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Abstract —Actions are spatio-temporal patterns. Similar to the slid-
ing window-based object detection, action detection finds the re-
occurrences of such spatio-temporal patterns through pattern match-
ing, by handling cluttered and dynamic backgrounds and other
types of action variations. We address two critical issues in pattern
matching-based action detection: (1) the intra-pattern variations in
actions, and (2) the computational efficiency in performing action
pattern search in cluttered scenes. First, we propose a discriminative
pattern matching criterion for action classification, called naive-
Bayes mutual information maximization (NBMIM). Each action is
characterized by a collection of spatio-temporal invariant features
and we match it with an action class by measuring the mutual
information between them. Based on this matching criterion, action
detection is to localize a subvolume in the volumetric video space
that has the maximum mutual information toward a specific action
class. A novel spatio-temporal branch-and-bound (STBB) search
algorithm is designed to efficiently find the optimal solution. Our
proposed action detection method does not rely on the results of
human detection, tracking or background subtraction. It can well
handle action variations such as performing speed and style vari-
ations, as well as scale changes. It is also insensitive to dynamic
and cluttered backgrounds and even to partial occlusions. The cross-
dataset experiments on action detection, including KTH, CMU action
datasets, and another new MSR action dataset, demonstrate the
effectiveness and efficiency of the proposed multi-class multiple-
instance action detection method.

Index Terms —video pattern search, action detection, spatio-
temporal branch-and-bound search

1 INTRODUCTION

Detecting human actions in video sequences is an interest-
ing yet challenging problem. It has a wide range of ap-
plications including video surveillance, tele-monitoring of
patients and senior people, medical diagnosis and training,
video indexing, and intelligent human computer interaction,
etc. Actions can be treated as spatio-temporal objects which
are characterized as spatio-temporal volumetric data. Like
the use of sliding windows in object detection, action
detection can be formulated as locating spatio-temporal
subvolumes in videos (i.e. video patterns) that contain
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the target actions. Despite previous successes of sliding
window-based object detection [1] [2], this approach cannot
easily be extended to action detection. It is still a challeng-
ing problem to detect and locate actions in video sequences,
mainly due to the following two difficulties.

First, the computational complexity of pattern searching
in the video space is much higher than that of object
search in the image space. Without any prior knowledge
about the location, temporal duration, and the spatial
scale of the action, the search space for video patterns
is prohibitive for exhaustive search. For example, a one-
minute video sequence of size160 × 120 × 1800 contains
billions of valid spatio-temporal subvolumes of various
sizes and locations. Therefore, although the state-of-the-art
approaches of object detection can efficiently search the
spatial image space [3] [1], they are in general not scalable
to search videos, due to such an enormous search space.
To reduce this huge search space, some other methods try
to avoid exhaustive search by sampling the search space,
e.g. only considering a fixed number of spatial and temporal
scales [4]. However, this treatment is likely to cause missing
detections. Moreover, the solution space is still quite large
even after subsampling.

Second, human actions often exhibit tremendous amount
of intra-pattern variations. The same type of actions may
look very different in their visual appearances. There are
many factors that contribute to such variations including the
performing speed, clothing, scale, view points, not to men-
tion partial occlusions and cluttered backgrounds. When
using a single and rigid action template for pattern matching
as in [4] [5], the actions that vary from the template
cannot be detected. One potential remedy is to use multiple
templates to cover more variations, but the required number
of templates will increase rapidly, resulting in formidable
computational costs.

We propose an efficient action detection approach that
addresses these two challenges mentioned above. Each
action is characterized by a set of spatio-temporal interest
points (STIP) [6]. Provided a test video sequence, each
STIP casts a positive or negative-valued vote for the action
class, based on its mutual information with respect to that
action class. As illustrated in Fig. 1, detection of an action
is to search for a spatio-temporal subvolume that has the
maximum total vote. Such a subvolume with maximum
voting score also maximizes the point-wise mutual infor-
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Fig. 1. Action detection through spatio-temporal pattern
search. The highlighted subvolume has the maximum mu-
tual information toward the specific event class. Each circle
represents a spatio-temporal feature point which contributes
a vote based on its own mutual information. The whole video
volume is of size m × n × t, where m × n is the image size
and t is the temporal length.

mation toward a specific action class. Thus it is treated as
a valid detection instance of that action class. This is a new
formulation of action detection.

To handle the intra-class action variations, various action
templates that belong to the same class (or pattern) are
collected and the collection of all the STIPs forms a pool
of positive STIPs. As each action pattern is represented
by more than one template, it is able to tolerate the
variations in actions. In terms of pattern matching, to make
an analogy to the template-based pattern matching where
only positive templates are utilized, our pattern matchingis
called discriminative matchingbecause of the use of both
positive and negative templates. Given both the positive
and negative training STIPs, a classification scheme called
naive-Bayes mutual information maximization (NBMIM)
is proposed to classify a query video clip,i.e. , a cloud
of STIPs. By exploring discriminative learning, such a
discriminative matching method can better distinguish the
target action patterns from the cluttered and the moving
backgrounds. Thus a more robust pattern matching can be
achieved.

To handle the large search space in video, we propose a
method that decouples the temporal and spatial spaces and
applies different search strategies, respectively. By combin-
ing dynamic programming in the temporal space and the
branch-and-bound in the spatial space, the proposed spatio-
temporal branch-and-bound (STBB) method significantly
speeds up the search of the spatio-temporal action pat-
terns. Moreover, we also investigate how to detect multiple
action instances simultaneously,i.e. , search for multiple
subvolumes whose scores are higher than the detection
threshold. Based on the new scheme, it can terminate many
unnecessary candidates earlier during the process of branch-
and-bound to save computation. It leads to a much faster
search, without significantly degrading the quality of the
detection results.

The benefits of our new method are three-fold. First, the
proposed discriminative pattern matching can well handle
action variations by leveraging all of the training data
instead of a single template. By incorporating the negative
training information, our pattern matching has stronger dis-
criminative power across different action classes. Second,
our method does not rely on object tracking, detection, and
background subtraction. It can handle background clutters
and other moving objects in the background. Last but
not the least, the proposed spatio-temporal branch-and-

bound search algorithm is computationally efficient and can
find the global optimal solution. To validate the proposed
action detection method, it has been tested on various data
sets, including cross-dataset experiments where the positive
training data, negative training data, and test data are from
different sources. The action categorization results on the
KTH dataset are comparable to the state-of-the-art results.
The multi-class multiple-instance action detection results
demonstrate the effectiveness and efficiency of our method.

2 RELATED WORK

2.1 Action Recognition

Action recognition has been an active research topic. Given
a video sequence, it requires to identify which type of
action is performed in this video. Some previous works
perform human action recognition based on the tracking
of human body parts. For example, motion trajectories
are used to represent actions in [7] [8] [9] [10] [11].
Unfortunately, robust object tracking is itself a non-trivial
task. The problem becomes particularly difficult when there
are occlusions or when the background is cluttered. Instead
of relying on the body part information, some approaches
use the silhouette information, such as using key poses in
representing actions [12] [13]. Some other approaches treat
actions as spatio-temporal shapes and characterize them
by using manifold invariants in the spatio-temporal space.
For example, in [14] a spatio-temporal volume (STV) is
generated by the 2-D contours of the object along the tem-
poral axis. By considering the STV as a 3-D manifold, this
method extracts algebraic invariants of the manifold, which
correspond to the changes in direction, speed and shape of
the parts. Space-time shapes are also applied in [15]. It uti-
lizes the properties of the solution to the Poisson equation
to extract space-time features. Because both silhouettes and
spatio-temporal shapes can be obtained through foreground-
background separation, such action recognition approaches
perform well when the background is reasonably clean
or static. If the background is cluttered and dynamic,
extracting foreground becomes very difficult. The noisy
and erroneous silhouettes or spatio-temporal shapes largely
limit the performance of these methods.

