
Chapter 2

SUPERQUADRICS AND THEIR
GEOMETRIC PROPERTIES

In this chapter we define superquadrics after we outline a brief history
of their development. Besides giving basic superquadric equations, we
derive also some other useful geometric properties of superquadrics.

2.1 SUPERELLIPSE
A superellipse is a closed curve defined by the following simple equa-

tion (
x

a

)m

+
(

y

b

)m

= 1, (2.1)

where a and b are the size (positive real number) of the major and minor
axes and m is a rational number

m =
p

q
> 0, where

{
p is an even positive integer,
q is an odd positive integer. (2.2)

If m = 2 and a = b, we get the equation of a circle. For larger m,
however, we gradually get more rectangular shapes, until for m → ∞
the curve takes up a rectangular shape (Fig. 2.1). On the other hand,
when m→ 0 the curve takes up the shape of a cross.

Superellipses are special cases of curves which are known in analytical
geometry as Lamé curves, where m can be any rational number (Loria,
1910). Lamé curves are named after the French mathematician Gabriel
Lamé, who was the first who described these curves in the early 19th
century1.

1Gabriel Lamé. Examen des différentes méthodes employées pour résoudre les problémes de
geometrie, Paris, 1818.
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Figure 2.1. A superellipse can change continuously from a star-shape through a circle
to a square shape in the limit (m→∞).

Piet Hein, a Danish scientist, writer and inventor, popularized these
curves for design purposes in the 1960s (Gardner, 1965). Faced with var-
ious design problems Piet Hein proposed a shape that mediates between
circular and rectangular shapes and named it a superellipse. Piet Hein
designed the streets and an underground shopping area on Sergels Torg
in Stockholm in the shape of concentric superellipses with m = 2.5.
Other designers used superellipse shapes for design of table tops and
other furniture. Piet Hein also made a generalization of superellipse
to 3D which he named superellipsoids or superspheres. He named su-
perspheres with m = 2.5 and the height-width ratio of 4:3 supereggs
(Fig. 2.2). Though it looks as if a superegg standing on either of its
ends should topple over, it does not because the center of gravity is
lower than the center of curvature! According to Piet Hein this spooky
stability of the superegg can be taken as symbolic of the superelliptical
balance between the orthogonal and the round.

Superellipses were used for lofting in the preliminary design of aircraft
fuselage (Flanagan and Hefner, 1967; Faux and Pratt, 1985). In 1981,
Barr generalized the superellipsoids to a family of 3D shapes that he
named superquadrics (Barr, 1981). He introduced the notation common
in the computer vision literature and also used in this book. Barr saw
the importance of superquadric models in particular for computer graph-
ics and for three-dimensional design since superquadric models, which
compactly represent a continuum of useful forms with rounded edges,
can easily be rendered and shaded and further deformed by parametric
deformations.
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Figure 2.2. A “superegg” (superquadric with m = 2.5, height-width ratio = 4:3) is
stable in the upright position because the center of gravity is lower than the center
of curvature (Gardner, 1965).

2.1.1 LAMÉ CURVES
For Lamé curves (

x

a

)m

+
(

y

b

)m

= 1, (2.3)

m can be any rational number. From the topological point of view,
there are nine different types of Lamé curves depending on the form of
the exponent m in equation (2.3) which is defined by positive integers
k, h ∈ N (Loria, 1910).

Lamé curves with positive m are

1. m = 2h
2k+1 > 1 (Fig. 2.3 a)

2. m = 2h
2k+1 < 1 (Fig. 2.3 b)

3. m = 2h+1
2k > 1 (Fig. 2.3 c)

4. m = 2h+1
2k < 1 (Fig. 2.3 d)

5. m = 2h+1
2k+1 > 1 (Fig. 2.3 e)

6. m = 2h+1
2k+1 < 1 (Fig. 2.3 f)
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Figure 2.3. Lamé curves with positive m. Only the first two types (a) and (b) are
superellipses.
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Figure 2.3 (continued). Lamé curves with negative m

Lamé curves with negative m are

7. m = − 2h
2k+1 (Fig. 2.3 g)

8. m = −2h+1
2k (Fig. 2.3 h)

9. m = −2h+1
2k+1 (Fig. 2.3 i)

which are shown in Fig. 2.3. Only the first type of Lamé curves (Fig. 2.3
a) are superellipses in the strict sense, but usually also the second type
(Fig. 2.3 b) is included since the only difference is in the value of the
exponent m (< 1 or > 1). Superellipses can therefore be written as(

x

a

) 2
ε

+
(

y

b

) 2
ε

= 1, (2.4)

where ε can be any positive real number if the two terms are first raised
to the second power.
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2.2 SUPERELLIPSOIDS AND
SUPERQUADRICS

A 3D surface can be obtained by the spherical product of two 2D
curves (Barr, 1981). A unit sphere, for example, is produced when a
half circle in a plane orthogonal to the (x, y) plane (Fig. 2.4)

m(η) =
[

cos η
sin η

]
, −π/2 ≤ η ≤ π/2 (2.5)

is crossed with the full circle in (x, y) plane

h(ω) =
[

cos ω
sinω

]
, −π ≤ ω < π, (2.6)

r(η, ω) = m(η)⊗ h(ω) =

 x
y
z

 =

 cos η cos ω
cos η sinω

sin η

 ,
−π/2 ≤ η ≤ π/2
−π ≤ ω < π

.

