar to [41], we add a negative
threshold to each confidence map to introduce negative values.
To accommodate object appearance variations in different
video, instead of a fixed threshold [41], we set the threshold
adaptively to be proportional to the average pixel-wise confi-
dence score of each video (excluding zero confidence maps).
If we denote the total number of non-zero confidence maps in
video as , the threshold is calculated as

(5)

and is the average pixel-wise confidence score of frame ,
defined as

(6)

where is the total number of non-zero pixels in frame , and
indicates the confidence score of pixel calculated by

(4). The final confidence score of pixel is computed as

(7)

We shall examine how the negative coefficient affects the
search performance in Section VI-A3.
Once we obtain the discriminative confidence map with

pixel-wise confidence score, given any bounding box , its
confidence score can be calculated as the summation
of the confidence scores of pixels inside . This is an
operation with the help of integral images.

D. Coarse-to-Fine Search
To further improve efficiency, we perform the search in two

steps. Given a query, we first match it against coarsely sam-
pled keyframes to fast rank videos based on the best matched
keyframes. Only for those top ranked videos, we refine the
search and localization using Max-Path to find the globally
optimal object trajectories, which is more computationally
expensive. In fact, any image search methods besides RVP
can be used to generate the initial ranking of all videos, such
as Scalable compressed Fisher Vectors (SCFV) tested in our
experiments (Section VI-A1). We choose to use RVP because
it can both produce the initial video ranking and generate the
confidence maps for Max-Path in a single run.
Fig. 2 summarizes our propose approach for spatio-temporal

trajectory discovery.

IV. EVALUATION METRICS

We use the widely adopted average precision (AP) and mean
average precision (mAP) measures to evaluate the search per-
formance. Given a ranked list of R retrieved results, the AP is
calculated as the area under the precision-recall curve

(8)
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where is the precision at cut-off in the ranked list, and
is an indicator function which equals 1 if the result

is relevant (positive), 0 if otherwise. mAP is the mean average
precision over all queries.

A. Video mAP

Video mAP evaluates how effective a search system finds the
ground truth clips that contain the query object, without consid-
ering the exact locations of the object within each retrieved clip.
Similar to image retrieval systems [44], we calculate the video
average precision (video AP) as the area under the precision-re-
call curve given a ranked list of videos, and video mAP is de-
fined as the mean of video APs over all queries. Precision is the
number of returned positive videos relative to the total number
of returned videos. Recall is the number of returned positive
videos relative to the total number of positives in the dataset. A
video is considered positive if it indeed contains the query ob-
ject, and negative if otherwise.

B. Trajectory mAP

To evaluate the search quality more precisely, we also in-
troduce the trajectory mAP metric. Different from video mAP,
trajectory AP and mAP are calculated based on a ranked list
of object trajectories instead of videos. Precision is defined as
the number of returned positive trajectories relative to the total
number of returned trajectories. Recall is the number of returned
positive trajectories relative to the total number of positives in
the dataset. As we assume that the trajectories are non-overlap-
ping (Section III-A), we only find one best trajectory for each
video and rank them.
However, to obtain the trajectory-wise precision-recall

curves, we need a criterion to judge whether a returned trajec-
tory is positive. It is straightforward for images and videos, but
not so obvious for trajectories. Therefore, we introduce Path
IoU [16] to measure this relevance, which is the overlapped
volume of two paths divided by the union volume of the two.
Formally

(9)

where is the total number of frames in the sequence,
is the bounding box of trajectory in frame , and is the
bounding box of trajectory at the same temporal location.
If we denote the ground truth trajectory as , a retrieved tra-
jectory is positive when , and negative
otherwise. is the threshold.
We note that the trajectory-based metric is more challenging

and more precise for evaluating the relevance of retrieved tra-
jectories to the ground truth trajectory. This score approaches
1, i.e., 100%, when a returned trajectory fully overlaps with
the ground-truth trajectory, and will be 0 when the two have no
overlaps.