To avoid the foreground-background separation, many
recent methods applied local spatio-temporal features
to characterize actions and perform action classification
over the set of local features [16] [17] [18] [19] [20]
[21] [22] [23] [24]. In [19], spatio-temporal interest points
(STIP) are proposed and applied to characterize human
actions. In [18], local spatio-temporal features are quan-
tized into “visual words” and the support vector machine
is applied for classification. In [25], a video sequence
is characterized by a “bag-of-words”, where each frame
corresponds to a “word”. A semi-latent topic model is
then trained for action recognition. These previous good
recognition results validate the advantages of using the
spatio-temporal local features.

Besides using local features, there are many previous
works in designing and fusing various types of features
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for classification. In [26], a set of kinematic features are
proposed for action recognition. In [27], mid-level motion
features are developed from low-level optical flow infor-
mation for action recognition. In [28], a motion descriptor
based on optical flow measurements in a spatio-temporal
volume is introduced. All of these methods require optical
flow estimation. In [29], a motion-based representation
called motion context is proposed for action recognition. To
improve the recognition performance, both shape and mo-
tion information are used for action detection [30] [31] [32].
In [33], multiple features are fused using Fiedler Embed-
ding. To select informative features, PageRank algorithm
is applied in [17]. Based on the Gaussian processes with
multiple kernel covariance functions, [34] proposes a
Bayesian classification method to automatically select and
weight multiple features. Spatio-temporal context informa-
tion is utilized in [11] to improve the performance of
action recognition. In [35], a generative model is learned
by using both semantic and structure information for action
recognition and detection.

2.2 Action Detection

Different from action recognition or categoriza-
tion [36] [19] [37], where each action video is classified
into one of the pre-defined action classes, the task of action
detection [38] [39] [4] [40] [41] needs to identify not
only which type of action occurs, but also where (spatial
location in the image) and when (temporal location) it
occurs in the video. As discussed in [42], it is in general
a more challenging problem as it needs to not only
recognize the action, but also to locate it in the video
space [39] [4] [43] [40] [41] [44]. Some previous methods
apply template-based action matching [5] [39] [45]. For
example, two types of temporal templates are proposed
in [5] for characterizing actions: (1) the motion energy
image (MEI); and (2) the motion history image (MHI). To
provide a viewpoint-free representation for human actions,
[46] introduces motion history volume (MHV). Besides
motion templates, some other approaches also characterize
an action as a sequence of postures, so that sequence
matching methods can be applied to action recognition
and detection [47] [48] [32]. In general, template-based
approach is sensitive to the cluttered and dynamic
backgrounds. To address this problem, [4] proposes to
over-segment the video into many spatio-temporal video
volumes. An action template is then matched by searching
among these over-segmented video volumes. However,
because only one template is utilized in matching, previous
templates-based methods also have difficulties in handling
intra-class action variations.

In addition to template matching, discriminative learning
methods have also been applied to action detection. Mo-
tivated by the successful face detector [2], [38] extends
the Haar features to the 3-dimensional space, followed
by the boosting algorithm to integrate these features for
classification. In [41], multiple instance learning is pre-
sented for learning a human action detector. However,

head detection and tracking are required to help locate the
person. To learn the action representations, [49] proposes
to collect images from the Web and use this knowledge to
automatically annotate actions in videos. In [50], boosted
space-time window classifiers are introduced to detect hu-
man actions on real movies with substantial variation of
actions in terms of subject. Both human motion and shape
features are applied. As an earlier version of this paper,
[40] proposes an efficient 3-dimensional branch-and-bound
search for efficient action detection. This method is further
developed in [51] for transductive action detection, where
the requirement of training labels is reduced.

2.3 Object Recognition and Detection

Besides action recognition and detection, some recent
works in object recognition and detection were also related
to our work. A recent work in [52] proposed the naive-
Bayes nearest-neighbor (NBNN) classifier for image clas-
sification. In [1], object detection is formulated as finding
the optimal bounding box that gives the highest detection
score in the image. An efficient branch-and-bound method
is proposed to search for the optimal bounding box in
the image. Despite the successful applications in object
detection [1] and image retrieval [53], it still is a non-
trivial problem to extend the efficient search method from
the spatial image space to the spatio-temporal video space.
Thus, a further study is required.

3 CLASSIFICATION MODEL OF ACTIONS

3.1 Interest Point Representation for Actions

We represent an action as a space-time object and charac-
terize it by a collection of spatio-temporal interest points
(STIPs) [6]. Two types of features are used to describe the
STIPs [19]: histogram of gradient (HOG) and histogram
of flow (HOF), where HOG is the appearance feature and
HOF is the motion feature. These features have showed
promising results in action categorization [19]. We denotea
video sequence byV = {It}, where each frameIt consists
of a collection of STIPs. We do not select key-frames but
collect all STIPs to represent a video clip byQ = {di}.

3.2 Naive-Bayes Mutual Information Maximization

We denote byd ∈ R
N a feature vector describing a STIP

and by C ∈ {1, 2, ..., C} a class label. Based on the
naive-Bayes assumption and by assuming the independence
among the STIPs, we can evaluate thepointwise mutual
information between a video clipQ and a specific class
c ∈ {1, 2, ..., C} as:

MI(C = c,Q)

= log
P (Q|C = c)

P (Q)
= log

∏

dq∈Q P (dq|C = c)
∏

dq∈Q P (dq)

=
∑

dq∈Q

log
P (dq|C = c)

P (dq)
=

∑

dq∈Q

sc(dq), (1)

wheresc(dq) = MI(C = c, dq) is the pointwise mutual
information score to measure the association betweendq
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and classc. Assuming the independence amongdq, the
final decision ofQ is based on the summation of the mutual
information from all primitive featuresdq ∈ Q w.r.t. class
c.

To evaluate the contributionsc(dq) of eachdq ∈ Q, we
develop the pointwise mutual information through discrim-
inative learning [54]:

sc(dq) = MI(C = c, dq) = log
P (dq|C = c)

P (dq)

= log
P (dq|C = c)

P (dq|C = c)P (C = c) + P (dq|C 6= c)P (C 6= c)

= log
1

P (C = c) +
P (dq|C6=c)
P (dq|C=c)P (C 6= c)

. (2)

If the prior probabilities are equal,i.e. P (C = c) = 1
C ,

we further have:

sc(dq) = log
C

1 +
P (dq|C6=c)
P (dq|C=c) (C − 1)

. (3)

From Eq. 3, we can see that the likelihood ratio test
P (dq|C6=c)
P (dq|C=c) determines whetherdq votes positively or neg-
atively for the classc. When MI(C = c, dq) > 0, i.e.
likelihood ratio P (dq|C6=c)

P (dq|C=c) < 1, dq votes a positive score
sc(dq) for the classc. Otherwise ifMI(C = c, dq) ≤ 0,
i.e. P (dq|C6=c)

P (dq|C=c) ≥ 1, dq votes a negative score for the class
c. After receiving the votes from everydq ∈ Q, we can
make the final classification decision forQ based on its
mutual information towardC classes.

For theC-class action categorization, we buildC one-
against-all classifiers. The test actionQ is classified as the
class that gives the maximum detection score.

c∗ = arg max
c∈{1,2,..,C}

MI(c,Q) = arg max
c∈{1,2,..,C}

∑

d∈Q

sc(d).

We call this naive-Bayes mutual information maximiza-
tion (NBMIM). Compared with the naive-Bayes nearest-
neighbor (NBNN) [52], each scoresc(d) corresponds to the
pointwise mutual information and can either be positive or
negative. As will be explained in Section 4, such a property
brings extra benefits in formulating action detection as
a subvolume search problem, where a computationally
efficient detection solution can be found.