(2.7)
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m

Figure 2.4. A 3D vector r, which defines a closed 3D surface, can be obtained by a
spherical product of two 2D curves.

Analogous to a circle, a superellipse

(
x

a

) 2
ε

+
(

y

b

) 2
ε

= 1 (2.8)
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can be written as

s(θ) =
[

a cosε θ
b sinε θ

]
, −π ≤ θ ≤ π . (2.9)

Note that exponentiation with ε is a signed power function such that
cosε θ = sign(cos θ)| cos θ|ε! Superellipsoids can therefore be obtained by
a spherical product of a pair of such superellipses

r(η, ω) = s1(η)⊗ s2(ω) = (2.10)

=
[

cosε1 η
a3 sinε1 η

]
⊗
[

a1 cosε2 ω
a2 sinε2 ω

]
=

=

 a1 cosε1 η cosε2 ω
a2 cosε1 η sinε2 ω

a3 sinε1 η

 ,
−π/2 ≤ η ≤ π/2
−π ≤ ω < π

.

Parameters a1, a2 and a3 are scaling factors along the three coordinate
axes. ε1 and ε2 are derived from the exponents of the two original su-
perellipses. ε2 determines the shape of the superellipsoid cross section
parallel to the (x, y) plane, while ε1 determines the shape of the superel-
lipsoid cross section in a plane perpendicular to the (x, y) plane and
containing z axis (Fig. 2.5).

An alternative, implicit superellipsoid equation can be derived from
the explicit equation using the equality cos2 α + sin2 α = 1. We rewrite
equation (2.10) as follows:(

x

a1

)2

= cos2ε1 η cos2ε2 ω , (2.11)(
y

a2

)2

= cos2ε1 η sin2ε2 ω , (2.12)(
z

a3

)2

= sin2ε1 η . (2.13)

Raising both sides of equations (2.11) and (2.12) to the power of 1/ε2

and then adding respective sides of these two equations gives

(
x

a1

) 2
ε2 +

(
y

a2

) 2
ε2 = cos

2ε1
ε2 η . (2.14)

Next, we raise both sides of equation (2.13) to the power of 1/ε1 and both
sides of equation (2.14) to the power of ε2/ε1. By adding the respective
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Figure 2.5. Superellipsoids with different values of exponents ε1 and ε2. Size pa-
rameters a1, a2, a3 are kept constant. Superquadric-centered coordinate axis z points
upwards!
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sides of these two equations we get the implicit superquadric equation((
x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1 = 1. (2.15)

All points with coordinates (x, y, z) that correspond to the above equa-
tion lie, by definition, on the surface of the superellipsoid.

The function

F (x, y, z) =

((
x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

+
(

z

a3

) 2
ε1 (2.16)

is also called the inside-outside function because it provides a simple
test whether a given point lies inside or outside the superquadric. If
F < 1, the given point (x, y, z) is inside the superquadric, if F = 1 the
corresponding point lies on the surface of the superquadric, and if F > 1
the point lies outside the superquadric.

A special case of superellipsoids when ε1 = ε2(
x

a

)2m

+
(

y

b

)2m

+
(

z

c

)2m

= 1 (2.17)

was already studied by S. Spitzer2. Spitzer computed the area of superel-
lipse and the volume of this special superellipsoid when m is a natural
number (Loria, 1910).

2.2.1 SUPERQUADRICS
The term superquadrics was defined by Barr in his seminal paper

(Barr, 1981). Superquadrics are a family of shapes that includes not
only superellipsoids, but also superhyperboloids of one piece and su-
perhyperboloids of two pieces, as well as supertoroids (Fig. 2.6). In
computer vision literature, it is common to refer to superellipsoids by
the more generic term of superquadrics. In this book we also use the
term superquadrics as a synonym for superellipsoids.

