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Abstract

This paper surveys some significant vision systems dealing with the recognition of natural objects in outdoor environments. The main goal
of the paper is to discuss the way in which the segmentation and recognition processes are performed: the classical bottom–up, top–down and
hybrid approaches are discussed by reviewing the strategies of some key outdoor scene understanding systems. Advantages and drawbacks of
the three strategies are presented. Considering that outdoor scenes are especially complex to treat in terms of lighting conditions, emphasis is
placed on the way systems use colour for segmentation and characterization proposals. After this study of state-of-the-art strategies, the lack
of a consolidated colour space is noted, as well as the suitability of the hybrid approach for handling particular problems of outdoor scene
understanding.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Scene understanding constitutes a relevant research area
involving the fields of Computer Vision and Artificial Intel-
ligence. Most of the effort in this discipline has focused on
improving image segmentation techniques and developing
efficient knowledge representations that have enabled rele-
vant results to be obtained. In particular, there is increasing
interest in developing applications for outdoor environ-
ments such as vision-based mobile robot navigation systems
[1–3]. However, outdoor scenes are particularly hard to
treat in terms of lighting conditions due to weather phenom-
ena, time of day and seasons.

The objective of a Scene Understanding System consists
of recognizing and localizing the significant imaged objects
in the scene and identifying the relevant object relation-
ships. Consequently, a system must perform segmentation,
region characterization and labelling processes. As Haralick
and Shapiro suggested [4], the way to carry out these three
tasks depends on the strategy used: bottom–up, top–down,
or hybrid strategies, such as Fig. 1 outlines.

• The current bottom–up scheme was clearly defined by
Fischler in 1978 [5]. Firstly, it is necessary to partition a

scene into regions by using general-purpose segmenta-
tion techniques. These regions are then characterized by a
fixed set of attributes, and the scene itself is characterized
by linking the objects to each other. The labelling process
requires an inference engine to match each region to the
best object-model (a comparison of labelling methods
can be found in Ref. [6]).

• Top–down approach starts with the hypothesis that the
image contains a particular object or can be categorized
as a particular type of scene [4]. The system will then
perform further tasks in order to verify the existence of a
hypothesized object. Systems that follow a top–down
strategy are known as Special Purpose Vision Systems
(SPVS). These systems carry out specific tasks: defining,
structuring and applying knowledge relevant to their task
domain. A typical SPVS applies specialized segmenta-
tion and recognition methods to each object to be recog-
nized. Hanson et al. [7] refer to SPVS as “successful
systems that cover a more humble goal.”

• The hybrid approach is a mixture of the previous two. In
fact, there are several schemes that can be considered as
hybrid forms or variants of the top–down or bottom–up
methods (see e.g. Refs. [8,9]). The most accepted hybrid
approach is characterized by segmenting the input image
using non-purposive techniques, i.e. non-semantic
segmentation is used. Once the image is partitioned
into regions, the objects are then identified by specialized
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procedures that search for a set of selected features.
There are also hybrid systems that combine general-
purpose and specific segmentation methods. For exam-
ple, it is interesting to first segment the image into large
regions (gross segmentation) and then apply the top–
down scheme to look for particular objects inside these
regions. In Image Understanding Systems of complex
scenes (such as outdoor scenes), a top–down goal-direc-
ted approach is often required to correct errors from an
initial bottom–up strategy [4,10].

This paper discusses the most relevant systems developed
in recent years to the recognition of natural objects in
outdoor environments. Special emphasis is placed on the
way the systems perform the segmentation of outdoor
scenes and the recognition of natural objects. In general,
all the surveyed systems can also be considered as knowl-
edge-based vision systems that make use of a large variety
of knowledge representations, ranging from simple vectors
to complex structures. Notice that there is no attempt to
survey the different knowledge representation techniques;
that has been carried out in other works [11–14]. The rest of
this paper is structured as follows: assumptions, a scenario

classification, and the related work, which concludes the
introduction. Section 2 discusses strategies, and defines
and classifies the surveyed systems. A detailed summary
highlighting the principal characteristics of the analysed
approaches is given in a table at the end of the section. In
Section 3, the role of colour in outdoor vision systems is
reviewed. Finally, the paper ends with some conclusions
and suggests promising directions.

1.1. Assumptions and classifications

All the analysed systems in this survey use as input static
colour images representing outdoor scenes. The approaches
that use other sensor systems such as sonar, lasers or scan-
ners have been excluded. The reason is, although it is widely
known that these sensors are very useful in obtaining three-
dimensional (3D) information, they do not provide colour
information that is useful in identifying the nature of
objects. All the reviewed work deals with characteristic
ground-level images, like the ones in Fig. 2. In this sense,
in Refs. [14,15] we proposed to classify the images to be
described into four kinds of outdoor environments.
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Fig. 1. Strategies for object recognition: (a) bottom–up; (b) hybrid; and (c) top–down.

Fig. 2. An outdoor scenario classification, with images representing: (a) a natural scene; (b) a house scene; (c) a road scene; and (d) an urban scene.



Natural scenes, which represent forests or fields, where in
principle, only natural objects appear such as grass,
ground, bushes, trees, sky and so on.
House scenes, which contain a typical house with a

garden, trees and a road just in front of the main entrance.
Road scenes, which are represented by images taken on a
road. The road is the essential element, and the remaining
objects are often spatially referenced to it.
Urban scenes, which contain a typical urban setting such
as pavement, sidewalk, buildings, cars, etc.