3.3 Likelihood Ratio Measurement
Denote byTc+ = {Vi} the positive training dataset of class
c, whereVi ∈ T

c+ is a video of classc. As eachV is
characterized by a collection of STIPs, we represent the
positive training data by the collection of all positive STIPs:
T

c+ = {dj}. Symmetrically, the negative data is denoted
by T

c−, which is the collection of all negative STIPs.
To evaluate the likelihood ratio for eachd ∈ Q, we apply

the Gaussian kernel density estimation based on the training
dataT

c+ andT
c−. With a Gaussian kernel

K(d − dj) =
1√
2σ

exp− 1

2σ2 ‖d−dj‖
2

,

we adopt the nearest neighbor approximation as in [52].
The likelihood ratio becomes:

P (d|C 6= c)

P (d|C = c)
=

1
|Tc−|

∑

dj∈Tc− K(d − dj)

1
|Tc+|

∑

dj∈Tc+ K(d − dj)

≈ exp− 1

2σ2 (‖d−dc−
NN

‖2−‖d−dc+
NN

‖2) . (4)

Here dc−
NN and dc+

NN are the nearest neighbors ofd
in T

c+ and T
c−, respectively. We approximate the nu-

merator 1
|Tc−|

∑

dj∈Tc− K(d − dj) by exp− 1

2σ2 ‖d−dc−

NN
‖2

,
and the denominator 1

|Tc+|

∑

dj∈Tc+ K(d − dj) by

exp− 1

2σ2 ‖d−dc+
NN

‖2

.
In kernel based density estimation, it is difficult to

select an appropriate kernel bandwidthσ. A large kernel
bandwidth may over-smooth the density estimation, while
a too small kernel bandwidth only counts on the nearest
neighbors in the Parzen estimator. Let

γ(d) = ‖d − dc−
NN‖2 − ‖d − dc+

NN‖2. (5)

According to Eq. 3 and Eq. 4, a positiveγ(d) will generate
a positive scoresc(dq), while a negativeγ(d) will generate
a negativesc(d). To avoid the selection of the best band-
width σ, we adaptively adjustσ based on thepurity in the
neighborhood of a STIPd:

1

2σ2
=

{

|NNc+
ε (d)|

|NNε(d)| , if γ(d) ≥ 0
|NNc−

ε (d)|
|NNε(d)| , if γ(d) < 0

, (6)

where NN c+
ε (d) = {dj ∈ T

c+ : ‖dj − d‖ ≤ ε} is
the ε-nearest neighbors of pointd in the positive class
c; NN c−

ε (d) = {dj ∈ T
c− : ‖dj − d‖ ≤ ε} is

the ε-nearest neighbors of pointd in the negative class;
NNε(d) = {dj ∈ T

c+ ∪ T
c− : ‖dj − d‖ ≤ ε} is the entire

set ofε-nearest neighbors ofd. With γ(d) determining the
sign of the votesc(d), if d is located in a high purity region
of the corresponding class, its votesc(d) is stronger.

3.3.1 Efficient Nearest Neighbor Search
To obtain the voting scoresc(d), for eachd ∈ Q, we
need to search for its nearest neighbors (NNs). To improve
the efficiency of searching in the high-dimensional feature
space and to obtainNN c

ε (d) quickly, we employ locality
sensitive hashing (LSH) [55] to perform the approximate
ε-nearest neighbors (ε-NN) search.

Based onNN c+
ε (d) andNN c−

ε (d), instead of searching
for the global nearest neighbor for each class, we approxi-
mate it by the closest point to the queryd in the ε-NN set.
Taking the negative class as an example, we have:

‖d − dc−
NN‖ = min

di∈NNc−
ε (d)

‖d − di‖.

It is worth noting thatdc−
NN depends on the selection ofε. If

we happen to have|NN c−
ε (d)| = 0, we assume the negative

nearest neighbor is at distanceε, namely‖d−dc−
NN‖2 = ε2

in Eq. 5. Applying the same strategy to the positive class,
we have:

‖d − dc+
NN‖ = min

di∈NNc+
ε (d)

‖d − di‖.
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When |NN c+
ε (d)| = 0, we assume‖d − dc+

NN‖2 = ε2 in
Eq. 5.

4 DISCRIMINATIVE VIDEO PATTERN SEARCH

Based on the proposed NBMIM criterion, action detection
is to find a subvolume of maximum mutual information. As
illustrated in Fig. 1, given a video sequenceV , we want to
find a spatio-temporal subvolumeV ∗ ⊂ V with the highest
mutual information score. Since STIPs are sparse features
and involve only a very small number of pixelsd ∈ V ,
the optimal subvolumeV ∗ may not be a unique one. For
example, if a frame does not contain any STIPs, it becomes
arbitrary for V ∗ to include this empty frame, as it does
not affect the total voting score. To avoid this problem,
we introduce a very small negative votes(d∅) < 0 to the
empty pixels that are not associated with any STIP. Such
a negative prior discourages the inclusion of empty pixels
into V ∗.

Given a specific classc, our target is to search for the
optimal subvolume:

V ∗ = arg max
V ⊆V

MI(V,C = c) (7)

= arg max
V ⊆V

∑

d∈V

sc(d) = arg max
V ∈Λ

f(V ),

wheref(V ) =
∑

d∈V sc(d) is the objective function and
Λ denotes the candidate set of all valid subvolumes inV .
Suppose the target videoV is of size m × n × t. The
optimal solutionV ∗ = t∗ × b∗ × l∗ × r∗ × s∗ × e∗ has 6
parameters to be determined, wheret∗, b∗ ∈ [0, m] denote
the top and bottom positions,l∗, r∗ ∈ [0, n] denote the
left and right positions, ands∗, e∗ ∈ [0, t] denote the start
and end positions. As a counterpart of the bounding-box
based object detection, the solutionV ∗ is the 3D bounding
volume that has the highest score for the target action.

The total number of the subvolumes is in the order of
O(n2m2t2). Therefore, it is computationally prohibitive to
perform an exhaustive search to find the optimal subvol-
ume V ∗ from such an enormous candidate pool. In the
following, we first present the conventional branch-and-
bound solution extended directly from 2D bounding-box
search in [1], and then present our new method to findV ∗

more efficiently.

4.1 Spatio-Temporal Branch-and-Bound Search
4.1.1 Conventional branch-and-bound search
A branch-and-bound solution is proposed in [1] for search-
ing the optimal bounding box in an image for object detec-
tion. This idea can be directly extended to find the optimal
subvolume in videos, by replacing the spatial bounding box
by a spatio-temporal subvolume.

Denote byV a collection of subvolumes. Assume there
exist two subvolumesVmin and Vmax such that for any
V ∈ V, Vmin ⊆ V ⊆ Vmax. Then we have

f(V ) ≤ f+(Vmax) + f−(Vmin), (8)

wheref+(V ) =
∑

d∈V max(sc(d), 0) contains the positive
votes, whilef−(V ) =

∑

d∈V min(sc(d), 0) contains the

negative ones. We denote the upper bound off(V ) for all
V ∈ V by:

f̂(V) = f+(Vmax) + f−(Vmin) ≥ max
V ∈V

f(V ). (9)

Moreover, it is easy to see that ifV is the only element in
V, we have the equality:

f̂(V) = f(V ). (10)

Eq. 9 and Eq. 10 thus meet the two requirements discussed
in [1] for the effective upper bound in the branch-and-
bound search. With the first condition in Eq. 9,f̂(V) is
an upper bound off(V ). Therefore, it does not incur
miss detection by usinĝf(V) for pruning unsatisfactory
candidates. It guarantees the optimality of the solution.
The second condition in Eq. 10 provides the termination
condition of the branch-and-bound.

Algorithm 1 : Conventional branch-and-bound (BB)
search (extension of [1])

input : videoV ∈ R
n×m×t;

quality bounding functionf̂ (see text)
output : V ∗ = arg maxV ⊆V f(V )

initialize P as an empty priority queue1
setV = [0, n] × [0, n] × [0, m] × [0, m] × [0, t] × [0, t]2
while V contains more than one elementdo3

split V → V
1 ∪ V

24

get upper bound̂f(V1)5

push (V1, f̂(V1)) into P6

get upper bound̂f(V2)7

push (V2, f̂(V2)) into P8

retrieve top stateV from P based onf̂(V)9

returnV ∗ = V10

In order to distinguish this method from our new method,
we call it conventional branch-and-bound method (Alg. 1).
Compared to the spatial bounding box searching, the search
of spatio-temporal subvolume is much more difficult. In
videos, the search space has two additional parameters (the
start and end on the time dimension) and expands from
4 dimensions to 6 dimensions. As the complexity of the
branch-and-bound grows exponentially with respect to the
number of dimensions, the conventional branch-and-bound
solution is too slow for videos.