By means of introducing parametric exponents of trigonometric func-
tions, Barr made a generalization not only of ellipsoids, but also of the
other two standard quadric surfaces; hyperboloids of one sheet(

x

a1

)2

+
(

y

a2

)2

−
(

z

a3

)2

= 1 (2.18)

2Arch. Math. Phys. LXI, 1877.
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(a) (b)

(c) (d)

Figure 2.6. Superquadrics are a family of shapes that includes (a) superellipsoids,
(b) superhyperboloids of one, and (c) of two pieces, and (d) supertoroids.

and hyperboloids of two sheets

(
x

a1

)2

−
(

y

a2

)2

−
(

z

a3

)2

= 1 . (2.19)

Superhyperboloids of one piece are therefore defined by the surface vec-
tor

r(η, ω) =
[

secε1 η
a3 tanε1 η

]
⊗
[

a1 cosε2 ω
a2 sinε2 ω

]
= (2.20)

=

 a1 secε1 η cosε2 ω
a2 secε1 η sinε2 ω

a3 tanε1 η

 ,
−π/2 < η < π/2
−π ≤ ω < π
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and by the implicit function

F (x, y, z) =

((
x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1

−
(

z

a3

) 2
ε1

. (2.21)

Superhyperboloids of two pieces are defined by the surface vector

r(η, ω) =
[

secε1 η
a3 tanε1 η

]
⊗
[

a1 secε2 ω
a2 tanε2 ω

]
= (2.22)

=

 a1 secε1 η secε2 ω
a2 secε1 η tanε2 ω

a3 tanε1 η

 ,
−π/2 < η < π/2
−π/2 < ω < π/2 (sheet 1)

π/2 < ω < 3π/2 (sheet 2)

and by the implicit function

F (x, y, z) =

((
x

a1

) 2
ε2 −

(
y

a2

) 2
ε2

) ε2
ε1

−
(

z

a3

) 2
ε1

. (2.23)

A torus is a special case of extended quadric surface

(r − a)2 =
(

z

a3

)2

= 1 , (2.24)

where

r =

√(
x

a1

)2

+
(

y

a2

)2

. (2.25)

Supertoroids are therefore defined by the following surface vector

r(η, ω) =
[

a4 + cosε1 η
a3 sinε1 η

]
⊗
[

a1 cosε2 ω
a2 sinε2 ω

]
= (2.26)

=

 a1(a4 + cosε1 η) cosε2 ω
a2(a4 + cosε1 η) sinε2 ω

a3 sinε1 η

 ,
−π ≤ η < π
−π ≤ ω < π

and by the implicit function

F (x, y, z) =

(( x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
2

− a4


2
ε1

+
(

z

a3

) 2
ε1

, (2.27)

where a4 is a positive real offset value which is related to the radius of
the supertoroid in the following way

a4 =
R√

a2
1 + a2

2

. (2.28)
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2.3 SUPERQUADRICS IN GENERAL
POSITION

xw

yw

zw

T

T
−1

xs

ys

zs

Figure 2.7. To define a superquadric in general position six additional parameters
are needed.

A superellipsoid in the local or superquadric centered coordinate sys-
tem (xs, ys, zs) is defined by 5 parameters (3 for size in each dimension
and 2 for shape defining exponents). To model or to recover superellip-
soids or superquadrics from image data we must represent superquadrics
in general position or in a global coordinate system. A superquadric in
general position requires 6 additional parameters for expressing the ro-
tation and translation of the superquadric relative to the center of the
world coordinate system (xw, yw, zw). One can use different conventions
to define translation and rotation. We use a homogeneous coordinate
transformation T to transform the 3D points expressed in the super-
quadric centered coordinate system [xs, ys, zs, 1]T into the world coordi-
nates [xw, yw, zw, 1]T (Fig. 2.7)


xw

yw

zw

1

 = T


xs

ys

zs

1

 , (2.29)
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where

T =


nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 . (2.30)

For a given point, transformation T first rotates (defined by the pa-
rameters n, o and a) that point and then translates it for [px, py, pz, 1]T

(Paul, 1981). Since we need in our equations the points to be expressed
in superquadric centered coordinates, we have to compute them from
the world coordinates 

xs

ys

zs

1

 = T−1


xw

yw

zw

1

 . (2.31)

Transformation T−1 performs the two operations in reverse order—it
first translates a point and then rotates it.

Inverting homogeneous transformation matrix T gives

T−1 =


nx ny nz −(pxnx + pyny + pznz)
ox oy oz −(pxox + pyoy + pzoz)
ax ay az −(pxax + pyay + pzaz)
0 0 0 1

 . (2.32)

By substituting equations (2.29) and (2.32) into equation (2.15), we
get the inside-outside function for superquadrics in general position and
orientation

F (xw, yw, zw) =

((
nxxw + nyyw + nzzw − pxnx − pyny − pznz

a1

) 2
ε2 +

+
(

oxxw + oyyw + ozzw − pxox − pyoy − pzoz

a2

) 2
ε2

) ε2
ε1

+

+
(

axxw + ayyw + azzw − pxax − pyay − pzaz

a3

) 2
ε1

. (2.33)

We use Euler angles (φ, θ, ψ) to express the elements of the rotational
part of transformation matrix T. Euler angles define orientation in terms



26 SEGMENTATION AND RECOVERY OF SUPERQUADRICS

of rotation φ about the z axis, followed by a rotation θ about the new y
axis, and finally, a rotation ψ about the new z axis (Paul, 1981)

T =

 cos φ cos θ cos ψ − sin φ sin ψ − cos φ cos θ sin ψ − sin φ cos ψ cos φ sin θ px
sin φ cos θ cos ψ + cos φ sin θ − sin φ cos θ sin ψ + cos φ cos θ sin φ sin θ py

− sin θ cos ψ sin θ sin ψ cos θ pz
0 0 0 1

 .