Fig. 2 shows four prototype images, with a different struc-
turing level according to the type of scene. Therefore, urban
and road scenes are more structured than house scenes, and
obviously, more than natural scenes. Similarly, the presence of
artificial (man-made) or natural elements vary in function of
the scene and image. In other words, two images representing
urban scenes do not necessarily contain the same objects,
although it can beexpected that there will bemanysimilarities.
Artificial objects suchas cars, buildings, trafficsigns and soon,
are normally characterized by their straight shapes and homo-
geneous surface colour. Natural objects, such as trees, bushes,
grass, etc, are normally highly variable in features, and are
usually characterized by textured surfaces and dispersed
colours. The information concerning the specific characteris-
tics of objects is contained in the object model databases. On
the other hand, the list of objects that are expected to be in an
image and their relationships are contained in the scene
model databases. The way the systems organize and store
scene knowledge can vary from one to another, but the most
used structures are rules and graph-like structures (graph-
like includes nets, semantic nets, associative nets, tree struc-
tures,…). The use of scene models is required to perform
several tasks such as to validate some initial results, to
ensure a consistent description of the image, or even to
guide the process of recognition (i.e. the invocation network
of VISIONS/Schema System [16]). Therefore, scene knowl-
edge plays a significant role in the selected strategy.

1.2. Related work

Some other surveys of outdoor scene understanding can
be found in literature. However, these emphasize the
concepts involved rather than the application itself (outdoor
environments). Following this philosophy, Haralick and
Shapiro [4] emphasized knowledge representations, control
strategies and information integration. They discussed
several key systems in order to illustrate various techniques
and applications. In 1996, the VISIONS Group critically
reviewed the core issues of knowledge-based vision systems
[17]. They argued that knowledge-directed vision systems
were typically limited for two reasons. First, low- and mid-
level vision procedures used to perform the basic tasks of
vision, were not mature enough at the time to support the
ambitious interpretation goals of these systems. Second, the
knowledge engineering paradigm used to collect knowledge
(often a manual labour), was inadequate for gathering the
large amounts of knowledge needed for more general
systems. Draper et al. also suggested the changes they
would have made if, in 1996, the VISIONS/Schema System
had been designed again. Recently, Buxton [18] reviewed

J. Batlle et al. / Image and Vision Computing 18 (2000) 515–530 517

Fig. 3. A graphic example depicting the typical procedures of (a) bottom–
up and (b) top–down approaches. In addition to the use of non-purposive or
goal directed segmentation, both systems are also differentiated by the
moment they incorporate the scene and object knowledge.



several vision systems with the view to give promising
directions for future research. She emphasized the role of
context, control and learning. She also argued that reasoning
is the main focus of the work in visual interpretation and
distinguishes four major approaches: constraint-based
vision, model-based vision, formal logic and probabilistic
frameworks. Several key systems illustrate these four
approaches. Crevier and Lepage [13] reviewed the role of
knowledge in knowledge-based vision systems. They clas-
sified the kinds of knowledge required for image under-
standing and examined how these kinds of knowledge
have been represented. Crevier and Lepage pointed out
promising trends, such as a standardized image understand-
ing environment, agent-based representation and automatic
learning techniques.

2. Bottom–up versus top–down approaches for object
recognition

A key difference between bottom–up and top–down is
the use they make of their model databases and, more speci-
fically, in which part of the description process incorporate
world knowledge (model databases) as depicted in Fig. 3
which shows the general procedures for both approaches.
After obtaining a set of distinct regions by means of non-
purposive segmentation algorithms, a bottom–up system
extracts a feature vector for each obtained region. For exam-
ple, the feature vector of the region named R1 in Fig. 3(a) is
represented by a set of values corresponding to the
measured parameters (colour, texture, shape) of that region.
At this point, object model databases are needed in order to
assign a label to each region. Finally, the overall consistency
of the results are validated according to a scene model data-
base. On the other hand, in the top–down approach the use
of object and scene knowledge start in earlier stages. This
knowledge rules the segmentation process as well as the
later stage of region validation.

In spite of the restricted use of knowledge that bottom–up

systems manage, they constitute a valid approach for hand-
ling unexpected (unmodelled) objects. An ideal bottom–up
system would be able to give a complete description of a
scene providing not only labelled regions but also the region
descriptions for the unlabelled ones as feature vectors. This
is an effective quality when the systems are applied to envir-
onments with a very poor knowledge. In contrast to this
capability, bottom–up depends a great deal on its segmenta-
tion algorithm (non-purposive) and, as of this date, there are
no perfect algorithms to solve this problem in outdoor
scenes. To deal with this, the top–down approach does
enable objects to be found through specific methods with
the ability to handle intra-class variations, exceptions and
particular cases. This is especially interesting in outdoor
scenes because a scene can change its chromatic character-
istics in a few seconds due to weather phenomena, time of
day, seasons and shadows. These difficulties are hard to treat
by using a pure bottom–up strategy. Therefore, top–down
strategy will be more efficient since it is goal directed. As
pointed out by Thorpe [3], general-purpose sensing is very
difficult, but individual specialized modules dedicated to a
particular task are continually gaining power. However, it
does not imply that general-purpose perception is obsolete.

In the following, we will give a description of several key
top–down, hybrid and bottom–up systems. Special empha-
sis is made on how these systems perform segmentation,
characterisation and labelling processes. Segmentation is a
key issue in object recognition, scene understanding and
image understanding. The better the segmentation process,
the easier the process of understanding and recognition.
However, a perfect segmentation does not imply a perfect
interpretation, as this only constitutes the first stage of in the
whole description process. The available knowledge
concerning objects and scenes, the features which charac-
terise the regions, and the labelling techniques also play a
central role in the description process. Segmentation in the
bottom–up approach is carried out without using semantics
related to the expected objects and/or scenes whereas in the
top–down approach, the segmentation is specialized and
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Fig. 4. A classification of a set of representative outdoor vision systems according to their strategy.



uses all the available knowledge related to the expected
object and/or scene. Concerning characterization, bottom–
up approaches extract features from regions, all of which are
characterized by the same attributes, while in top–down
approaches the characterization is specific because the
regions themselves are extracted in a purposive way. Conse-
quently, specific feature vectors are selected for each object
model. Finally, the labelling methods in bottom–up systems
treat all the objects equally, while top–down systems apply
specific methods for each object to be recognized. The
bottom–up approaches are based on regions and their objec-
tive consists of labelling each region. These approaches may
cause some regions to be left without a label or have more
than one label. The top–down approaches are based on the
objects and search for regions that have the characteristics
specified by the model. This focus can cause one pixel to
have more than one label. The systems classified as hybrid

approaches are generally characterized by the use of
general-purpose segmentation methods and specific proce-
dures for labelling purposes, taking most of the advantages
of top–down and bottom–up approaches.