4.1.2 Spatio-temporal branch-and-bound search

We present a new method called spatio-temporal branch-
and-bound search (STBB) to search the video space. Instead
of directly applying branch-and-bound in the 6D parameter
space, our new method decomposes it into two subspaces:
(1) 4D spatial parameter space and (2) 2D temporal param-
eter space. We denote byW ∈ R × R × R × R a spatial
window andT ∈ R×R a temporal segment. A subvolume
V is uniquely determined byW andT . The detection score
of a subvolumef(VW×T ) is:

f(VW×T ) = f(W, T ) =
∑

d∈W×T

s(d). (11)
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Fig. 2. Illustration of the upper bound estimation. W denotes a set of spatial windows. Wmax and Wmin are the
maximum and minimum windows in W, respectively. F and G are two matrices obtained through Eq. 16 and
Eq 17, respectively. Empty cells in F and G matrices correspond to null entries. Left figure: the first upper bound
in Lemma 1. The upper bound is F̂1(W) = 19 + 9 + 7 = 35. Right figure: the second upper bound in Lemma 2.
The upper bound is F̂2(W) = 21 − (−3 − 9 − 1) = 34.

Let W = [0, m]× [0, m]× [0, n]× [0, n] be the parameter
space of the spatial windows, andT = [0, t] × [0, t] be
the parameter space of temporal segments. Our objective
here is to find the spatio-temporal subvolume which has
the maximum detection score:

[W ∗, T ∗] = arg max
W∈W,T∈T

f(W, T ). (12)

The optimal detection score is:

F (W ∗) = max
W∈W

F (W ) = max
W∈W

max
T∈T

f(W, T ). (13)

We take different search strategies in the two subspaces
W andT and search alternately betweenW andT. First, if
the spatial windowW is determined, we can easily search
for the optimal temporal segment in spaceT:

F (W ) = max
T∈T

f(W, T ), (14)

This relates to the max subvector problem, where given a
real vector, the output is the contiguous subvector of the
input that has the maximum sum (see Fig. 3). We will
discuss its efficient solution later.

To search the spatial parameter spaceW, we employ
a branch-and-bound strategy. Since the efficiency of a
branch-and-bound based algorithm critically depends on the
tightness of the upper bound, we first derive a tighter upper
bound.

Given an arbitrary parameter spaceW = [m1, m2] ×
[m1, m2] × [n1, n2] × [n1, n2], the optimal solution is:

W ∗ = arg max
W∈W

F (W ). (15)

We defineF (W) = F (W ∗). Assume there exist two sub-
rectanglesWmin and Wmax such thatWmin ⊆ W ⊆
Wmax for any W ∈ W. For each pixeli ∈ Wmax, we
denote the maximum sum of the 1D subvector along the
temporal direction at pixeli’s location by:

F (i) = max
T⊆T

f(i, T ). (16)

Let F+(i) = max(F (i), 0), we have the first upper bound
for F (W), as presented in Lemma 1.

Lemma 1:(upper bound F̂1(W))
Given a spatial parameter spaceW = {W : Wmin ⊆ W ⊆
Wmax}, we have

F (W) ≤ F̂1(W) = F (Wmin) +
∑

i∈Wmax,i/∈Wmin

F+(i).

When Wmax = Wmin, we have the tight bound
F̂1(W) = F (Wmin) = F (W ∗).

Symmetrically, for each pixeli ∈ Wmax, we denote the
minimum sum of the 1D sub-vector at pixeli’s location by:

G(i) = min
T⊆T

f(i, T ). (17)

Let G−(i) = min(G(i), 0), and Lemma 2 presents the
other upper bound ofF (W).

Lemma 2:(upper bound F̂2(W))
Given a spatial parameter spaceW = {W : Wmin ⊆ W ⊆
Wmax}, we have

F (W) ≤ F̂2(W) = F (Wmax) −
∑

i∈Wmax,i/∈Wmin

G−(i).

When Wmax = Wmin, we have the tight bound
F̂2(W) = F (Wmax) = F (W ∗).

The proofs of Lemma 1 and Lemma 2 are given in the
Appendix. The two lemmas are illustrated in Fig. 2, where
F (Wmin) = 19, andF (Wmax) = 21. The values ofF (i)
are shown in theF matrix where blank cells indicate zeros.
The values ofG(i) are shown in theG matrix. Lemma 1
gives the upper bound̂F1(W) = 19 + 9 + 7 = 35 and
Lemma 2 gives the upper bound̂F2(W) = 21− (−3− 9−
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1) = 34. Based on Lemma 1 and Lemma 2, we can obtain
a final tighter upper bound, which is the minimum of the
two available upper bounds.

Theorem 1:(Tighter upper bound F̂ (W))
Given a spatial parameter spaceW = {W : Wmin ⊆ W ⊆
Wmax}, the upper bound of the optimal solutionF (W) is:

F (W) ≤ F̂ (W) = min{F̂1(W), F̂2(W)}. (18)

Based on the tighter upper bound derived in Theorem 1,
we propose our new branch-and-bound solution in the
spatial parameter spaceW in Alg. 2. Since the convergence
speed of branch-and-bound method highly depends on the
tightness of the bound, the new algorithm can converge
much faster with a better upper bound estimation.
Moreover, compared to the conventional branch-and-bound
solution in Alg. 1, the new STBB algorithm keeps track
of the current best solution which is denoted byW ∗. Only
when a parameter spaceW contains potentially better
solution (i.e. F̂ (W) ≥ F ∗), we push it into the queue.
Otherwise, we discard the whole spaceW. It thus saves
the memory in maintaining the priority queue ofW.

Algorithm 2 : Spatio-temporal branch-and-bound
(STBB) search

input : videoV ∈ R
m×n×t

quality bounding functionF̂ (see text)
output : V ∗ = arg maxV ⊆V f(V )

initialize P as an empty priority queue1
setW = [T, B, L, R] = [0, n] × [0, n] × [0, m] × [0, m]2

set F̂ (W) = min{F̂1(W), F̂2(W)}3

push (W, F̂ (W)) into P4
set current best solution{W ∗, F ∗} = {Wmax, F (Wmax)};5
repeat6

retrieve top stateW from P based onF̂ (W)7

if (F̂ (W) > F ∗) then8

split W → W
1 ∪ W

29
CheckToUpdate(W1, W ∗, F ∗, P );10
CheckToUpdate(W2, W ∗, F ∗, P );11

else12
T ∗ = arg maxT⊂[0,t] f(W ∗, T );13
returnV ∗ = [W ∗, T ∗].14

until stop ;15

Function CheckToUpdate(W, W ∗, F ∗, P )16
Get Wmin andWmax of W17
if (F (Wmin) > F ∗) then18

update{W ∗, F ∗} = {Wmin, F (Wmin)};19

if (F (Wmax) > F ∗) then20
update{W ∗, F ∗} = {Wmax, F (Wmax)};21

if (Wmax 6= Wmin) then22

get F̂ (W) = min{F̂1(W), F̂2(W)}23

if F̂ (W) ≥ F ∗ then24

push (W, F̂ (W)) into P25

4.1.3 Efficient upper bound estimation for branch-
and-bound search
To estimate the upper bound in Theorem 1, as well as
to search for the optimal temporal segmentT ∗ given a

Fig. 3. Max subvector search: the highlighted element by
red is the subvector of max sum, which is 8 − 1 + 5 = 12.

spatial windowW , we design an efficient way to evaluate
F (Wmax), F (Wmin), and in generalF (W ).

According to Eq. 14, given a spatial windowW of a fixed
size, we need to search for a temporal segment with maxi-
mum summation. To present our efficient solution, we first
review the classic max subvector problem in one-dimension
pattern recognition. It is the degeneration of the maximum
subvolume problem in spatio-temporal space. There exists
an elegant solution called Kadane’s algorithm which is
of a linear complexity using dynamic programming [56].
We present Kadane’s algorithm in Alg. 3. The max sum
problem is illustrated in Fig. 3.

