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e Need repeatable spin and measurement.

e Recognising orientation too will be computationally costly without
invariant descriptors.



Simultaneous Localisation and Mapping

o One of the big successes of probabilistic robotics.

A body with quantitative sensors
moves through a previously unknown,
static environment, mapping it
and calculating its egomotion.

e When do we need SLAM?

e When a robot must be truly autonomous (no human input).

e When nothing is known in advance about the environment.

e When we can't place beacons (or even use GPS like indoors or
underwater).

e And when the robot actually needs to know where it is.



Features for SLAM

e Most SLAM algorithms make maps of natural scene features.

e Laser/sonar: line segments, 3D planes, corners, etc.

e Vision: salient point features, lines, textured surfaces.

o Features should be distinctive; recognisable from different viewpoints
(data association).



Propagating Uncertainty

e SLAM seems like a chicken and egg problem — but we can make
progress if we assume the robot is the only thing that moves.

e Main assumption: the world is static.



Simultaneous Localisation and Mapping

(a) Robot start (zero uncertainty); first measurement of feature A.
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(b) Robot drives forwards (uncertainty grows).



Simultaneous Localisation and Mapping

Y

(c) Robot makes first measurements of B and C.
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(d) Robot drives back towards start (uncertainty grows more)
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(e) Robot re-measures A; loop closure! Uncertainty shrinks.
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(f) Robot re-measures B; note that uncertainty of C also shrinks.



Simultaneous Localisation and Mapping

First Order Uncertainty Propagation
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X, is robot state, e.g. (x,y,0) in 2D; y; is feature state, e.g. (X, Y)
in 2D.

PDF over robot and map parameters is modelled as a single
multi-variate Gaussian and we can use the Extended Kalman Filter.

PDF represented with state vector and covariance matrix.



SLAM Using Active Vision

e Stereo active vision; 3-wheel robot base.

e Automatic fixated active mapping and measurement of arbitrary
scene features.

e Sparse mapping.



Limits of Metric SLAM
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Purely metric probabilistic SLAM is limited to small domains due to:
e Poor computational scaling of probabilistic filters.

e Growth in uncertainty at large distances from map origin makes
representation of uncertainty inaccurate.

e Data Association (matching features) gets hard at high uncertainty.



Large Scale Localisation and Mapping
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Local Metric Place Recognition Global Optimisation
Practical modern solutions to large scale mapping follow a
metric/topological approach. They need the following elements:

e Local metric mapping to estimate trajectory and possibly make local
maps.

e Place recognition, to perform ‘loop closure’ or relocalise the robot
when lost.

e Map optimisation/relaxation to optimise a map when loops are
closed.



Global Topological: ‘Loop Closure Detection’

«'Loop closure detection?
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e Angeli et al., IEEE Transactions on Robotics 2008.



Pure Topological SLAM

e Graph-based representation.
e Segmentation of the environment into linked distinct places.

e Adapted to symbolic planning and navigation.

Figure: Topological representation



Environment Model

e Map defined as a graph of connected locations.

e Edges model relationships between locations (e.g. traversability,
similarity).
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Indoor Topological Map
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Mixed Indoor / Outdoor Topological Map, Several Levels

1st to 2nd
floor stairs

- Outdoor, 1st floor - Indoor, 2nd floor - Stairs
- Outdoor, 2nd floor - Indoor, 3rd floor Loop-closing node




Adding Metric Information on the Edges

e Take advantage of odometry measurements from a wheeled robot to
add relative displacement information between nodes.

o Apply simple graph-relaxation algorithm. to compute accurate 2D
absolute positions for the nodes.

Loop-closure detection: Applying the new constraint
a new constraint is added to the rest of the graph
to the graph. produces a more accurate
map.
Relaxation

9



Relaxation Algorithm

1. Estimate position and variance of node i/ from each neighboring node j
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2. Estimate variance of node i using harmonic mean of estimates from
neighbors (n; = number of neighbors of node i):

3. Estimate position of node i as the mean of the estimates from its
neighbors:
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Relaxation Algorithm (Duckett, 2000): lllustration

Node k

The size of the nodes is proportional

to uncertainty.

The position and orientation of node j is obtained as the mean of the
positions obtained from nodes i and k (i.e., by composing their positions
with the corresponding relative displacements to node j).



Map Relaxation: Good Odometry, One Loop Closure




Simple Large-Scale SLAM: RATSLAM

Milford and Wyeth, 2007.
http://www.youtube.com/watch?v=-0XSUi69Yvs

e Very simple ‘visual odometry’ gives rough trajectory.
e Simple visual place recognition provides many loop closures.

e Map relaxation/optimisation to build global map.


http://www.youtube.com/watch?v=-0XSUi69Yvs