TABLE I
STATISTICS OF GROUND TRUTH (GT) OBJECT
INSTANCE TRAJECTORIES IN VOI DATASET

V. EXPERIMENTAL SETUP

A. Dataset
We evaluate the proposed approach on a 73-hour video

dataset, comprising 26-minute ground truth videos and a subset
of Stanford I2V dataset [18] as distractors.
The ground truth set, called NTU Video-Object-Instance

dataset (NTU-VOI), consists of 146 video clips captured by
mobile cameras or downloaded from YouTube, with per-frame
bounding box annotations of target object locations (i.e., the
10 queries in Table I). Each clip consists of a single shot
and contains up to two ground truth trajectories. The average
duration of these clips is 10.54 seconds. The annotations are
obtained by four trained student helpers using the LabelMe
Video tool [45]. In total 151 trajectories with a total of 33,018
frames are annotated. As can be seen in Fig. 1, the VOI dataset
covers diverse scenes, most of which are cluttered with the
target objects occupying only a small portion of the frame. This
makes VOI a challenging dataset for object instance search and
localization. We release VOI for future research, which can
be accessed at: https://sites.google.com/site/jingjingmengsite/
research/ntu-voi/data.
The distractor set consists of all I2V October 2012 newscast

videos that have a resolution greater than 800 450 pixels. The
average duration of distractor clips is 2.5 minutes.
All 73-hour videos are first resized to a spatial resolution

of 800 450 pixels, then sampled uniformly at 1 fps, resulting
in 263,180 keyframes. Although advanced keyframe detec-
tion methods [46], [47] can be applied instead to obtain the
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keyframes, uniform sampling works reasonably well for this
dataset.

B. Queries
Table I summarizes the statistics of the 10 query objects used

in our experiments. Among them, KittyB, KittyG and Plane are
3D objects, while the remaining 7 are 2D objects. For a fair eval-
uation, external images are used as queries instead of objects
cropped out from the testing video frames. Specifically, for each
3D object, we take one picture from a single view as the query.
For the 2D objects, we use Google search with the text object
name to obtain the query image. The query images are shown
in Table I as well. In all our experiments, only a single query
image is used to search an object.

VI. EXPERIMENTAL RESULTS

A. Video mAP
As video mAP does not concern about the exact object

locations within retrieved clips, image search methods can
be directly applied to rank videos and calculate video mAP.
To this end, we evaluate two existing visual search systems
in comparison with our proposed trajectory discovery ap-
proach, which we call as Randomized Visual Phrases with
Max-Path search (RVP-MP). The two baseline methods we
compare with are: (1) Scalable compressed Fisher vector with
RANSAC (SCFV-RANSAC), which is based on global de-
scriptor matching followed by RANSAC geometric verification
[20], and (2) the baseline RVP (RVP-Baseline) [2], which is
based on bundled local descriptors. It is worth mentioning that
both baseline systems rank videos based on the score of the
best matched keyframe, while the proposed RVP-MP ranks
videos by trajectory scores. For each query, we compute video
AP based on the top 100 retrieved videos. And we average the
APs over the 10 queries to get the video mAP. In the following,
we first explain the implementation of the two baseline systems
and our proposed RVP-MP, then we present our results.
1) SCFV-RANSAC: Scalable compressed Fisher vector

(SCFV) is a state-of-the-art global image descriptor [20], which
has been adopted by the MPEG standardization of compact
descriptor for visual search (CDVS). In our experiments, the
performance of SCFV followed by RANSAC geometric verifi-
cation is tested using the API from the authors. The dimension
of local descriptors is reduced to 32 using PCA, and the number
of Gaussian mixture components is set to 512. As in [20], a
separate set of images (also from the authors) is used to train
the Guassian mixture model, PCA and correlation weights.
For each video, we first generate the global descriptor SCFVs

for all keyframes, which are matched against the SCFV sig-
nature of the query to obtain a ranked keyframe list. Then we
re-rank the top 200 keyframes of each video using RANSAC.
The best matched keyframe after geometric verification is
picked to score and rank database videos.
2) RVP-Baseline: As mentioned before, RVP is a state-of-

the-art visual object search method for image datasets. Its good
search quality can be attributed to its ability to provide robust
matching under varying spatial contexts, thanks to a randomized
partition scheme.