(2.34)

The inside-outside function for superquadrics in general position has
therefore, 11 parameters

F (xw, yw, zw) = F (xw, yw, zw; a1, a2, a3, ε1, ε2, φ, θ, ψ, px, py, pz), (2.35)

where a1, a2, a3 define the superquadric size; ε1 and ε2 the shape; φ, θ, ψ
the orientation, and px, py, pz the position in space. We refer to the set
of all model parameters as Λ = {λ1, λ2, . . . , λ11}.

2.4 SOME GEOMETRIC PROPERTIES OF
SUPERELLIPSOIDS

In this section, derivations of superellipsoid normal vector, radial Eu-
clidean distance between a point and a superellipsoid, rim of a superel-
lipsoid in general orientation, area and inertial moments of superellipse,
as well as volume and inertial moments of superellipsoids are given.
Zarrugh (Zarrugh, 1985) proposed numerical methods for computing
volume and moments of inertia for superellipsoids. Here we derive these
properties analytically.

2.4.1 NORMAL VECTOR OF THE
SUPERELLIPSOID SURFACE

Normal vector at a point r(η, ω) on the superellipsoid surface (Eq. (2.10)
on page 19) is defined by a cross product of the tangent vectors along
the coordinate curves

n(η, ω) = rη(η, ω)× rω(η, ω) =

=

 −a1ε1 sinη cosε1−1η cosε2ω
−a2ε1 sinη cosε1−1η sinε2ω

a3ε1 sinε1−1η cosη

×
 −a1ε2 cosε1η sinω cosε2−1ω

a2ε2 cosε1η cosω sinε2−1ω
0

 =

=

 −a2a3ε1ε2 sinε1−1η cosε1+1η cosω sinε2−1ω
−a1a3ε1ε2 sinε1−1η cosε1+1η sinω cosε2−1ω
−a1a2ε1ε2 sinη cos2ε1−1η sinε2−1ω cosε2−1ω

 . (2.36)
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(a) (b)

Figure 2.8. Every (a) superquadric has a (b) dual superquadric which is defined by
the scaled normal vector of the original one.

The above expression can be simplified by defining the following common
term

f(η, ω) = −a1a2a3ε1ε2 sinε1−1η cos2ε1−1η sinε2−1ω cosε2−1ω , (2.37)

so that the normal vector can be written as

n(η, ω) = f(η, ω)


1
a1

cos2−ε1η cos2−ε2ω

1
a2

cos2−ε1η sin2−ε2ω

1
a3

sin2−ε1η

 . (2.38)

The scalar function f(η, ω) term can be dropped out if we only need
the surface normal direction. By doing this, we actually get a dual
superquadric to the original superquadric r(η, ω) (Barr, 1981)

nd(η, ω) =


1
a1

cos2−ε1η cos2−ε2ω

1
a2

cos2−ε1η sin2−ε2ω

1
a3

sin2−ε1η

 . (2.39)

A superquadric and its dual superquadric are shown in Fig. 2.8. Using
the explicit equation for superellipsoid surfaces (Eq. 2.10) we can express
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the normal vector also, in terms of the components of the surface vector

nd(η, ω) =


1
x cos2η cos2ω

1
y cos2η sin2ω

1
z sin2η

 . (2.40)

Function nd(η, ω) is derived from r(η, ω) by replacing the parameters a1,
a2, and a3 with their reciprocal values, and the parameters ε1 and ε2 with
their complementary values to the number 2. Now, if we interpret the
vector function nd(η, ω) as a superellipsoid and construct the normal
vector function as described above, we get the original superellipsoid
r(η, ω).

Note that those superquadrics which have ε1 and ε2 > 2 have sharp
spiky corners where the normal vector is not uniquely defined.

2.4.2 DISTANCE BETWEEN A POINT AND
A SUPERELLIPSOID

Although the true Euclidean distance between a point and a superel-
lipsoid can be calculated by using numerical minimization, we do not
know of any closed form solution in form of an algebraic expression.
But for radial Euclidean distance such an expression can be derived
based on the implicit superellipsoid equation (Whaite and Ferrie, 1991).
The radial Euclidean distance is defined as a distance between a point
and a superellipsoid along a line through the point and the center of a
superellipsoid. We will summarize the derivation of this function and in
Chapter 4 relate it to a distance measure that we proposed for recovery
of superellipsoids from range data (Solina and Bajcsy, 1990).

