

Drawbacks Beam Sensor Model

- Lack of smoothness
 - P(z | x_t, m) is not smooth in x_t
 - Problematic consequences:
 - For sampling based methods: nearby points have very different likelihoods, which could result in requiring large numbers of samples to hit some "reasonably likely" states
 - Hill-climbing methods that try to find the locally most likely x_t have limited abilities per many local optima
- Computationally expensive
 - Need to ray-cast for every sensor reading
 - Could pre-compute over discrete set of states (and then interpolate), but table is large per covering a 3-D space and in SLAM the map (and hence table) change over time

Outline

I. Beam Sensor Model

2. Likelihood Field Model

- 3. Map Matching
- 4. Iterated Closest Points (ICP)

Properties of Scan-based Model

- Highly efficient, uses 2D tables only.
- Smooth w.r.t. to small changes in robot position.
- Allows gradient descent, scan matching.
- Ignores physical properties of beams.

19

Map Matching

- Generate small, local maps from sensor data and match local maps against global model.
- Correlation score:

$$\rho_{m,m_{\text{local}},x_{t}} = \frac{\sum_{x,y} (m_{x,y} - \bar{m}) \cdot (m_{x,y,\text{local}}(x_{t}) - \bar{m})}{\sqrt{\sum_{x,y} (m_{x,y} - \bar{m})^{2}} \sqrt{\sum_{x,y} (m_{x,y,\text{local}}(x_{t}) - \bar{m})^{2}}}$$
with $\bar{m} = \frac{1}{2N} \sum_{x,y} (m_{x,y} + m_{x,y,\text{local}})$

Likelihood interpretation:

 $p(m_{\text{local}}|x_t, m) = \max\{\rho_{m, m_{\text{local}}, x_t}, 0\}$

• To obtain smoothness: convolve the map m with a Gaussian, and run map matching on the smoothed map

Outline I. Beam Sensor Model 2. Likelihood Field Model 3. Map Matching 4. Iterated Closest Points (ICP)

Center of Mass $\mu_x = \frac{1}{N_x} \sum_{i=1}^{N_x} x_i \quad \text{and} \quad \mu_p = \frac{1}{N_p} \sum_{i=1}^{N_p} p_i$ are the centers of mass of the two point sets. Idea: • Subtract the corresponding center of mass from every point in the two point sets before calculating the transformation. • The resulting point sets are: $X' = \{x_i - \mu_x\} = \{x'_i\} \text{ and } P' = \{p_i - \mu_p\} = \{p'_i\}$

SVD Theorem (without proof): If rank(W) = 3, the optimal solution of E(R,t) is unique and is given by: $R = UV^{T}$ $t = \mu_{x} - R\mu_{p}$ The minimal value of error function at (R,t) is: $E(R,t) = \sum_{i=1}^{N_{p}} (||x'_{i}||^{2} + ||y'_{i}||^{2}) - 2(\sigma_{1} + \sigma_{2} + \sigma_{3})$