Fig. 4 gives an overview of the surveyed systems, classi-
fied according to their strategy and arranged chronologi-
cally. It is interesting to note that systems based on
special purpose segmentation did not arise until the 1990s.
Until then, most of the efforts addressed bottom–up strate-
gies as the best solution to build general purpose vision
systems. Although the system proposed by Ohta can be
considered as hybrid approach, it is ruled mainly by a
bottom–up strategy, whereas only the VISIONS system
had clearly begun with hybrid approach, which has
remained a valid option until the present. Finally, as a result
of the relevant advances AI techniques achieved during the
last decade, there has been a resurgence of new bottom–up
systems.

2.1. Top–down approaches

A Special Purpose Vision System acts to validate or reject
an initial hypothesis about the contents of the image. With
this aim, a purposive segmentation algorithm selects pixels
or regions that will be candidates for the hypothesized
object. Then specific algorithms are used to validate or
reject the candidates. These systems are characterized by
the use of constrained object or scene knowledge in all
their processing tasks.

Relevant examples of two scene description systems and
two natural object recognition systems have been selected.
Campani et al. [19] and Parodi and Piccioli [20] proposed a
method for the interpretation of traffic scenes, which
combined gross segmentation and specific methods for
recognising specific objects, as outlined in Fig. 5(a). Their
strategy is based on treating each class of objects indepen-
dently and exploiting the characterizing features of each
class. Firstly, the general structure of the scene is recovered,
exploiting a priori scene information and edge analysis
(purposive gross segmentation). As a result, the image is
partitioned into four regions: roadbed, sky and two lateral
regions. Secondly, the objects are identified by specialized
procedures that search for a set of selected features in deter-
minate areas. Basically, objects are characterized by their
supposed spatial disposition in the scene, their colour and
edge parameters. The final step consists of gathering the
information provided by the algorithms related to the differ-
ent classes of objects in the scene, in order to obtain a
globally consistent description of the scene in the form of
a simple line drawing. Fig. 5(b) shows an example of perfor-
mance by the localization of the two lateral regions (top),
and the recognition of a tree plus the later reposition of the
line drawn model of the tree (bottom).

Another purposeful (pure top–down) approach, proposed
in 1993 by Hild and Shirai [21], consists of a two-stage
interpretation system applicable to hard-edged natural
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Fig. 5. Scheme of the top–down strategy system proposed by Campani et al.
and Parodi and Piccioli for a traffic scene description (a), and an example of
its performance on recognition of trees along the road borders (b): the
polygonal approximation of the edges which belong to the lateral regions
(top), and a recovered tree (bottom).

Fig. 6. An example of the results achieved by the system of Hild and Shirai:
(a) a hard-edged natural scene to be described and (b) the recognized
regions. This image is difficult to describe because all features are not
well separated for the considered object models, and because of the high
variability of the features across the object.



scenes. The first stage carries out specific object classifica-
tion on the basis of known default models for local features
such as hue, saturation and texture evaluated at pixel level.
The classification of pixels is carried out by probabilistic
methods using the Bayes decision rule. Then the system
searches purposively for regions that satisfy qualitative
constraints in the classified object images and selects object
region candidates using multiple features such as shape,
size, orientation, location, or spatial relationships with
other objects (evaluated at region level). The second stage
extends and refines the result of the first one by exploiting
knowledge about the object. Finally, a symbolic description
of the scene in terms of the main regions is achieved, as
shown in Fig. 6.

A key top–down system for object recognition was devel-
oped by Efenberger and Graefe [22] and Regensburger and
Graefe [23]. They proposed an object-oriented approach for
detecting and classifying objects that could be obstacles for
a mobile robot operating in an outdoor environment. Their
approach is based on the principles of monocular dynamic
vision for sensing the environment [24]. The goal of the
system is to reach tangible results in a reasonable time, as
required by mobile robots operating on roads. They decom-
pose the global task into several independent sub-tasks, or
modules, including the initial detection of possible candi-
dates and the classification of candidates into false alarms
and real physical objects. The key to their approach, in
addition to the use of image sequences rather than a single
one, is to apply specialized segmentation and recognition
methods in order to find specific objects. The scheme used
to recognize objects is roughly based on the following: first,
limiting the search area; second, detecting objects in one
image that are considered candidates; and third, tracking
the candidates in order to validate them. Although neither
colour nor texture features are used in their approach, they
achieved reliable results.

As in the work of Graefe, a lot of object recognition
systems use a top–down scheme. For instance, Ide et al.
[25] attempted to automate the recognition of trunks or
poles in urban scenes. Their method follows the pure top–
down paradigm: it uses knowledge in order to limit the
search area, to obtain candidates (pairs of vertical edge
sequences) and finally, to validate them by using specific
characteristics of poles, such as diameter and height. This
system is goal directed in all its processing tasks.

In spite of the great number of top–down object recogni-
tion systems that can be found in literature (lane detection,
vehicle and traffic sign recognition, military targets), there
are only a very limited number of systems that try to under-
stand the whole scene in a top–down way.

2.2. Hybrid approaches

Hybrid approaches are characterized by the use of non-
purposive techniques in order to segment the input image
into regions (bottom–up strategy), and a set of specialized

procedures that search for selected features in that region
(top–down strategy). It is important to emphasize that each
object is characterized by its own features. A common final
step consists of gathering the information provided by the
algorithms, which is related to the different classes of
objects in the scene, with the aim of obtaining a globally
consistent description of the scene. We will call these
systems “pure hybrid approaches” since their initial stage
is general purpose, while their recognition stage is specific-
object based.