TABLE II
VIDEO MAP ON TOP 100 RETRIEVED CLIPS

Fig. 3. Impact of on video mAP: our RVP-MP method consistently outper-
forms the RVP-Baseline [2] and SCFV-RANSAC [20] as changes from
to .

In our experiments, interest points are first extracted using
Hessian-Affine detectors [48] and represented as SIFT local de-
scriptors [32]. SIFTs are sampled every 10th keyframe to build
a vocabulary of 1 M words using FLANN [49]. Once all SIFTs
are quantized and indexed into an inverted file for each video,
we run RVP to rank keyframes of each video. We use as
the matching kernel for RVP and the partition parameters is set
to 200 rounds of partitions with 8 4-sized random templates.
As RVP ranks images based on the scores of segmented

salient regions, we test RVP under varied segmentation
threshold . Table II summarizes
the video mAP of SCFV-RANSAC and that of RVP-Baseline
under different . It is shown that even without geometric
verification, RVP-Baseline achieves comparable video mAP as
SCFV-RANSAC.
3) RVP-MP: Different from the above two baseline ap-

proaches, RVP-MP uses the best trajectory score instead of the
best keyframe score as video score to rank database videos.
The best trajectory score is calculated as the Max-Path score of
each video [i.e., , (3)].
As mentioned in Section III-C, we only apply Max-Path

search on top ranked videos for efficiency. Therefore we first
follow the baseline RVP Section VI-A2, with ) to ob-
tain a ranked list of database videos based on the best keyframe
score. Then for each of the top 100 clips, we run Max-Path
search on the resulting confidence maps from RVP to find the
best trajectory , and use to re-rank the top 100 clips
accordingly. We use the Max-Path algorithm with multi-scale
extension and a starting height of 60 pixels. The aspect ratio
is fixed to be the same as that of the query. The spatial step is
set to 10 pixels and the temporal step is synchronized with the
keyframe sample rate (i.e., 1 fps).We compute the summations
of multi-scale bounding boxes using integral images [17].
The video mAP of RVP-MP is evaluated under varying

negative coefficient (5). Fig. 3 illustrates the video mAP of
RVP-MP in comparison with RVP-Baseline and
SCFV-RANSAC, as increases from to , at an
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TABLE III
VIDEO MAP ON TOP 100 RETRIEVED CLIPS. RVP-MP CONSISTENTLY IMPROVES AP ON ALL QUERIES OVER
RVP-BASELINE, EXCEPT FOR FERRARI (SAME AP). OVERALL RVP-MP IMPROVES RVP-BASELINE BY 16.71%.

interval of 0.5. It is observed that our RVP-MP consistently
outperforms the other two methods regardless of changing .
When , RVP-MP improves RVP-Baseline by 16.71%
and SCFV-RANSAC by 22.17%. It validates that spatio-tem-
poral consistency is beneficial to object instance search in
videos.
Furthermore, Table III demonstrates the effectiveness of

ranking video using object trajectory scores instead of best
matched keyframe scores. It is shown that RVP-MP
consistently improves the video AP across all queries over
RVP-Baseline, except for one query (i.e., Ferrari) that achieves
the same video AP. The average improvement on video AP is
39.78%. Because RVP-MP is not sensitive to , we fix at

in all the following experiments.

