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• Need repeatable spin and measurement.

• Recognising orientation too will be computationally costly without
invariant descriptors.



Simultaneous Localisation and Mapping

• One of the big successes of probabilistic robotics.

A body with quantitative sensors
moves through a previously unknown,

static environment, mapping it
and calculating its egomotion.

• When do we need SLAM?
• When a robot must be truly autonomous (no human input).
• When nothing is known in advance about the environment.
• When we can’t place beacons (or even use GPS like indoors or

underwater).
• And when the robot actually needs to know where it is.



Features for SLAM

• Most SLAM algorithms make maps of natural scene features.

• Laser/sonar: line segments, 3D planes, corners, etc.

• Vision: salient point features, lines, textured surfaces.

• Features should be distinctive; recognisable from different viewpoints
(data association).



Propagating Uncertainty

• SLAM seems like a chicken and egg problem — but we can make
progress if we assume the robot is the only thing that moves.

• Main assumption: the world is static.



Simultaneous Localisation and Mapping
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(a) Robot start (zero uncertainty); first measurement of feature A.



Simultaneous Localisation and Mapping

(b) Robot drives forwards (uncertainty grows).



Simultaneous Localisation and Mapping

(c) Robot makes first measurements of B and C.



Simultaneous Localisation and Mapping

(d) Robot drives back towards start (uncertainty grows more)



Simultaneous Localisation and Mapping

(e) Robot re-measures A; loop closure! Uncertainty shrinks.



Simultaneous Localisation and Mapping

(f) Robot re-measures B; note that uncertainty of C also shrinks.



Simultaneous Localisation and Mapping

• First Order Uncertainty Propagation
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• xv is robot state, e.g. (x , y , θ) in 2D; yi is feature state, e.g. (X ,Y )

in 2D.

• PDF over robot and map parameters is modelled as a single
multi-variate Gaussian and we can use the Extended Kalman Filter.

• PDF represented with state vector and covariance matrix.



SLAM Using Active Vision

• Stereo active vision; 3-wheel robot base.

• Automatic fixated active mapping and measurement of arbitrary
scene features.

• Sparse mapping.



Limits of Metric SLAM
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Purely metric probabilistic SLAM is limited to small domains due to:

• Poor computational scaling of probabilistic filters.

• Growth in uncertainty at large distances from map origin makes
representation of uncertainty inaccurate.

• Data Association (matching features) gets hard at high uncertainty.



Large Scale Localisation and Mapping

Local Metric Place Recognition Global Optimisation
Practical modern solutions to large scale mapping follow a
metric/topological approach. They need the following elements:

• Local metric mapping to estimate trajectory and possibly make local
maps.

• Place recognition, to perform ‘loop closure’ or relocalise the robot
when lost.

• Map optimisation/relaxation to optimise a map when loops are
closed.



Global Topological: ‘Loop Closure Detection’

• Angeli et al., IEEE Transactions on Robotics 2008.



Pure Topological SLAM

• Graph-based representation.

• Segmentation of the environment into linked distinct places.

• Adapted to symbolic planning and navigation.

Figure: Topological representation



Environment Model

• Map defined as a graph of connected locations.

• Edges model relationships between locations (e.g. traversability,
similarity).



Indoor Topological Map



Mixed Indoor / Outdoor Topological Map, Several Levels



Adding Metric Information on the Edges

• Take advantage of odometry measurements from a wheeled robot to
add relative displacement information between nodes.

• Apply simple graph-relaxation algorithm. to compute accurate 2D
absolute positions for the nodes.



Relaxation Algorithm
1. Estimate position and variance of node i from each neighboring node j :

(x ′
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2. Estimate variance of node i using harmonic mean of estimates from
neighbors (ni = number of neighbors of node i):
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3. Estimate position of node i as the mean of the estimates from its
neighbors:
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Relaxation Algorithm (Duckett, 2000): Illustration

The position and orientation of node j is obtained as the mean of the
positions obtained from nodes i and k (i.e., by composing their positions
with the corresponding relative displacements to node j).



Map Relaxation: Good Odometry, One Loop Closure



Simple Large-Scale SLAM: RATSLAM

Milford and Wyeth, 2007.
http://www.youtube.com/watch?v=-0XSUi69Yvs

• Very simple ‘visual odometry’ gives rough trajectory.

• Simple visual place recognition provides many loop closures.

• Map relaxation/optimisation to build global map.

http://www.youtube.com/watch?v=-0XSUi69Yvs