From the mid-1970s the VISIONS system [7,16,26,27]
has been evolving into a General Purpose Vision System
for understanding images representing road and house
scenes. The VISIONS Schema System provides a frame-
work for building a general interpretation system as a
distributed network of many small special-purpose interpre-
tation systems. The VISIONS Schema System introduced
the notion of a schema as an active process that encapsulates
the knowledge about an object class. Each schema embeds
its own memory and procedural control strategies, acting as
an “expert” at recognizing one type of object. The system’s
initial expectations about the world are represented by one
or more “seed” schema instances that are active at the begin-
ning of an interpretation. As these instances predict the
existence of other objects, they invoke the associated sche-
mas that in turn may invoke more schemas. In VISIONS,
schema instances run as independent concurrent processes,
communicating asynchronously through a global black-
board. The goal of such a schema is to collect the evidence
necessary to validate or reject a hypothesis. In this sense, the
VISIONS Schema System took a particular, simple view of
evidence representation by using five confidence values
representing different degrees of belief. Concerning object
recognition, the VISIONS Group emphasizes flexible
matching on a variety of characteristics, with the ability to
handle exceptions and deviations. They pointed out that not
all object classes are defined in terms of the same attributes,
which may be used in various ways within the matching or
interpretation process. The constant evolution suffered by
VISIONS, with the continuous flow of new ideas and the
update of the used methodologies and techniques, has
become in itself a compulsory reference work for the
study and the comprehension of outdoor scenes analysis
systems.

Strat and Fischler [28] proposed a system, called
CONDOR, to recognize objects in natural scenes. The
central idea of its architecture is a special-purpose recogniz-
ing method designed for each object-class. Despite the fact
that its architecture looks for specific objects, its goal
consists of understanding the whole scene using non-purpo-
sive segmentation methods. In CONDOR, the knowledge is
embedded in rules as condition action pairs, named “context
sets”. These are employed in three types of rules: candidate
generation, candidate evaluation and consistency determi-
nation. The rules enable the building of sets of mutually
consistent candidate hypotheses (named cliques) which
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confer to the system its ability to deal with contexts (scenes)
rather than independent objects. The addition of a candidate
to a clique may provide knowledge that could trigger a
previously unsatisfied context set. For example, once one
bush has been recognized, it is a good idea to look specifi-
cally for similar bushes in the image. Fig. 7 depicts the
general structure of the CONDOR system, where the
processes act like demons watching over the knowledge
database, invoking themselves when their contextual
requirements are satisfied.

Four different processes: candidate generation, candidate
comparison, clique formation and clique selection, interact
through a shared data structure (the core) by exchanging
knowledge (the context) and specific data structures (candi-
dates, partial orders, cliques and 3D models). CONDOR

represents a successful attempt to deal with the variability
of outdoor images by associating a collection of simple
procedures to each object model. Each procedure is compe-
tent only in some restricted contexts, but collectively these
procedures offer the potential of recognizing a feature in a
wide range of contexts.

From the late 1980s, Asada and Shirai [29], Hirata et al.
[30] and Taniguchi et al. [31] developed another General
Purpose Vision System intended to interpret colour images
representing urban scenes by using 3D information. Their
philosophy is more classical, since they proposed a sequen-
tial scheme that acts in two stages. First, using a general-
purpose algorithm, the image is divided into regions having
uniform brightness and colour. Second, the interpretation
process is based on the search for specific objects in a prede-
termined order. For instance, the interpretation system starts
from extracting road, sky and trees independently and then
tries to recognize other related objects. The scene knowl-
edge is organized as a network (graph) of object models
(named frame structures) where each object model
describes semantic constraints and the relationship to
other objects. Fig. 8 shows the proposed road scene model
and two examples of natural object models described as
frames. It is interesting to note that the road scene model
differentiates between natural and artificial objects, suggest-
ing that they would require a different treatment. For
instance, they consider that determining geometric proper-
ties for natural objects is not as significant as for artificial
ones. An example of application of the proposed system is
shown in Fig. 9, which illustrates some results achieved on a
road scene. As output, the system provides the recognized
objects as well as the non-interpreted regions.

Unlike the three previous hybrid systems, Ohta et al. [32]
proposed a non-pure hybrid system. Although their proposal
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Fig. 7. General structure of the CONDOR system, the architecture of which
is much like that of a blackboard system.

Fig. 8. A graph structure (network of frame structure) depicting (a) the relationships between the expected objects of the scene and (b) two examples of object
models represented as frame structures.



incorporates top–down control, their system is mainly
governed by a bottom–up strategy as shown in Fig. 10(a).
In fact, the system is considered to be a region analyser for
colour images of urban scenes. It uses the top–down strat-
egy in order to produce more detailed descriptions of some
regions. For instance, once a region is labelled as a “build-
ing”, it is a good idea to look for “windows” in a purposive
way in that region. The knowledge of the task world is
represented by rules, while the knowledge associated with
the models, which describe properties and relations among
objects, is organized as a semantic network (a graph struc-
ture). The bottom–up process can be summarized as
follows.

• The image is first over-segmented by a region-splitting
algorithm using 1D multi-histograms. Afterwards, a
merging process organizes the data into a structured
data network composed by patches (coherent regions).

• The largest patches are selected in order to generate a set
of object labels and their respective degree of correct-
ness. This set of tuples (region, label, degree of correct-
ness) are called “plan”, analogous to the clique structure
in the CONDOR system.

• In order to ensure a consistent description of the image,
the plan is evaluated by fuzzy rules contained in the
production system. Each rule has a fuzzy predicate that
describes a property of a certain object or a relationship
among objects.

Another non-pure hybrid approach was proposed in 1995
by Gamba et al. [33] and Mecocci et al. [34], who presented
an almost bottom–up system capable of giving a simple
outdoor and indoor scene description in order to provide
some help for blind people to navigate. The system works
with some a priori knowledge about the scene structure
(corridor and road scenes are analysed), and carries out a
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Fig. 9. (a) An urban image to be described, (b) the segmented results and (c) the final described image.