B. Trajectory mAP

1) RVP-MP Versus KCF: Besides Max-Path, an alternative
approach to obtain object trajectories in videos is tracking.
Therefore, we adapt a state-of-the-art tracking method to the
problem of object instance search in videos, and compare its
performance with RVP-MP in terms of trajectory mAP.
We use Kernelized Correlation Filters (KCF) [21] with the

source code provided by the authors. The chosen kernel is
Gaussian. To make a fair comparison with RVP-MP, we start
with the same top 100 videos obtained by the baseline RVP,
with a segmentation threshold (Section VI-A2). To
initialize the tracker in each of the top 100 clips, we fit a
bounding box to the segmented region from the best matched
keyframe in this clip. We consider the resulting bounding box
as valid if it has a minimum height of 60 pixels. Otherwise
we check the box from the second best keyframe, and so
on. Empirically we observe that this unsupervised approach
produces reasonable initialization results. Once we obtain the
initial bounding box of a clip, we run the KCF tracker from
the initialization frame forward and backward, and concatenate
the two trajectories as the final trajectory. Note that although
SCFV-RANSAC (Section VI-A1) can also provide object
bounding box locations to initialize the tracker, we observe
that it produces much fewer reliable bounding boxes compared
to RVP. This is because the target objects are usually small;
hence the number of matched points are insufficient to reliably
estimate a transformation using RANSAC.
As the KCF tracker runs on every frame instead of just the

keyframes, for RVP-MP, we also run the Max-Path algorithm
across all frames. The other Max-Path parameters remain the
same as in previous Section VI-A3. Following (9), for the
computation of the precision-recall curves and consequently
the trajectory mAP, we consider a trajectory positive if

Fig. 4. Two example queries (left) and top trajectories returned by our method.
Each trajectory is represented by one keyframe with the magnified object region
below or above the keyframe. The red boxes indicate our results, and the green
boxes indicate the ground truth annotations. Given a single query example, our
approach is able to find its occurrences in cluttered scenes regardless of ap-
pearance variations due to occlusions, motion blur, and changes in viewpoint,
illumination, and color. Best viewed in color and magnification.

, where G is the annotated ground truth
trajectory and is the overlap threshold.
Fig. 4 demonstrates that even on the highly cluttered

NTU-VOI dataset, the proposed RVP-MP is able to find object
trajectories with large appearance variations due to viewpoint
changes, illumination changes, color changes, motion blur and
occlusions.
Fig. 5 shows visual comparisons of example trajectory search

results fromRVP-MP and KCF.We can see that a typical tracker
like KCF fails to terminate the trajectory when the object exits
the scene [1st row, Fig. 5(a)]. On the contrary, our RVP-MP ap-
proach can discover the start and end points of each trajectory
automatically [2nd row, Fig. 5(a)]. In addition, as the initial ob-
ject location for KCF is given by the best segmented bounding
box generated by the baseline RVP, an inaccurate initial estima-
tion of the object size (i.e., size of initial bounding box) will be
carried on by the tracker, thus affecting the accuracy of the re-
sulting trajectory [1st row, Fig. 5(b)]. On the other hand, using
multi-scale Max-Path search, RVP-MP can search for and ad-
just the sizes of bounding boxes along the trajectory [2nd row,
Fig. 5(b)].
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Fig. 5. Example search results of (a) “KittyG” and (b) “Plane”. Results of KCF tracker [21] are denoted in yellow bounding boxes in the top rows. Results of
RVP-MP are in red in the bottom rows. Ground truth bounding boxes are in green. (a) KCF fails to find the correct start and end points of the trajectory when the
object enters and exits the scene, while RVP-MP discover the start and end points automatically. (b) An inaccurate initial estimation of bounding box size will be
carried on by KCF, while RVP-MP searches for the best bounding box size given the confidence maps. Best viewed in color and magnification.

Fig. 6. Trajectory mAP: our RVP-MP method consistently outperforms KCF
tracker [21] in a wide range of overlap ratio .