Kadane’s algorithm can accelerate the temporal search
and provide an efficient estimation of the upper bounds.
Given any spatial windowW , the summation withinW
at each framej is f(W, j) =

∑

d∈W×j s(d). By applying
the trick of integral-image,f(W, j) can be obtained in a
constant time. Letv(j) = f(W, j), the evaluation ofF (W )
in Eq. 14 is to find the max subvector inv. By using
Kadane’s algorithm, it can be done in a linear time. As
a result, both upperbounds in Lemma 1 and Lemma 2 can
be obtained in a linear time. Therefore the estimation of the
upper boundF̂ (W) in Theorem 1 is of a linear complexity
O(t).

The complexity comparison between our proposed
method (Alg. 2) and the conventional branch-and-bound
(Alg. 1) is presented in Table 1. As our branch-and-bound
is only performed in the spatial space, the worst case
complexity of our Alg. 2 (O(m2n2t)) is better than that
of Alg. 1 (O(m2n2t2)) which needs to perform branch-
and-bound in the spatio-temporal space.

Algorithm 3 : The linear algorithm of max subvec-
tor [56]
input : real vectorv of length t + 1
output : T ∗ = arg maxT⊆[0,t]

∑

i∈T
v(i)

setMaxSofar = MaxEndingHere = 0;1
setStart = End = 0;2
for i = 0 : t do3

MaxEndingHere =4
max(0, MaxEndingHere + v(i));
if MaxEndingHere = 0 then5

CurStart = min(i + 1, t);6

if MaxSoFar ≤ MaxEndingHere then7
Start = CurStart;8
End = i;9

MaxSofar = max(MaxSofar,MaxEndingHere);10

return T ∗ = [Start,End];11
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BB (Alg. 1) STBB (Alg. 2)
Dimensions for B&B 6 (spatio-temporal) 4 (spatial)

Upper bound est. O(1) O(t)
Worst case O(m2n2t2) O(m2n2t)

TABLE 1
Complexity comparison between spatio-temporal

branch-and-bound and conventional branch-and-bound.

5 MULTI-CLASS MULTIPLE -INSTANCE AC -
TION DETECTION

5.1 Multiple-instance detection algorithm

The branch-and-bound approaches in Alg. 1 and Alg. 2 are
designed to search for a unique subvolume of maximum
score. For multiple instance action detection, the same
algorithm needs to be performed multiple rounds. At
each round, the score of the detected subvolumeV ∗ is
compared against a predefined detection thresholdDt in
order to determine whether it is a valid detection. If it is a
valid detection, we clear it by setting the score ofi ∈ V ∗

to s(d∅) and continue to find the next subvolume of the
maximum detection score. This process continues until the
current best subvolume is not a valid detection.

Algorithm 4 : Multiple-instance action detection

input : videoV ∈ R
m×n×t;

detection thresholdDt

output : a collection of detections:V ∗ ⊆ V, s.t.
f(V ∗) ≥ Dt

repeat1
V ∗ = STBBSearch(V);2
clearV ∗ to zero values and updateV.3

until the current detection is invalid:f(V ∗) < Dt ;4

5.2 Accelerated STBB (A-STBB) for multiple-
instance detection
To improve the efficiency of multiple-instance detection, we
modify the original STBB search in Alg. 2 and propose an
accelerated STBB (A-STBB). We briefly explain the main
idea below. For multiple-instance detection, the detection
thresholdDt > 0 can be used to speed up the search
process by terminating many unnecessary branches earlier
during the branch-and-bound process. First of all, if there
is no valid detection in a video sequence, then instead
of finding the optimal subvolumeV ∗ with the maximum
detection score, we can safely terminate the search at
an earlier stage. For example, if a parameter spaceV

satisfies f̂(V) ≤ Dt, it indicates thatV is an invalid
parameter space, because the score of the best candidate
is still below the detection threshold. Therefore,V does
not require a further inspection. If none of the remaining
candidates satisfieŝf(V) ≥ Dt, then the search can be
safely terminated because no valid detection will be found.

Furthermore, if a subvolumeV with valid detection
scoref(V ) ≥ Dt is already found, we can quickly finalize
the detection based on the current solution, instead of
keeping looking for the maximumV ∗. In such a case,

although the final detection may not be the optimal
subvolumeV ∗, it still provides a valid detection where
f(V ) ≥ Dt. Therefore, it leads to a much faster search
without significantly degrading the quality of the detection
results.

Algorithm 5 : Accelerated STBB (A-STBB) search

input : videoV ∈ R
m×n×t;

detection thresholdDt

output : a subvolumeṼ ⊆ V, s.t.f(Ṽ ) ≥ Dt (if no valid
detection, returñV = ∅)

setW = [T, B, L, R] = [0, n] × [0, n] × [0, m] × [0, m]1

get F̂ (W) = min{F̂1(W), F̂2(W)}2

push (W, F̂ (W)) into empty priority queueP3
set current best solution{W ∗, F ∗} = {Wmax, F (Wmax)};4
repeat5

retrieve top stateW from P based onF̂ (W)6

if F̂ (W) < Dt then7

return Ṽ = ∅8

if (F̂ (W) > F ∗) then9

split W → W
1 ∪ W

210
CheckToUpdate(W1, W ∗, F ∗, P );11
CheckToUpdate(W2, W ∗, F ∗, P );12

else13
T ∗ = arg maxT⊂[0,t] f(W ∗, T );14

return Ṽ = [W ∗, T ∗].15

until stop ;16

Function CheckToUpdate(W, W ∗, F ∗, P )17
if (F ∗ ≥ Dt) then18

clear priority queueP push (W, F̂ (W)) into empty19
priority queueP

else20
Get Wmin andWmax of W if (F (Wmin) > F ∗) then21

update{W ∗, F ∗} = {Wmin, F (Wmin)};22

if (F (Wmax) > F ∗) then23
update{W ∗, F ∗} = {Wmax, F (Wmax)};24

if (Wmax 6= Wmin) then25

get F̂ (W) = min{F̂1(W), F̂2(W)}26

if F̂ (W) ≥ F ∗ then27

push (W, F̂ (W)) into P28

Incorporating the above two heuristics, we present the ac-
celerated STBB (A-STBB) search in Alg. 5. Compared with
the STBB search in Alg. 2, during each search iteration, we
retrieve an upper bounded estimationF̂ (W) from the heap.
If F̂ (W) < Dt, we directly reject the whole video sequence
V , since noV ∗ can achieve the detection threshold. This
strategy largely speeds up the scanning of negative video
sequences which do not contain the target action. Moreover,
at each search iteration, we also keep track of the current
best scoreF ∗. WhenF ∗ ≥ Dt, it indicates that there exists
a valid detection in the corresponding parameter spaceW.
In such a case, we speed up the search by limiting the rest
of the search space withinW only. In other words, instead
of searching for the optimalf(V ∗) globally, we are satisfied
with the local optimal solutionf(Ṽ ) > Dt. Since only one
subvolume with qualified score will be selected while other
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subvolumes are discarded, our A-STBB performs the non-
maxima suppression implicitly during the search process.

6 EXPERIMENTS

6.1 Action Categorization

We use the KTH dataset to evaluate the proposed NBMIM
classifier on action categorization. The KTH dataset con-
tains six types of human actions: walking, jogging, run-
ning, boxing, hand waving and hand clapping, each of
which is performed several times by 25 subjects. There
are 4 different environments where the video sequences are
captured: outdoors, outdoors with scale variation, outdoors
with different clothes and indoors. The video is captured
at 25 frames per second and at a low image resolution of
160 × 120.

We follow the standard experiment setting of KTH
dataset as in [36] [19]. The whole dataset contains 598
video sequences, taken over homogeneous backgrounds
with a static camera. Each sequence is further segmented
into 4 subsequences according to [36], thus it gives in total
2391 action videos. Each action video has an average length
of four seconds. Among the 25 persons, 16 of them are used
for training and the rest 9 are used for testing. The training
dataset contains 1528 individual actions and the testing
dataset contains 863 individual actions. We apply both
motion (histogram of motion) and appearance (histogram
of gradient) features as in [19]. By concatenating the HOG
and HOF features, a 162-dimensional feature vector is used
to characterize each STIP. The average Euclidean length of
the STIP descriptor is4.46. The training dataset generates
a pool of308, 110 STIPs. Given a query STIP, we search
its ε-nearest neighbors using locality sensitive hashing. The
E2LSH package [55] is employed and the probability for
correct retrieval is set top = 0.9.