Fig. 10. (a) Outline of the Ohta region analyser, where bottom–up and top–down strategies cooperate, and (b) the results obtained on a urban scene. Thegross
regions are labelled by the bottom–up process (S,T,B,C), while top–down processes allow the achievement of more detailed results (CS).



preliminary classification of the scene components into two
classes: the man-made object class, characterized by planar
surfaces and straight lines, and the fractal class, which
represents natural objects, characterized by the lack of
simple planar surfaces. The system recognizes fractal
regions, lateral vertical surfaces, frontal vertical surfaces,
horizontal surfaces, and unrecognized regions, and takes
into account previously segmented regions and segments.
The interpretation ends with constraint region rules (named
criteria) and with rules for propagating adjacent regions.

2.3. Bottom–up approaches

In general, bottom–up systems model natural objects
using the same attributes as other objects. Therefore, the
high variability of these objects is not specially treated.
As a result, the performance of the systems is highly depen-
dent on the outdoor conditions.

In 1978, Bajcsy and Joshi [35] presented a world model
for natural outdoor scenes in the framework of production
rules. The system is based on finding relationships in the
real world that impose a partial order on a set of objects. In
order to accomplish these relationships, the system is struc-
tured in a database, a set of rules and an interpreter. The
database is also structured in rules (named facts) that
contain specific object knowledge, spatial relations between
objects and subclasses (objects that are considered as a part
of other objects). The interpreter carries out the matching
between the database facts, as well as executing actions
which arise in consequence of the applied rules. Although
this is an early work on the outdoor scene description
domain, it must be pointed out that the current validity of
the ideas contained on this proposal, such as the use of an
interactive query method to interface with the system, and
the recognition is performed by checking only partial
features. The later also allows, to some degree, dealing
with the variability of natural objects.

Levine [36] and Levine and Saheen [37] proposed a
scheme that consisted of a collection of analysis processors,
each specialized in a particular task. The processors

compete and cooperate in an attempt to determine the
most appropriate label to assign to each region previously
obtained by a simple one-pass region-growing algorithm.
Conscious of the importance of segmentation, they
proposed a more sophisticated algorithm that simulta-
neously deals with both edges and regions [38]. The system
is based on the design of a rule-based expert system in the
form of a modular set of processes and two associative
memories, as depicted in Fig. 11.

The input image, the segmentation data, and the output
are stored in the short-term memory, while long-term
memory embodies the scene knowledge structured as
rules. The segmentation algorithm is contained in the low-
level processor while the features associated with each
region are computed by the feature analyser processor. A
set of initial hypotheses of each segmented region is then
generated by the hypothesis initializer processor which
attempts to match each region to all the object models stored
in the long-term memory. These hypothesis are then verified
by constraint relations given by rules which describe the
world in terms of the conditions under which the objects
may realistically coexist. These rules are contained in the
interpreter processor and formally specify spatial and/or
colour constraints involving two objects. The monitoring
of the current state of knowledge of the scene is given by
the focus of attention processor while the scheduler proces-
sor calls upon the appropriate processor to intervene. The
system proposed by Levine et al. is highlighted by its exten-
sibility, modularity and separability, which allowed a
successful implementation. The first one enabled the addi-
tion of model data as well as control information while
modularity focused basically on the model knowledge and
the control mechanisms. Finally, the complete separability
of the object and scene information from the program
modules led to a suitable design. The experiments carried
out on a typical house scene demonstrated the reliability of
this scheme.

The EYE system, proposed in 1981 by Douglass [39],
emphasized the integration of depth with semantic informa-
tion to form a 3D model of a house scene. The images were
first pre-processed and segmented into a set of regions of
approximately uniform colour and texture using a segmen-
tation algorithm that combined the advantages of edge
detection and region growing. The final scene model is
obtained by combining an iterative relaxation process with
some hypothesized 3D information. In order to label the
regions Douglass uses multiple criteria such as occlusion
analysis, size evaluation, texture gradients, shadow and
highlight analysis and linear perspective. The EYE system
provides an interesting interpolation of object and scene
model into a single representation structure which includes
surface description of an object (colour, texture, size,
boundary shape, curvature,…), logical relationship between
objects (part–whole and classmembership), and spatial
information on the 3D relationships between objects
and their parts. Fig. 12 shows a detail of the proposed
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Fig. 11. Outline of the scheme proposed by Levine et al.



graph-like structure (named associative net) for a house
scene where nodes are objects and the links are logical
and spatial relationships among objects. The EYE system
goes beyond most other existing image understanding
systems that only intend to label regions. Indeed, EYE is
the first system that attempts to interpret regions as 3D
surfaces and to join the surfaces into a consistent model of
the environment.

Since 1993 Kim and Yang [40,41] have been working on
segmentation and labelling based on the Markov Random
Field models, as an alternative to the relaxation labelling.
Fig. 13 shows the global overview of their proposed strat-
egy, which starts with an algorithm that segments the image
into a set of disjoint regions. A region adjacency graph is
then constructed from the resulting segmented regions

based on the spatial adjacencies. The problem is then formu-
lated by defining region labels that are modelled as a
Markov Random Field on the corresponding Region Adja-
cency Graph. The knowledge concerning the scene is incor-
porated into an energy function composed by appropriate
clique functions which constrain the possible labels for the
regions. Here a clique is a list of regions which border on
each other. If the interpretation of the regions in a clique
tends to be consistent with the feature measurements and the
scene knowledge, the clique function decreases resulting in
a decrease in the energy function. Optimal labelling results
are obtained by finding a labelling configuration which
minimizes the energy function by using a simulated anneal-
ing procedure. In designing clique functions, they consider
only two types of clique encoded as unary and binary
constraints. Unary constraints are used to recognize a region
based on the feature of the region itself while binary
constraints denote spatial adjacency compatibility between
all the couples of object models. In order to handle the
feature variability of outdoor scenes, they propose finding
appropriate parameter values of the clique functions by error
backpropagation networks. Formulating the image labelling
problem based on the Markov Random Field model
provides a systematic way of representing domain knowl-
edge by means of clique functions, and facilitates finding
optimal labelling through a general optimization algorithm
such as simulated annealing. The proposal of Kim and Yang
has evolved into an integrated scheme in which segmenta-
tion and interpretation co-operate in a simultaneous optimi-
zation process. Kumar and Desai [42] presented a similar
work in 1996 in which they proposed a scheme for joint
segmentation and interpretation in a multi-resolution frame-
work by using the wavelet transform of the input image.

