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Abstract —Actions are spatio-temporal patterns. Similar to the slid-
ing window-based object detection, action detection finds the re-
occurrences of such spatio-temporal patterns through pattern match-
ing, by handling cluttered and dynamic backgrounds and other
types of action variations. We address two critical issues in pattern
matching-based action detection: (1) the intra-pattern variations in
actions, and (2) the computational efficiency in performing action
pattern search in cluttered scenes. First, we propose a discriminative
pattern matching criterion for action classification, called naive-
Bayes mutual information maximization (NBMIM). Each action is
characterized by a collection of spatio-temporal invariant features
and we match it with an action class by measuring the mutual
information between them. Based on this matching criterion, action
detection is to localize a subvolume in the volumetric video space
that has the maximum mutual information toward a specific action
class. A novel spatio-temporal branch-and-bound (STBB) search
algorithm is designed to efficiently find the optimal solution. Our
proposed action detection method does not rely on the results of
human detection, tracking or background subtraction. It can well
handle action variations such as performing speed and style vari-
ations, as well as scale changes. It is also insensitive to dynamic
and cluttered backgrounds and even to partial occlusions. The cross-
dataset experiments on action detection, including KTH, CMU action
datasets, and another new MSR action dataset, demonstrate the
effectiveness and efficiency of the proposed multi-class multiple-
instance action detection method.

Index Terms —video pattern search, action detection, spatio-
temporal branch-and-bound search

1 INTRODUCTION

the target actions. Despite previous successes of sliding
window-based object detectidn [1] [2], this approach canno
easily be extended to action detection. It is still a chajten
ing problem to detect and locate actions in video sequences,
mainly due to the following two difficulties.

First, the computational complexity of pattern searching
in the video space is much higher than that of object
search in the image space. Without any prior knowledge
about the location, temporal duration, and the spatial
scale of the action, the search space for video patterns
is prohibitive for exhaustive search. For example, a one-
minute video sequence of si2é0 x 120 x 1800 contains
billions of valid spatio-temporal subvolumes of various
sizes and locations. Therefore, although the state-ekthe
approaches of object detection can efficiently search the
spatial image spacel[3]][1], they are in general not scalable
to search videos, due to such an enormous search space.
To reduce this huge search space, some other methods try
to avoid exhaustive search by sampling the search space,
e.g. only considering a fixed number of spatial and temporal
scales[[4]. However, this treatment is likely to cause migsi
detections. Moreover, the solution space is still quitgéar
even after subsampling.

Second, human actions often exhibit tremendous amount
of intra-pattern variations. The same type of actions may
look very different in their visual appearances. There are
many factors that contribute to such variations includhmg t
performing speed, clothing, scale, view points, not to men-

Detecting human actions in video sequences is an interd#n partial occlusions and cluttered backgrounds. When
ing yet challenging problem. It has a wide range of apssing a single and rigid action template for pattern maghin
plications including video surveillance, tele-monitayiof as in [4] [E], the actions that vary from the template
patients and senior people, medical diagnosis and trainiggnnot be detected. One potential remedy is to use multiple
video indexing, and intelligent human computer interagtiotemplates to cover more variations, but the required number
etc. Actions can be treated as spatio-temporal objectshwhigf templates will increase rapidly, resulting in formidabl
are characterized as spatio-temporal volumetric datee Likomputational costs.

the use of sliding windows in object detection, action We propose an efficient action detection approach that
detection can be formulated as locating spatio-tempogddresses these two challenges mentioned above. Each
subvolumes in videosi.e. video patterns) that containaction is characterized by a set of spatio-temporal interes
points (STIP) [[6]. Provided a test video sequence, each
STIP casts a positive or negative-valued vote for the action
class, based on its mutual information with respect to that
action class. As illustrated in Fifl 1, detection of an attio

is to search for a spatio-temporal subvolume that has the
maximum total vote. Such a subvolume with maximum
voting score also maximizes the point-wise mutual infor-
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m bound search algorithm is computationally efficient and can

t find the global optimal solution. To validate the proposed
@ ® © ¢ © action detection method, it has been tested on various data
® @ e P ® @ sets, including cross-dataset experiments where themosit