Fig. 6 compares the trajectory mAP of RVP-MP and
KCF with different overlap ratio . It shows that RVP-MP
consistently outperforms KCF on trajectory mAP as in-
creases from 0.1 to 0.7. The improvement is between 7 and
197% (39.05%, 14.63%, 20.76%, 7.13%, 70.46%, 197.10%,
163.08%, respectively).
Fig. 7 presents more example trajectories resulting from

RVP-MP. Our approach accurately locates the objects regard-
less of varying viewpoint (1st and 2nd row) and scale (2nd
rows), reflection (2nd row) and occlusions (3rd row). In addi-
tion, it can automatically discover the start and end points of
each trajectory (Fig. 7, 4th–6th rows).
2) Parameter Sensitivity: We test theMax-Path search at dif-

ferent temporal granularities: 1 fps, 2 fps, 3 fps, 5 fps, 10 fps, up
to every frame. Fig. 8 plots the trajectory mAP of RVP-MP with
different temporal sample intervals, with respect to the overlap
ratio . As can be seen, the performance of RVP-MP degrades
gracefully as the temporal step increases.

C. Efficiency

All experiments were conducted on a quadcore dual-pro-
cessor machine with 2.30 GHz CPU and 32 GB RAM, without
GPU. We parallelized both RVP and Max-Path search in 8
threads and implemented the algorithms in . Excluding
I/O, the average time to obtain the top 100 trajectories for a
query object instance is 200 seconds on the 73-hour dataset.
Although less accurate, KCF tracker using RVP-Baseline for
initialization is faster than RVP-MP. It takes only 142 seconds
on average to obtain the top 100 trajectories.

D. Discussions

Experimental evaluation shows that object trajectories are a
better indicator of video relevance compared with individual
frames. This validates that ensuring spatio-temporal consistency
is beneficial to object instance search in videos because it helps
filter false alarms and reduce missed detections caused by ap-
pearance variations or cluttered backgrounds. This is because
the false positives usually appear randomly at inconsistent spa-
tial locations, in the long run, the accumulated trajectory confi-
dence score of a false positive path cannot be greater than that of
the true object trajectory. On the other hand, occasional missed
detections can be recovered as long as the accumulated confi-
dence score of the trajectory is sufficiently high.
When spatio-temporal localization is considered for a more

precise evaluation of search quality, in terms of trajectory mAP,
Max-Path is shown superior to the state-of-the-art KCF tracker
(with the initial bounding box being produced by RVP). The
main advantage of Max-Path search over tracking is its ability
to automatically discover the starting and ending frames of the
object trajectory. Meanwhile, it does not require initialization of
the target object.
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Fig. 7. Example trajectories returned by our proposed RVP-MP in the presence of varying viewpoint (1st and 2nd rows) and scale (2nd row), reflection (2nd row)
and occlusions (3rd row). In addition, the start and end points of each trajectory are discovered automatically (4th–6th rows). RVP-MP results are marked in red,
and the ground truth bounding boxes are in green. Best viewed in color and magnification.

Fig. 8. Trajectory mAP of RVP-MP for different temporal steps and overlap
ratio . Best viewed in color and magnification.

VII. CONCLUSION
In this work, we explore the use of spatio-temporal cues to

boost the performance of object instance search in videos, and
propose to formulate the problem as finding the top- spatio-
temporal object trajectories. By utilizing RVP to quickly obtain
per pixel confidence scores, thus enabling fast scoring of any
bounding boxes in a video, we are the first to extend the Max-
Path search from detection to the search domain. Experiments
on a 73-hour video dataset validates that the proposed approach
is effective in improving search quality compared with state-of-
the-art methods that treat frames independently. Compared with
individual frames, the resulting spatio-temporal trajectories are
better indicators of video relevance because of their ability to
better handle false alarms and missed detections across frames
caused by appearance variations or cluttered backgrounds. Our
approach also improves the spatio-temporal localization of ob-
jects compared with the state-of-the-art KCF tracker. In addi-
tion, we make available a new video dataset, NTU-VOI, to fa-
cilitate future research on object instance search in videos.
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