Recently, Campbell et al. [43] developed a system that is
capable of labelling objects in road and urban scenes,
thereby enabling image databases to be queried on scene
content. The method is based by first segmenting the
image using the k-means algorithm, which is demonstrated
by the optimal method out of several segmentation algo-
rithms. Each region is then described using a set of 28
features to represent the visual properties of the region
(colour, texture, shape, size and position). Using a large
database of ground-truth labelled images, a neural network
(a multilayer perceptron) has been trained to act as a pattern
classifier. The optimal network architecture, with 28 inputs
and 11 label outputs, was found to have 24 nodes in the
hidden layer. The system has been tested on a large number
of previously unseen scenes and, on average, correctly clas-
sifies over 90% of the image area.

Neither the Campbell system nor any of the previous
bottom–up systems consider the problem of outdoor condi-
tions, such as metereological phenomena, time of day or
time of year. In order to handle these problems, Bhanu et
al. [44] presented an adaptive image segmentation system
that incorporates a genetic algorithm to adapt the segmenta-
tion process to changes in image characteristics caused by
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Fig. 12. A portion of the associative net used by the EYE system ISA links
are used to denote class membership while SUBPART links not only define
which parts comprise the whole, they also indicate the relative orientation
between the parts in terms of pan and tilt angles, relative separation, and
points and angles of intersection.

Fig. 13. Global overview of the Kim and Yang scene description system.



variable environmental conditions. They consider an
unstructured road scene belonging to a natural environment.
The basis of their system is the Phoenix segmentation algo-
rithm developed at Carnegie-Mellon University. This
consists of recursive region-splitting that contains 17 differ-
ent control parameters. Based on experimentation, they
selected the two most critical parameters that affect the
overall results of the segmentation process. The aim of
their approach is to infer these parameters automatically.
Once the image statistics and external variables (time of
day and weather) have been obtained, a genetic learning
component selects an initial set of segmentation algorithm
parameters. The system needs a module to carry out the task
of evaluating the segmentation results. Bhanu et al.
proposed five different quality measures to determine the
overall fitness for a particular parameter set. Fig. 14
shows a block diagram of the proposed algorithm which
was tested and provided high quality segmentation results.
A further improvement of that work was presented in 1998
[45], where it was attempted to automatically obtain the
segmentation parameters by using a neural net. They intro-
duced reinforcement learning as a method of improving the
final performance of the system.

2.4. Summary

As a result of the detailed analysis of the systems, it can
be stated that the main advantage of top–down approaches
is that segmentation, characterization and labelling are
specific and will permit handling the complexity of outdoor
conditions. It is demonstrated that successful systems must
take into account such variations, otherwise they are clearly
restricted to the description of only some predetermined
images in specific outdoor conditions (i.e. sunny images
without shadows, only green trees). The disadvantages of
top–down approaches are basically related to their inability
to handle unmodelled objects and scenes. In general, the
lack of knowledge will result in the impossibility of setting
forth an initial hypothesis which is the basis of the top–
down strategy. As far as the bottom–up approaches are
concerned, their main advantage is the ability to handle
unmodelled objects or scenes, being capable of giving

descriptions of unrecognized regions. This can become a
useful feature for learning tasks, not properly exploited
until now by the existing bottom–up systems. In some
way, using only the general-purpose methods became the
main disadvantage of such approaches, because they are not
able to deal with the great amount of specific cases which
outdoor scenes can exhibit. A common drawback for both
approaches consists of the emergence of labelling conflicts;
at a pixel level on the purposive segmentation processes in
top–down systems and at a region level on region labelling
processes in bottom–up systems. The hybrid approaches
take advantage of top–down and bottom–up strategy,
since they are able to combine non-purposive segmentation
with hypothesize-and-test methodology. Nevertheless, they
also suffer from the labelling conflicts already mentioned.

For the purpose of providing an overview of the presented
systems, Table 1 summarizes some of their most relevant
features. The first column identifies the different systems by
giving authors names with referred papers including the
name of the system, if it exists. The next three columns
categorize the strategy used, the type of scene and whether
segmentation is purposive or not. The next column refers to
how systems handle colour. In the next section we refer to
this subject in depth. The next two columns give the list of
recognisable objects for each analysed system and the
features selected for object characterization. Despite the
number of considered objects which cannot be understood
as a criterion to evaluate the complexity of the system, it
often gives an idea of what the problem is that the systems
try to solve. Finally, the last three columns summarize the
segmentation process and which algorithms are used, how
object and scene knowledge is structured, and how the label-
ling process is performed.

3. Use of colour

Concerning segmentation and object characterization,
outdoor scenes are especially complex to treat in terms of
the lighting conditions. It is well known that chromatic
characteristics of natural elements are not stable. As an
example, Fig. 15 demonstrates how seasons affect an
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Fig. 14. Block diagram of the adaptive image segmentation process proposed by Bhanu et al.
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Table 1
A summary of the outdoor vision systems analysed (strategy: T–D (top–down); B–U (bottom–up); H (hybrid); segmentation: P (purposive); NP (non-purposive); scene: U (urban); N (natural); H (house); R
(road)

System identification Strategy Scene Segmentation Colour space List and number
of objects to recognise

Object charaterisation Segmentation techniques Object and scene knowledge
representation

Labelling engine

Campani et al. [19]
and Parodiand Piccioli
[20]

T–D U P Colour Road boundaries, road signs,
crosswalks, vehicles, buildings,
trees. (6)

Spatial disposition in the scene,
colour, and segments

A specific gross segmentation based
on edges, colour, vanishing point
detection

Encode the specific features of the
objects inside the algorithm

A specific procedure that finds
specific features

Hild and Shirai [21] T–D N P Hue, brightness Tree trunks, branches, grass, leaves,
sky. (5)

Shape, orientation, position, hue
and texel dir.