The derivation is illustrated in Fig. 2.9. For a point defined by a vector
r0 = (x0, y0, z0) in the canonical coordinate system of a superellipsoid,
we are looking for a scalar β, that scales the vector, so that the tip of
the scaled vector rs = βr0 lies on the surface of the superellipsoid. Thus
for the scaled vector rs, the following equation holds

F (βx0, βy0, βz0) =

[(βx0

a1

) 2
ε2

+
(

βy0

a2

) 2
ε2

] ε2
ε1

+
(

βz0

a3

) 2
ε1

 = 1 .

(2.41)
From this equation, it follows directly

F (x0, y0, z0) = β
− 2
ε1 . (2.42)
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x
y

z

rs

r0

d

0 0T (x , y , z0)

Figure 2.9. Geometric interpretation of the radial Euclidean distance

Thus the radial Euclidean distance is

d = |r0 − rS| = |r0 − βr0| = |r0||1− F−
ε1
2 (x0, y0, z0)| =

= |rS||F
ε1
2 (x0, y0, z0)− 1|. (2.43)

So for any point T in space, with given coordinates (x0, y0, z0), we can
determine its position relative to the superellipsoid by simply calculating
the value of the F (x0, y0, z0). The following properties hold:

F (x0, y0, z0) = 1 ⇐⇒ β = 1 ⇐⇒ point T belongs to the surface of
the superellipsoid,

F (x0, y0, z0) > 1⇐⇒ β < 1⇐⇒ point T is outside the superellipsoid,

F (x0, y0, z0) < 1⇐⇒ β > 1⇐⇒ point T is inside the superellipsoid.

2.4.3 RIM OF A SUPERELLIPSOID IN
GENERAL ORIENTATION

The rim is a closed space curve which partitions the object surface into
a visible and invisible part. We would like to find the analytical form of
this curve for a superellipsoid in general orientation. Assuming that we
look at the superellipsoid from an infinitely distant point (orthographic
projection) in the direction of the z axis of the world coordinate system.
For the superellipsoid, the point is on the rim if and only if, the viewing
unit vector v = (0, 0, 1) is perpendicular to the surface normal vector

v · n(η, ω) = 0, (2.44)
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with the restriction that the surface normal vector length is not equal
to 0. To simplify the calculation we use nd(η, ω) instead of n(η, ω). The
problem can be solved in two ways: either we express the viewing vector
in the local coordinate system of the superellipsoid, or we transform the
surface normal vector given in the local coordinate system to the world
coordinate system. In both cases we end up with the following equation

nz

a1
cos2−ε1η cos2−ε2ω +

oz

a2
cos2−ε1η sin2−ε2ω +

az

a3
sin2−ε1η = 0. (2.45)

First, we will examine the case when η is not equal to 0. We divide the
equation above with sin2−ε1η and obtain the solution for η

η(ω) = arctan

[(
−a3

az

(
nz

a1
cos2−ε2ω +

oz

a2
sin2−ε2ω

)) 1
2−ε1

]
. (2.46)

Note that the arctan function is restricted to the main branch, namely
−π

2 ≤ η ≤ π
2 . If η equals 0 in the solution of equation (2.45), then

nz

a1
cos2−ε2ω +

oz

a2
sin2−ε2ω = 0 . (2.47)

Observing that the restricted arctan function has the value 0, if and only
if the argument is equal to 0, we conclude that the equation (2.46) can
be used for any −π ≤ ω < π where the rim is

r(ω) = r(η(ω), ω) . (2.48)

Orthographic projection of this rim to the (xy)-plane is the occluding
contour of the superellipsoid in general position.

2.4.4 AREA OF A SUPERELLIPSE
A superellipse is a parameterized planar curve, defined as

x = a cosε2ω
y = b sinε2ω

− π ≤ ω < π . (2.49)

The easiest way of finding the area of superellipse is to use the Green
formula

A = 1
2

∮
C′

(x dy − y dx), (2.50)

where the integration path C ′ is the curve itself. To simplify the integral,
we do not choose the curve C ′, but rather the curve C that consists of
the three segments C1, C2 and C3 (Fig. 2.10).
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a−a

b

−b
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C3

C ′

x

y

Figure 2.10. Integration path C used in Green formula to calculate the area of su-
perellipse.

Since the superellipse is symmetric with respect to the x and y axes,
it follows directly that the area equals

A = 2
∮

C
(x dy − y dx) = (2.51)

= 2
∫

C1

(x dy − y dx) + 2
∫

C2

(x dy − y dx) + 2
∫

C3

(x dy − y dx).