The threshold of the nearest neighbor search,ε, is the
only parameter of the proposed NBMIM classifier. Its
influence is two-fold. First of all, it affects the search speed
and the quantity of the nearest neighbors. The larger theε,
the slower the approximateε-NN search using LSH, but the
more nearest neighbors it will find. Secondly,ε also controls
the bandwidthσ in the kernel density estimation according
to Eq. 6. To evaluate the influence ofε, we test different
choices of ε and compare three different classification
models: NBMIM (adaptive kernel bandwidth), NBMIM
(fixed kernel bandwidth), and NBNN in [52]. To make
a fair comparison to NBNN, we use the same parameter
for the approximate nearest neighbor search as described
in Section 3.3.1. All of the three classifiers share the
samedc+

NN and dc−
NN . The only difference is the voting

score sc(d). In this experiment, since each action class
has approximately the same number of video sequences,
we assume the prior probabilities are equal and apply
Eq. 3 to calculatesc(d). The result in Table 2 shows that
the classification performance is not very sensitive to the
selection ofε. Our proposed NBMIM with the adaptive
kernel bandwidth performs slightly better than NBMIM
with a fixed bandwidth, as well as NBNN. It is worth noting

that the NBNN classifier cannot be directly applied to the
detection formulation of Eq. 7, because its voting score is
always positive.

ε = 1.8 ε = 2.0 ε = 2.2 ε = 2.4 ε = 2.6

adaptive 91.8% 93.0% 93.7 % 93.4 % 93.3 %
1

2σ2 = 1 91.9% 92.2% 92.7 % 92.7 % 92.6 %
NBNN 91.7% 91.8% 92.5% 92.6% 92.7 %

TABLE 2
The comparison between NBMIM (adaptive and fixed kernel

bandwidth) and NBNN, with different selections of ε.

The best action categorization results are presented in
Table 3, with ε = 2.2 and using the adaptive kernel
bandwidth. Among the863 testing actions, we obtained
54 errors, and the total accuracy is 93.7%. Among the
six types of actions, hand clapping, walking and boxing
receive 100% accuracy. Most of the errors are due to the
mis-classification of running to jogging.

clap wave walk box run jog

clapping 144 0 0 0 0 0
waving 5 139 0 0 0 0
walking 0 0 144 0 0 0
boxing 0 0 0 143 0 0
running 1 0 0 0 105 38
jogging 2 0 4 0 4 134

TABLE 3
Confusion matrix for the KTH action dataset. The total

accuracy is 93.7%.

In Table 4, we further compare our results with that
of [19], by applying exactly the same training1 and testing
dataset, as well as the same STIP features. However, we
do not quantize STIPs into “words”. Instead of using
the SVM, we match the raw STIPs in the original high-
dimensional feature space and apply the NBMIM classifier.
Our results show that, without quantizing primitive features
into “words”, the classification performance can be further
improved. This is consistent with the discussion in [52]
which pointed out that the nearest neighbor approach has
the potential to provide better classification performance
than the SVM based on the “bag-of-words” representation,
where the quantization step can introduce a loss of discrim-
inative information.

6.2 Detecting two-hand waving action

We select the two-hand waving action as a concrete exam-
ple for action detection. To validate the generalization abil-
ity of our method, we apply completely different datasets
for training (KTH dataset) and testing (CMU action dataset
[4]). As summarized in Table 5, for the positive training
data, we apply the KTH hand waving dataset that contains
16 persons. The negative training data is constituted by
two parts (1) the KTH walking dataset which contains 16

1. In [19], 8 persons are used for training and another 8 persons are
used as cross-validation for parameter tuning of the SVM. Weuse the
whole 16 persons as the training data.
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training testing features classifier accuracy
[19] 8 persons + 8 person CV 9 persons STIP + “bag of words” non-linear SVM 91.8 %
ours 16 persons 9 persons STIP NBMIM 93.7 %

TABLE 4
Comparison between NBMIM and SVM.
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s(d)= −1 x 10−5

s(d)= −2.5 x 10−5

s(d)= −4 x 10−5
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s(d)= −6 x 10−5
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s(d)=−10 x 10−5

Fig. 4. Performance of two-hand wave detection in CMU
dataset, with different choices of s(d∅). See text for the
measurement of precision and recall scores.

persons and (2) one office indoor sequence which contains
actions of sitting down and standing up.

The testing dataset has 48 sequences, which include two
types of actions in the CMU dataset: (1) two-hand waving
and (2) jumping jacks. Both of them contain the two-
hand waving actions. The duration of each test sequence
ranges from 10 to 40 seconds, and the video resolution is
160 × 120. Among the 48 sequences, 19 of them contain
a total number of 52 positive instances. The other 29
sequences do not contain positive examples. For the density
estimation, we setε = 2.6 for the nearest neighbor search.
To avoid noisy detection, we regard a detection as invalid
if its temporal duration is shorter than0.4 seconds.

To evaluate the results, we apply a similar measurement
proposed in [4], but with a relatively loose criterion. For
the precision score, a detection is regarded as correct if at
least1/8 of the volume size overlaps with the ground truth.
For the recall score, the ground truth is regarded as retrieved
if at least1/8 of its volume size is covered by at least one
detection. We use such a measurement because the ground
truth labels cover the entire human body while the region
that exhibits hand waving action is much smaller. Even
though the localized bounding box of the proposed method
is not very accurate, one can always refine the bounding box
by using other cues after roughly determining the location.
We apply the precision and recall scores to evaluate the
detection performance, where precision = # correct detect /
# total detect, and recall = # correct detect / # total action.

positive training hand-waving 16 persons (KTH)
negative training walking 16 persons (KTH) + 1 indoor seq.

testing two-hand waving + jumping jacks (CMU)

TABLE 5
Cross-dataset training and testing of two-hand waving

detection.

We apply the efficient A-STBB search to detect two
hand waving actions. To evaluate the influence of the
parameters(d∅), we test a number of different values of
s(d∅), including s(d∅) = −10 × 10−5, −7.5 × 10−5,
−6×10−5, −5×10−5, −4×10−5, −2.5×10−5, −1×10−5.
Fig. 4 presents the precision-recall curves by increasing the
detection thresholdDt from 5 to 40. It shows thats(d∅)
is an important parameter that can influence the detection
results significantly. When a smalls(d∅) is selected, the
detected maximum subvolume is of a large size, thus having
a sufficient overlap with the ground truth. Therefore, we
obtain a higher recall score while the precision score gets
worse. On the other hand, when a larges(d∅) is selected,
the detected subvolume is of a small size thus the overlap
with the ground truth volume becomes smaller. This results
in a worse recall score but a better precision score. When
selectings(d∅) = −4 × 10−5, both precision and recall
scores achieve above 70% at a specific detection threshold.

Some detection examples are presented from Fig. 10 to
Fig. 14. The yellow bounding box is the ground truth label
of the whole human body action and the red bounding
box is our detection of the two-hand waving action. Since
both motion and appearance features are used, our method
can tolerate action pattern variations caused by the change
of subjects. Our detection method can also handle scale
changes of the actions, performing speed variations, back-
ground clutter, and even partial occlusion. Fig. 10 shows
the same person performing two-hand waving with two
different styles and different speeds. In Fig. 11, two actions
with large scale variations are detected successfully. Fig. 12
shows action detection results on cluttered backgrounds and
with severe partial occlusions, where target tracking is very
difficult.

Most of the missing and false detections are caused by
the bad lighting conditions, crowded scenes, large view
point changes, or moving cameras. Fig. 13 presents a false
detection example where two single-hand waving actions
occur together and brings a false detection of the two-
hand waving action. As the naive-Bayes assumption does
not consider the geometric relations among STIPs, our
approach cannot distinguish whether the two waving hands
are from the same person or not. To better handle this
problem, a geometric model would be required for a further
verification. Finally, Fig. 14 shows an example of the
missed detection. Although it is indeed a partial detection,
the overlap region with the ground truth is less than1/8,
thus it is treated as a missed detection.