Likelihood pixel classification Feature vectors Select the best candidate by shape
processing

Efenbergerand Graefe
[22] Regensburger and
graefe [23]

T–D R P Gray levels Road, tree trunks, tree, rock, barrel,
car. (6)

Edges and gray-levels Edges and gray-levels Sub-sampled images and prominent
edge elements

2D correlation functions and special
purposive methods

Ide et al. [25] T–D U P Gray levels Poles. (1) Diameter, height and layout Vertical straight line detection Encode the specific features of the
object to recognize inside the
algorithm

Recognition based on specific
characteristics

VISIONS Draper et al.
[16,26] and Hanson
and Riseman [7,27]

H R,H NP R, G, B,�R1 G 1
B�=3; �2R2 G 2 B�;
�2G 2 B 2 R�; �2B 2
R2 G�; H, S, V,Y, I, Q

ROAD SCENES: Sky, foliage,
shoulder, trunk, sign-post, wire,
warning-sign, phonepole, road,
roof, building, roadline, grass,
unknown. (14) HOUSE
SCENES:Sky, tree, grass, bush,
shutter, wire, house-wall, roof,
roadline, road, film-border. (11)

Colour, texture, shape, size and
spatial relations among objects

Combined histograming and region
merging method

An schema and two graphs (part-of,
invocation) for scenes, an schemas
for the objects

Schemas based on solving specific
confidence functions in order to
verify hypothesis

CONDOR Strat [28] H N NP R, G, B Geometric horizon, complete sky,
complete ground, skyline, sky,
ground, raised object, follage, bush,
tree trunk, tree crown, tree, trall,
grass. (14)

Colour, texture, geometric shapes,
and spatial relations among objects

A set of specific context sets (rules)
which include texture operators,
edge operators, histogramming
techniques, …

Semantic networks and context sets
(rules as pairs of conditions actions)

a) Candidate comparison by
likelihood methods
b) Grouping mutually consistent
hypothesis c) Select the best
description

Asada and Shirai [29]
Hirata et al. [30,31]
Taniguchi et al. [31]

H R NP (T, q, S), brightness,
hue and saturation

Road, road lines, crosswalk, sky,
trees, buildings, poles, cars, truck,
not interpreted. (10)

Colour, heights, range information,
and spatial relations among objects

Colour (they design an specific split
and merge algorithm)

Each object is represented as a
frame. A scene is represented as a
network of frame structures

Rules and specific methods

Ohta et al. [47] H U NP l1� �R1 G 1 B�=3;
l20 � R2 B; l30 �
�2GR2 B�=2

Sky, tree, building, road, unknown,
car, car shadow, building window.
(8)

Colour, texture, position and shape Region splitting using
multihistograms

Semantic network Instantiate production rules (which
the condition part is a fuzzy
predicate)

Gamba et al.
[33]Mecocci et al. [34]

H U NP Gray levels Natural objects, lateral vertical
surfaces, frontal vertical surfaces,
horizontal surfaces, vanishing
point, unrecognised. (6)

Segments and region localization
respect to vanishing point

A specific region growing
algorithm, edge analysis and
vanishing point detection

Encode the specific features of the
objects inside the algorithm

Criterias (rules)

Bajcsy et al. [49] B–U N NP Colour Ground, sky, horizon skillines, tree.
(4)

Colour, sizes and spatial relations
among objects

Colour separation Rules (named facts) Partial match operations on rules
and facts

Levine [36] Levine
and Shaheen [37]
Nazif and Levine [38]

B–U H NP R, G, B Bushes, car, fence, grass, road, roof,
shadow, window. (12)

Colour and spatial relations among
objects

Regions, edges and area Rules Constraint relations rules in order to
verify the hypothesis

Douglass [39] B–U H NP H, S, I Trees, house, grass, sky, car, street,
window, brick wall, concrete wall,
roof, ground. (11)

Colour, texture, boundary shape,
size, curvature, and orientation

Edges, colour and texture (the
algorithm combines edge detection
and region growing)

Associative net (semantic net),
where nodes are objects and links
are logical and spatial relationships
between objects

Probabilistic methods

Kim and Yang [40,41] B–U R, U NP R, g, b, r–b, intensity
and saturation

Sky, foliage, road, grass, wall,
roadline, window, footway, tree. (9)

Spatial disposition in the scene,
colour, texture, and geometric
features

Region growing Feature vectors and graphs Labelling the nodes of a Region
Adjacency Graph by using a
Simulated Annealing algorithm

Kumar and Desai [42] B–U R NP Grey level Sky, tree, sidewalk, road. (4) Spatial disposition in the scene,
grey level, texture, and geometric
features

K-means clustering Feature vectors and graphs Labelling the nodes of a Region
Adjacency Graph by using a
Simulated Annealing algorithm

Bhanu et al. [44] and
Peng and Bhanu[45]

B–U R NP R, G, B A genetic algorithm selects
parameters automatically of a
region splitting algorithm

Campbell et al. [43] B–U R NP �3R1 6G 1 B�=10;
�R2 G 1 1�=2 and
�R1 G 2 2B 1 2�=4

Sky, vegetation, road marking,
road, pavement, building, fence/
wall, road sign, signs/poles,
shadow, mobile objects. (11)

28 features including colour,
texture (Isotropic Gabor), shape and
contextual information

K-means clustering Feature vectors Neural net



outdoor scene, where the colour, density and texture of
objects can vary considerably. Moreover, the figure also
shows how the spectral colour range of trees is affected by
the continuous progression of a season, smoothly shifting
from green to red. Buluswar and Draper [46] provide a
survey detailing analysis and causes of colour variation
due to illumination effects on outdoor images. The apparent
colour of an object depends on illuminant colour, the reflec-
tance of the object, illumination geometry (orientation of the
surface normal with respect to the illuminant), viewing
geometry (orientation of the surface normal with respect
to the sensor) and sensor parameters. In outdoor images,
at different times of the day, under different weather condi-
tions, and at various positions and orientations of the object
and camera, the apparent colour of an object can be differ-
ent. Human beings have an adaptative mechanism called
colour constancy that compensates for this colour shift.
Unfortunately, no corresponding adaptative mechanism
exists in machine vision systems, and the notion of colour
associated with an object is precise only within the context
of scene contions. Ideal object characterization will require
flexible and dynamic models in order to adapt to the differ-
ent phenomena.