The integral along C1 is equal to 0, because y = 0 and dy = 0. Similarly,
the integral along C3 is also equal to 0. So now we have

A = 2
∫

C2

(x dy − y dx) =

= 2
∫ π/2

0
(xẏ − yẋ) dω =

= 2abε2

∫ π/2

0
(sinε2−1 ω cosε2+1 ω + sinε2+1 ω cosε2−1 ω) dω =

= abε2

[
B

(
ε2

2
,
ε2 + 2

2

)
+ B

(
ε2 + 2

2
,
ε2

2

)]
=

= 2abε2 B

(
ε2

2
,
ε2 + 2

2

)
. (2.52)
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The term B(x, y) is a beta function and is related to gamma function
and defined as

B(x, y) = 2
∫ π/2

0
sin2x−1 φ cos2y−1 φ dφ =

Γ(x)Γ(y)
Γ(x + y)

. (2.53)

To verify the result, we will calculate the area for the superellipse with
ε2 = 0 (rectangle), ε2 = 1 (ellipse) and ε2 = 2 (deltoid). The last two
cases are easy. We get πab for ellipse and 2ab for the deltoid. The first
case, ε2 = 0, cannot be calculated directly. We have to find the limit,
using Γ(x + 1) = x Γ(x) and Γ(x) = Γ(x + 1)/x

lim
ε2→0

ε2 B

(
ε2

2
,
ε2 + 2

2

)
= lim

ε2→0
ε2

Γ( ε2+2
2 )Γ( ε2+2

2 )
ε2
2 Γ(ε2 + 1)

=

= lim
ε2→0

2
Γ( ε2+2

2 )Γ( ε2+2
2 )

Γ(ε2 + 1)
= 2. (2.54)

So the area of a rectangular superellipse equals 4ab.

2.4.5 VOLUME OF A SUPERELLIPSOID
If we cut a superellipsoid with a plane parallel to the (xy)-plane, we

get a superellipse (Fig. 2.11).

x
y

z

dz

Figure 2.11. Geometric interpretation of a superellipsoid as a stack of superellipses
with infinitesimal thickness dz, their size being modulated by another superellipse.

What are the parameters of this superellipse? The parameters a and
b depend on the distance of the plane from the origin of the coordinate
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system, that is the z coordinate. The z coordinate in turn depends only
on the parameter η. The area of superellipse thus equals

A(η) = 2a(η)b(η)ε2 B

(
ε2

2
,
ε2 + 2

2

)
, (2.55)

where

a(η) = a1 cosε1η, (2.56)
b(η) = a2 cosε1η. (2.57)

The corresponding volume differential follows

dV = A(z) dz =
= A(η)ż(η) dη =

= 2a1a2a3ε1ε2 B

(
ε2

2
,
ε2 + 2

2

)
sinε1−1 η cos2ε1+1 η dη. (2.58)

We will again use the property of superellipsoid symmetry with respect
to the (xy)-plane to calculate the volume of a superellipsoid. The inte-
gration interval is from 0 to a3 with respect to z or from 0 to π/2 with
respect to η,

V = 2
∫ a3

0
A(z) dz =

= 2
∫ π/2

0
A(η)ż(η) dη =

= 4a1a2a3ε1ε2 B

(
ε2

2
,
ε2 + 2

2

)∫ π/2

0
sinε1−1 η cos2ε1+1 η dη =

= 2a1a2a3ε1ε2 B

(
ε1

2
, ε1 + 1

)
B

(
ε2

2
,
ε2 + 2

2

)
. (2.59)

By algebraic manipulation of the beta terms expressed as gamma func-
tions, we can derive the alternative form

V = 2a1a2a3ε1ε2 B

(
ε1

2
+ 1, ε1

)
B

(
ε2

2
,
ε2

2

)
. (2.60)

Fig. 2.12 shows the dependence of the ratio between the volume of a
superellipsoid and a parallelepiped, with the sides 2a1, 2a2 in 2a3, on
the shape parameters ε1 in ε2. Verification of the derived formula for
the volume of the superellipsoids shown in Fig. 2.5 produced the values
given in Table 2.1.
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Figure 2.12. Graph of the function 1
4
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2
, ε1 + 1)B( ε2
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2
) which shows how

volume of superellipsoids depends on ε1 and ε2.

Table 2.1. Volumes for the family of the superquadrics shown in Fig. 2.5 and calcu-
lated by equation (2.59).