6.3 Multi-class multiple-instance action detection

Based on the multi-class action recognition model, we
can perform multi-class multiple-instance action detection.
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Fig. 5. Examples of multi-class multiple-instance action detection. Each row shows an action class: hand waving (first row),
hand clapping (second row) and boxing (third row). Each image is a sample frame from the action video. The first column
shows the training videos from the KTH dataset. The second to the fifth columns show some detection results. The highlighted
bounding boxes correspond to the detected spatial window W ∗ and we apply different colors to distinguish different action
classes: clapping (turquoise), waving (magenta), and boxing (yellow). The final column shows miss detection examples,
where the bounding boxes are ground truth labeling: clapping (red), waving (green), and boxing (blue). The whole dataset is
accessible at http://research.microsoft.com/en-us/downloads/fbf24c35-a93e-4d22-a5fe-bc08f1c3315e/.

To validate the generalization ability of our method, we
still apply a cross-dataset training and testing. We select
three classes of actions for positive training from the KTH
dataset: boxing, hand waving and hand clapping, including
16 subjects for each class of action. Because the action
instances are captured in different environments and view
points, and exhibit spatial scale and style variations, the
intra-class variations of actions are well captured in the
training data. To better distinguish the three types of target
actions from other types of movements, we also use the
walking class in the KTH dataset as the common negative
class. As a result, for each of the three action classes,
the negative training dataset includes the STIPs from the
walking class, as well as the STIPs from other two action
classes.

The testing videos are captured by ourselves. Each test-
ing sequence is of a higher resolution320×240, compared
with that of 160 × 120 in the training videos in the KTH
dataset. The frame rate is 15 frames per second. The
testing dataset contains 16 video sequences. Each video
sequence is between 32 and 76 seconds. It has in total 63
action instances: 14 hand clapping, 24 hand waving, and
25 boxing, performed by 10 different subjects who do not
appear in the training data. Each sequence contains multiple
types of actions, performed by one or multiple subjects.
As a challenging dataset, all of the video sequences are
captured in cluttered and moving backgrounds, including
both indoor and outdoor scenes. The style and scale of
actions can vary significantly depending on the subject.
To evaluate the performance, we manually label a spatio-
temporal bounding box for each action instance. A detected
action is regarded as correct if at least1/8 of the volume
size overlaps with a ground truth label. On the other hand,
an action is regarded as retrieved if at least1/8 of its
volume size overlaps with that of a valid detection. To
filter out noisy detections, we require a valid detection

lasts between 20 and 200 frames. For the kernel density
estimation, we set the nearest neighbor search parameter to
be ε = 2.6.

We apply the A-STBB search for multi-class multiple-
instance action detection. In Fig. 6, we show the pre-
cision and recall curves for three action classes, by in-
creasing the detection thresholdDt from 3 to 30. We
also compare a few different values ofs(d∅), including
s(d∅) = −1 × 10−5,−2 × 10−5 − 3 × 10−5,−4 × 10−5,
and −6 × 10−5. For different action classes, the optimal
parameters ofDt and s(d∅) may be different. Among the
three classes of actions, hand waving and boxing provide
better performance, where both precision and recall rates
are higher than or close to 65%. However, hand clapping
is more challenging, especially if the clapping movement is
subtle. Hand clapping is also easily confused with the hand
waving action. For all of the three classes, most missing
detections are due to the small spatial scales, bad lighting
conditions, or crowded scences. In Fig. 7, we show the
detection results of multiple actions in the same scene.

The computational cost of multi-class multiple-instance
action detection contains three parts: (1) extraction of
STIPs; (2) kernel density estimation and calculation of
voting scores for each class; and (3) search for qualified
subvolumes for each class. First, for videos at resolution
320 × 240, the speed of STIP detection is 2-4 frames per
second using the binary code provided by [19]. Second,
the major cost of obtaining the voting scoresc(d) comes
from the ε-NN search in density estimation. By using the
E2LSH code for efficient NN search, the query time of
each STIP is 40-50 milliseconds withε = 2.6 and retrieve
probability p = 0.9. However, if performing exhaustive
search ofε-NN, the query time of each STIP increases
to 130 milliseconds. If parallel search can be performed
using a four-core CPU, the estimated query time can
achieve around 12 milliseconds per STIP. As each frame

http://research.microsoft.com/en-us/downloads/fbf24c35-a93e-4d22-a5fe-bc08f1c3315e/
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Fig. 6. Performance of three-class action detection. Left: hand clapping; middle: hand waving; right: boxing.

Fig. 7. Detection of multiple actions in the same scene. Top: detection of two boxings (yellow). Bottom: detection of one
boxing (yellow) and one hand waving (purple).

contains 20-40 STIPs on average, the processing time can
achieve 2-4 frames per second. Finally, to evaluate the CPU
cost of subvolume search through A-STBB, we record the
computational cost for each of the 16 testing sequences in
Table 6. The test is performed on a four-core CPU desktop.

In Table 6, we notice that the computational cost of
A-STBB depends on the video sequence, including the
number of STIPs and the number of action instances. On
average, the A-STBB search can achieve 4-5 frames per
second using a four-core CPU. The search tends to be
slower for video sequences with a larger number of moving
objects in the background since a lot of STIPs will be
extracted. On the other hand, if a video sequence does not
contain any target actions, the search will finish quickly
thanks to the early termination strategy.

6.4 Search complexity and efficiency comparison

6.4.1 Comparison between STBB search and con-
ventional BB search

To validate the efficiency gain of our STBB search, we
compare our STBB (Alg. 2) to the conventional branch-
and-bound (Alg. 1) by searching the MVI-142a sequence in
the CMU action dataset [4]. The max subvolume is of size
43×32×112. The input videoV is of size120×160×141, a
temporal segment from MVI-142a. We intentionally choose
such a target video of a short length, such that the sizes of
its 3 dimensions are balanced. This gives a fair comparison
to the conventional branch-and-bound, because the longer
the video lengtht, the less efficient the conventional branch-
and-bound will be.

The left figure in Fig. 8 shows that our proposed method
converges much faster than the conventional branch-and-
bound. In terms of the number of branches, our method
converges after10, 302 branches, an order of magnitude
faster than the conventional branch-and-bound which needs
103, 202 branches before convergence. This validates that
the upper bound proposed in Theorem 1 is tighter than that

of the conventional method. In Alg. 1, the upper bounded
estimationf̂(V) decreases slowly when the current state
converges to the optimal solution. In comparison, the
convergence of the upper bound in our proposed method
(Alg. 2) is much faster. For example, after 2000 branches,
our method reaches a very good solutionf(V ) = 15.78,
which is close to the optimal onef(V ∗) = 16.21. On the
other hand, after 2000 branches, the largest upper bound
given by the conventional branch-and-bound is still as large
as f̂(V) = 24.06.

As mentioned earlier, another advantage of our method
is that it keeps track of the current best solution. A
new subvolume is pushed into the queue only when its
upper bound is better than the current best solution. In
comparison, the method proposed in [1] needs to push every
middle state into the priority queue, as there is no record
of the current best solution. In Fig. 8, we also compare
the required size of the priority queue between our method
and the conventional branch-and-bound. The size of the
priority queue in our method is well controlled and is
much smaller. In our method, during the branch-and-bound
process, the size of the priority queue decreases after a peak
value. However, for the conventional branch-and-bound, the
size of priority queue always increases, almost linearly to
the number of branches. Since each insertion or extraction
operation of priority queue isO(logn) for a queue of sizen,
the size of the priority queue affects both the computational
and memory costs. It is especially important to limit a queue
to a moderate size for the video space search because it
can generate a much larger number of candidates than the
spatial image case.