Colour, being undoubtedly one of the most interesting
characteristics of the natural world, can be computationally
treated in many different ways. In many cases, the basic
RGB components may provide very valuable information

about the environment. However, the perceptual models,
such as CIE (L,a,b) or HSI, are more intuitive and therefore
enable the extraction of characteristics according to the
model of human perception. The complexity of outdoor
images emphasizes the need of the system to select a
“good” colour space, which is of extreme importance to
the segmentation tasks. Therefore, it is necessary to formu-
late the following question:what is the best colour space to
be applied in order to segment an image representing an
outdoor scene?This question has neither a single, nor a
perfect solution. The colour space suitable for one segmen-
tation algorithm is not suitable for others. Unfortunately, no
better solution has been found. In the work reviewed, a wide
range of proposals has been presented. Some authors, like
Ohta, have proposed their own colour space. Ohta et al. [47]
proposed a set of colour features,I1 � �R1 G 1 B�=3; I 02 �
�R2 B� and I 03 � �2G 2 R2 B�=2: The effectiveness of
their colour feature set was discussed by a comparative
study with other sets of colour spaces. The comparison
was performed in terms of both the quality of segmentation
results and the calculation involved in transforming data of
R, G andB to other forms. Celenk [48] proposed a colour-
clustering algorithm for segmenting colour images of
natural scenes. He has performed a colour analysis method
and proposed operating with the CIE (L p ,a p ,b p ) uniform
colour coordinate system Lp , Ho andC p (Luminance, Hue
and Chroma). He argued that for colour clustering, it is
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Fig. 15. Colour images of a tree through the seasons.



desirable that the selected colour features define a space
having uniform characteristics. The proposed colour space
approximately satisfies this property. Other authors have
presented concrete solutions to concrete problems: Bajcsy
et al. [49] proposed an approach to colour segmentation with
the detection and separation of highlights by using hue and
saturation. Luo et al. [50] proposed a fractal feature for
textures of natural images that is stable under changes in
lighting conditions. She and Huang [51] proposed working
with the CIE-uvspace and a texture parameter characterized
by the fractal behaviour of the colour bandsR, G andB. The
fractal dimension measure is relatively invariant to changes
in the image scale and contrast, while the chromaticity in the
CIE-uv space reduces the effects of shadows and illumina-
tion gradients. Buluswar and Draper [52] present a techni-
que that uses training images of an object under daylight
with the view to learn about the way the colour of an object
shifts along the RGB space. Similarly, Mori et al. [53]
proposed the use of ther–b model (wherer andb denote
normalized red and blue components) in order to solve the
problems of hue shift, due to outdoor conditions and
shadows.

4. Conclusions and further work

In this paper we have reviewed some key outdoor scene
understanding systems in order to point out the strengths and
weaknesses of the top–down and bottom–up strategies.
Special emphasis has been given to the modelling of objects
and scenes, and how the high variability of outdoor scenes is
treated by the systems. Top–down permits objects to be
found through specific methods with the ability to handle
intra-class variations, exceptions and particular cases. This
is especially interesting in outdoor scenes because there is a
change in their chromatic characteristics within a few
seconds due to weather phenomena, time of day, seasons
or shadows. These complexities have led to insurmountable
difficulties with most of the bottom–up systems. Only the
general purpose segmentation algorithm by Bhanu et al.
takes into account the above-mentioned outdoor conditions.
However, it would be desirable to include outdoor condi-
tions on the processes of region characterization, labelling
and modelling. Nevertheless, the capability of the bottom–
up strategy in handling unmodelled situations is a valued
feature for building reliable systems. In this sense, bottom–
up systems are more suitable for the description of unknown
environments because they are not constrained by prior
knowledge. Furthermore, the quality of bottom–up in
giving descriptions of unrecognised regions would be a
useful input for further supervised learning tasks. These
conclusions lead to the hybrid strategy as the best way to
deal with outdoor conditions and unmodelled situations.
From this study of state-of-the-art strategies, the lack of a
consolidated colour space is noted. Neither colour space nor
segmentation methods have proved to be the most suitable

for treating images representing outdoor scenes. A wide
range of proposals has been suggested ranging from general
spaces for general outdoor images, to specific colour spaces
for treating concrete problems.

In general, the results obtained to date by outdoor vision
systems must be improved. It is widely assumed that the
interpretation of scenes, which constitutes the final objective
of computer vision, is a complex problem that has only been
solved for very simplified scenes [54]. However, new and
promising directions have arisen in relation to the concepts
of growing and learning, as proposed by authors [55–57].
Those involve methods which add or update object classes
to the systems in order to better describe the scene without
having to recompile. Such an idea is not only based on
automating the process of object characterization but on
stating the procedures that are the most adequate for recog-
nizing objects. Nevertheless, while the object-oriented para-
digm has been proven to be useful in helping the
development of IU, it may be unsatisfying in future due to
its inability to deal with distributed computing. Distributed
computing enables better response times to be obtained
through parallel execution which is useful for image proces-
sing and artificial intelligence algorithms. In this sense,
emerging technologies like the CORBA [58] specification
may help. Following this specification, a set of objects-soft-
ware can be programmed in heterogeneous programming
languages, executed on heterogeneous workstations with
heterogeneous operating systems and inter-operating in
order to solve a concrete problem. An easy evolution of
software systems could be especially useful for the IUE
[59–61], since it is continuously growing with the contribu-
tions of many researchers.

As a final assessment, it can be stated that the develop-
ment of a vision system with the aim of understanding the
whole scene, where all the levels of vision are specific and
purpose-oriented, still constitutes an important challenge.
Although the surveyed systems report interesting results,
there remains a great deal of work to be carried out in
order to build a vision system with performances similar
to that of the human eye and its visual perception system.
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