ε1 = 0 ε1 = 1 ε1 = 2

ε2 = 0 8a1a2a3
16
3
a1a2a3

8
3
a1a2a3

ε2 = 1 2πa1a2a3
4
3
πa1a2a3

2
3
πa1a2a3

ε2 = 2 4a1a2a3
8
3
a1a2a3

4
3
a1a2a3

2.4.6 MOMENTS OF INERTIA OF A
SUPERELLIPSE

As we have used the expression for area of a superellipse to derive
the volume of a superellipsoid, we will use expressions for moments of
inertia of a superellipse to derive expressions for moments of inertia of
a superellipsoid. To simplify the calculation of the moments of inertia,
we introduce a “superelliptical” coordinate system similar to a circular
coordinate system with coordinates r and ω instead of x and y, where
the transformation between the two systems is given by

x = ar cosεω,

y = br sinεω. (2.61)

The determinant of Jacobian matrix for the transformation equals

|J| = abrε sinε−1 ω cosε−1 ω. (2.62)
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and the moments of inertia of a superellipse about the x, y and z axes
are as follows

I0
xx =

∫ ∫
S

y2dxdy =

=
∫ π

−π

∫ 1

0
b2r2 sin2ε ω|J|drdω =

=
1
2
ab3εB

(
3ε

2
,
ε

2

)
, (2.63)

I0
yy =

∫ ∫
S

x2dxdy =

=
∫ π

−π

∫ 1

0
a2r2 cos2ε ω|J|drdω =

=
1
2
a3bεB

(
3ε

2
,
ε

2

)
, (2.64)

I0
zz =

∫ ∫
S
(x2 + y2)dxdy =

= I0
xx + I0

yy =

= ab(a2 + b2)εB
(

3ε

2
,
ε

2

)
. (2.65)

where B(x, y) is a beta function. The symmetry of a superellipse with
respect to the x and y axes of coordinate system causes the moment of
deviation to vanish

I0
xy =

∫ ∫
S

xy dxdy = 0. (2.66)

The evaluation of the expressions (2.63), (2.64), and (2.65) for a circle, an
ellipse, and a rectangle, taking limits where necessary, produces expected
results listed in Table 2.2.

Table 2.2. Moments of inertia for special cases of superellipses

Circle (ε = 1) Ellipse (ε = 1) Rectangle (ε = 0)

I0
xx

π
4
r4 π

4
ab3 4

3
ab3

I0
yy

π
4
r4 π

4
a3b 4

3
a3b

I0
zz

π
2
r4 π

4
ab(a2 + b2) 4

3
ab(a2 + b2)
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2.4.7 MOMENTS OF INERTIA OF A
SUPERELLIPSOID

By slicing the superellipsoid along the z axis into slices of infinitesimal
thickness dz parallel to xy plane and using Steiner’s formula, moments
of inertia of a superellipsoid can be determined

Ixx =
∫ ∫ ∫

V
(y2 + z2)dxdydz = (2.67)

=
∫ +a3

−a3

(
∫ ∫

S(z)
y2dxdy +

∫ ∫
S(z)

z2dxdy)dz =

=
∫ +a3

−a3

(I0
xx(z) + z2A(z))dz =

=
∫ +π/2

−π/2
(I0

xx(η) + z2(η)A(η))ż(η)dη =

=
1
2
a1a2a3ε1ε2(a2

2B(
3
2
ε2,

1
2
ε2)B(

1
2
ε1, 2ε1 + 1) +

+4a2
3B(

1
2
ε2,

1
2
ε2 + 1)B(

3
2
ε1, ε1 + 1)),

Iyy =
∫ ∫ ∫

V
(x2 + z2)dxdydz = (2.68)

=
∫ +a3

−a3

(
∫ ∫

S(z)
x2dxdy +

∫ ∫
S(z)

z2dxdy)dz =

=
∫ +a3

−a3

(I0
yy(z) + z2A(z))dz =

=
∫ +π/2

−π/2
(I0

yy(η) + z2(η)A(η))ż(η)dη =

=
1
2
a1a2a3ε1ε2(a2

1B(
3
2
ε2,

1
2
ε2)B(

1
2
ε1, 2ε1 + 1) +

+4a2
3B(

1
2
ε2,

1
2
ε2 + 1)B(

3
2
ε1, ε1 + 1)),

Izz =
∫ ∫ ∫

V
(x2 + y2)dxdydz = (2.69)

=
∫ +a3

−a3

(
∫ ∫

S(z)
(x2 + y2)dxdy)dz =

=
∫ +a3

−a3

I0
zz(z)dz =
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=
∫ +π/2

−π/2
I0
zz(η)ż(η)dη =

=
1
2
a1a2a3ε1ε2(a2

1 + a2
2)B(

3
2
ε2,

1
2
ε2)B(

1
2
ε1, 2ε1 + 1).

where I0
xx(η), I0

yy(η), I0
zz(η), and A(η) are the respective moments of

inertia and the area of a superellipse slice with parameters a(η) and b(η)
given by equations (2.56) and (2.57).

The evaluation of the functions for inertial moments of a superellip-
soid produced results in accordance with the well-known expressions for
inertial moments of common geometric bodies like a sphere, an ellipsoid,
and a cube. The results are listed in Table 2.3.