6.4.2 Evaluation of the accelerated STBB search
To evaluate the efficiency of the proposed accelerated
STBB (A-STBB) algorithm in Alg. 5 for branch-and-
bound, we select the first five video sequences of the
two-hand waving action in the CMU action dataset [4].
Each sequence contains one two-hand waving action. The
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video # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
length #min 0.75 0.73 0.95 0.57 1 0.82 0.65 0.85 0.85 1.05 0.90 0.63 0.53 1.27 0.72 0.88
cost #min 0.25 2 3 1.5 1.5 6 0.75 0.25 2.75 0.5 1.25 0.25 0.25 10 3.75 10.25

TABLE 6
The CPU cost of the A-STBB search on the MSR action dataset for multiple-instance detection of three classes of actions.

The algorithm is implemented in C++ and runs on a four-core CPU desktop. Only the A-STBB search cost is listed, while the
STIP extractions and score calculation are not included. The measurement of CPU cost is rounded into 1
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Fig. 8. Comparison between our STBB search (Alg. 2) and conventional BB search in 3-dimensional spatio-temporal space
(Alg. 1). Left: Comparison of the convergence speed. Both methods can find the optimal subvolume with detection score
f(V ∗) = 16.21. The red-circle curve and the blue-square curve show the convergence of the upper bound estimation of
STBB method and conventional BB. Right: comparison between the length of the priority queue in branch-and-bound search.

algorithm searches for the subvolume of high detection
score, such that it covers the action. Compared with original
STBB which targets the optimal subvolume with maximum
score, A-STBB finds approximate optimal subvolume but
at a faster search speed. For the original STBB search,
we do not need to specify the detection threshold, as
it returns the subvolume with maximum detection score.
For the accelerated STBB (A-STBB) search, the detection
threshold is selected asDt = 10. Under this detection
score, the first subvolume returned by A-STBB is compared
with the optimal subvolume returned from the original
STBB algorithm. As the detection score of all of the five
target subvolumes is higher thanDt = 10, such a detection
threshold will not affect the efficiency comparison between
the original STBB and A-STBB search algorithms.

The comparison between the A-STBB in Alg. 5 with the
original STBB in Alg. 2 is presented in Table 7.W ∗ is
the spatial window containing left, right, top, and bottom
parameters.T ∗ includes the start and end frames. Table 7
shows that detection results of A-STBB in Alg. 5 are close
to those of STBB in Alg. 2. Both algorithms provide similar
detections results, in terms of detection scores, locations
and sizes of the subvolumes. However, the number of
branches in STBB can be up to 20 times more than that
of A-STBB. It validates the efficiency of the proposed A-
STBB. Moreover, if a video sequence does not contain
any target actions, A-STBB can be even more efficient by
terminating the search process at a very early stage, and
returns with non-valid detection found.

To show the performance of our A-STBB search in real
video surveillance scenario, we also test on two sequences
from the TRECVID 2008 event detection dataset, which
is a very challenging one for video surveillance [57]. The
videos are captured by the real surveillance cameras in
an airport. Although there are a lot of actions defined in

TRECVID 2008, we only use the running action since it is
similar to those in the KTH dataset. We use16 running
persons from the KTH dataset for positive training and
16 walking persons for negative training. The two selected
testing sequences are taken by the 2nd camera (five cameras
in total). The video resolution is180× 144 with 25 frames
per second. Fig. 9 shows the detection results where each
row corresponds to a video sequence.

7 CONCLUSION

Similar to the sliding window based search for object
detection, detection of actions is to search for qualified
subvolumes in the volumetric video space. To address the
search complexity of this new formulation of action de-
tection, a novel spatio-temporal branch-and-bound (STBB)
search solution is proposed. We extend the previous branch-
and-bound solution from searching spatial image patterns to
searching spatio-temporal video patterns. By tightening the
upper bound and reducing the parameter space from 6 di-
mensions to 4 dimensions, the STBB search is significantly
more efficient in searching video patterns. For multi-class
multiple-instance action detection, the accelerated STBB
(A-STBB) search validates its efficiency and effectiveness
on the CMU and MSR datasets.

In order to tolerate the intra-class action variations, we
propose a discriminative pattern matching method, called
naive-Bayes mutual information maximization (NBMIM),
for action classification. Compared with conventional
template-based pattern matching, instead of using a single
template for pattern matching, we apply both positive and
negative templates for discriminative matching. Despite
its simplicity, the proposed NBMIM approach can well
distinguish one action class from other classes, as well
as the background class. Although such a naive-Bayes
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video W ∗ T ∗ scoref(V ∗) # of branches

V1: STBB (Alg. 2) 55 97 23 54 442 553 16.21 206933
V1: A-STBB (Alg. 5) 55 97 23 52 442 546 15.97 4549

V2: STBB (Alg. 2) 61 122 20 38 673 858 37.39 67281
V2: A-STBB (Alg. 5 ) 60 122 20 39 673 858 37.36 4668

V3: STBB (Alg. 2) 72 118 22 71 11 700 89.01 71594
V3: A-STBB (Alg. 5) 82 114 23 73 10 705 85.21 2275

V4: STBB (Alg. 2) 73 112 23 77 420 1083 73.42 63076
V4: A-STBB (Alg. 5) 77 108 23 78 420 1083 70.93 2363

V5: STBB (Alg. 2) 18 144 7 114 418 451 46.50 315770
V5: A-STBB (Alg. 5) 41 151 7 114 419 451 45.36 133027

TABLE 7
Comparison between STBB in Alg. 2 and accelerated STBB (A-STBB) in Alg. 5. V ∗ = [W ∗, T ∗] is the detected subvolume
through branch-and-bound search. The four parameters of W ∗ determine the spatial location and the two parameters of T ∗

determine the start and end frames.

Fig. 9. Detection of person running in surveillance video using A-STBB search. Each row shows a detection instance. Top:
a man runs in the corridor. Bottom: a child runs in the corridor.

assumption ignores the spatio-temporal dependency among
interest point features, it leads to a better tolerance of
intra-pattern variations. Our action detection method does
not rely on the detection and tracking of a person. It
can well handle scale changes, performing speed and style
variations of actions, cluttered and dynamic backgrounds,
even partial occlusions. The future work includes extending
the STBB search to find subvolumes of more flexible
shapes,i.e. , non-rectangle shapes, and relaxing the naive-
Bayes assumption in discriminative matching to consider
the spatio-temporal dependency among the interest points.
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APPENDIX A
We prove the upper bound in Lemma 1 here.

f(W ∗, T ∗) = F (W ∗) =
∑

i∈W∗×T∗

s(i)

=
∑

i∈Wmin×T∗

s(i) +
∑

i∈(W∗\Wmin)×T∗

s(i)

≤ F (Wmin) +
∑

i∈(W∗\Wmin)

F (i)

≤ F (Wmin) +
∑

i∈(W∗\Wmin)

F+(i)

≤ F (Wmin) +
∑

i∈(Wmax\Wmin)

F+(i),

where i ∈ (W1\W2) denotesi ∈ W1, i /∈ W2. WhenWmax =
Wmin, we have

∑

i∈(Wmax\Wmin) F+(i) = 0, which gives the
tight boundF (W ∗) = F (Wmin).

APPENDIX B
We prove the upper bound in Lemma 2 here.

f(W ∗, T ∗) = F (W ∗) =
∑

i∈W∗×T∗

s(i)

=
∑

i∈Wmax×T∗

s(i) −
∑

i∈(Wmax\W∗)×T∗

s(i)

≤ F (Wmax) −
∑

i∈(Wmax\W∗)

G(i)

≤ F (Wmax) −
∑

i∈(Wmax\W∗)

G−(i)

≤ F (Wmax) −
∑

i∈(Wmax\Wmin)

G−(i).

When Wmax = Wmin, we have
∑

i∈(Wmax\Wmin) G−(i) = 0,
which gives the tight boundF (W ∗) = F (Wmax).
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Fig. 10. A detection example with performing speed and style variations. The yellow bounding box is the ground truth label
of the whole human body action and the red bounding box is our detection of two-hand waving.

Fig. 11. A detection example with large spatial scale changes.

Fig. 12. A detection example with cluttered and moving background, as well as severe partial occlusions.

Fig. 13. A false detection example caused by two individual hand-wavings from two different persons.

Fig. 14. An example of missed detection. Although the action is detected in the first few frames, the whole action instance
is still treated as a missed detection due to limited overlap with the ground truth labeling.
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