Table 2.3. Moments of inertia for special cases of superellipsoids

Sphere Ellipsoid Cube

ε1 = 1, ε2 = 1 ε1 = 1, ε2 = 1 ε1 = 0, ε2 = 0

Ixx
8π
15
r5 4π

15
abc(b2 + c2) 1

12
abc(b2 + c2)

Iyy
8π
15
r5 4π

15
abc(a2 + c2) 1

12
abc(a2 + c2)

Izz
8π
15
r5 4π

15
abc(a2 + b2) 1

12
abc(a2 + b2)

2.5 COMPUTATION AND RENDERING OF
SUPERQUADRICS

In any implementation using superquadrics one must be careful about
the numerical evaluation of superquadric equations. All exponential
terms in the implicit superquadric equations are of the form x2r, where
r can be any positive real number. In numerical computations one must
take care of the correct order of evaluation of these exponential terms
and compute them as (x2)r to assure that the result is not a complex
number but a real one when x < 0!

In the explicit superquadric equations one should assume that any
exponentiation represents in fact, a signed power function

xp = sign(x)|x|p =
{ |x|p x ≥ 0
−|x|p x < 0 .

This detail is often missing in articles related to superquadrics, but is
crucial for any software implementation.

For applications in computer vision, the values for ε1 and ε2 are nor-
mally bounded: 0 < {ε1, ε2} < 2, so that only convex shapes are pro-
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duced (Fig. 2.5). To prevent numerical overflow and difficulties with
singularities, ε1 and ε2 are often further bounded (0.1 < {ε1, ε2} < 1.9).

Wire-frame models are normally used for rendering superquadrics in
computer vision. Rendering accuracy can be controlled simply by chang-
ing the sampling rate of the chosen parameterization. Hidden surfaces
can be removed by checking the normal vectors which are easy to com-
pute since they are dual to the surface vector (Eq. 2.39). Using the
surface normal vector one can also easily generate shaded superquadric
models (Fig. 2.13).

Figure 2.13. A shaded superquadric model using the Phong illumination model and
three point sources of illumination.

If the angle parameters η and ω in the explicit equation (2.10) are uni-
formly sampled, we obtain a “trigonometric” parameterization. With
trigonometric parameterization the lines of the wire-frame models are
closer together in the more curved regions. This is a good feature for
wire-frame models since it gives a good indication of the curvature of the
model’s surface. For some computer graphics applications such parame-
terization does not always produce satisfying results. Texturing of super-
quadric shapes, for example, requires a more uniform parameterization
density of the surface. Other types of parameterization of superquadric
surfaces were proposed which resulted in an almost uniform parameteri-
zation (Franklin and Barr, 1981; Löffelmann and Gröller, 1994; Montiel
et al., 1998).

A uniform and dense parameterization of a superquadric surface can
be obtained if the explicit equation, where z is as a function of x and y,

z = a3

1−
((

x

a1

) 2
ε2 +

(
y

a2

) 2
ε2

) ε2
ε1


ε1
2

(2.70)
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is expressed as a binomial expansion (Franklin and Barr, 1981). Since
only up to the first five coefficients of the expansion need to be computed
for a high resolution display, one can easily evaluate equation (2.70) for
every pixel (x, y).

The “Angle, Center” parameterization (Löffelmann and Gröller, 1994)
uses the angles η and ω of a ray r through the point r(η, ω) on the
superquadric surface. For a superellipse, for example, a parameterization
point is defined as

r(ω) = r(ω)
[

cos ω
sinω

]
, (2.71)

where
r(ω) =

1√((
cos ω
a1

) 2
ε2 +

(
sin ω
a2

) 2
ε2

)ε2
. (2.72)

Superquadrics can be parameterized in the same way.
A regular distribution of parameters along the superquadric surface

can be obtained by treating superquadrics as a deformation of ellipsoids
(Montiel et al., 1998). This linear-arc length parameterization has also
a lower computational cost since the evaluation of rational exponents
is avoided. An equal-distance sampling of superellipse models was also
proposed by Pilu and Fisher (Pilu and Fisher, 1995).

Appendix A contains the source code for display of superquadric mod-
els in the Mathematica software package.

2.6 SUMMARY
In computer vision, shape models are chosen according to their degree

of uniqueness and compact representation, their local support, expres-
siveness, and preservation of information. Superquadrics are an exten-
sion of quadric surfaces that can model a large variety of generic shapes
which are useful for volumetric part representation of natural and man-
made objects.

Superquadrics are defined by the explicit or implicit equation. The
implicit form (Eq. 2.15) is important for the recovery of superquadrics
and testing for intersection, while the explicit form (Eq. 2.10) is more
suitable for rendering. We derived geometric properties such as area and
moments of a superellipse and radial Euclidean distance from a point to
a superellipsoid, superellipsoid volume and superellipsoid moments of
inertia. These properties are useful not only for the recovery of super-
quadrics, but also for other tasks such as range image registration and
object recognition.