_ training data, negative training data, and test data ara fro
Fig. 1. Action detection through spatio-temporal pattern  gifferent sources. The action categorization results @n th
search. The highlighted subvolume has the maximum mu- 1y yataset are comparable to the state-of-the-art results
tual information toward the specific event class. Each circle . . ) : :

represents a spatio-temporal feature point which contributes 1 h€ Mmulti-class multiple-instance action detection resul

a vote based on its own mutual information. The whole video ~ demonstrate the effectiveness and efficiency of our method.
volume is of size m x n x t, where m x n is the image size

and ¢ is the temporal length.
P g 2 RELATED WORK

mation toward a specific action class. Thus it is treated 8sl  Action Recognition

a valid detection instance of that action class. This is a Né\ktion recognition has been an active research topic. Given
formulation of action detection. a video sequence, it requires to identify which type of
To handle the intra-class action variations, various actiqction is performed in this video. Some previous works
templates that belong to the same class (or pattern) @&form human action recognition based on the tracking
collected and the collection of all the STIPs forms a po@f human body parts. For example, motion trajectories
of positive STIPs. As each action pattern is representgge ysed to represent actions i [7] [8] [9] [10] [11].
by more than one template, it is able to tolerate thgnfortunately, robust object tracking is itself a non-eiv
variations in actions. In terms of pattern matching, to makgsk. The problem becomes particularly difficult when there
an analogy to the template-based pattern matching Whei@ occlusions or when the background is cluttered. Instead
only positive templates are utilized, our pattern match#ng of relying on the body part information, some approaches
called discriminative matchingecause of the use of bothyse the silhouette information, such as using key poses in
positive and negative templates. Given both the positiygpresenting actions [LZ] [13]. Some other approachet trea
and negative training STIPs, a classification scheme callggiions as spatio-temporal shapes and characterize them
naive-Bayes mutual information maximization (NBMIM)py using manifold invariants in the spatio-temporal space.
is proposed to classify a query video clipe. , a cloud For example, in[[14] a spatio-temporal volume (STV) is
of STIPs. By exploring discriminative learning, such generated by the 2-D contours of the object along the tem-
discriminative matching method can better distinguish tf"ﬁ)ra| axis. By considering the STV as a 3-D manifold, this
target action patterns from the cluttered and the movingethod extracts algebraic invariants of the manifold, Whic
backgrounds. Thus a more robust pattern matching can &@ftrespond to the changes in direction, speed and shape of
achieved. the parts. Space-time shapes are also applied In [15]-It uti
To handle the large search space in video, we proposéizas the properties of the solution to the Poisson equation
method that decouples the temporal and spatial spaces anéxtract space-time features. Because both silhoueites a
applies different search strategies, respectively. Bylwiom spatio-temporal shapes can be obtained through foreground
ing dynamic programming in the temporal space and thmckground separation, such action recognition appreache
branch-and-bound in the spatial space, the proposed spagierform well when the background is reasonably clean
temporal branch-and-bound (STBB) method significantlyr static. If the background is cluttered and dynamic,
speeds up the search of the spatio-temporal action paktracting foreground becomes very difficult. The noisy
terns. Moreover, we also investigate how to detect multipihd erroneous silhouettes or spatio-temporal shapedylarge
action instances simultaneouslye. , search for multiple limit the performance of these methods.
subvolumes whose scores are higher than the detectiormo avoid the foreground-background separation, many
threshold. Based on the new scheme, it can terminate maggent methods applied local spatio-temporal features
unnecessary candidates earlier during the process oftrane characterize actions and perform action classification
and-bound to save computation. It leads to a much fastgfer the set of local features [16] [17] [18] [19] [20]
search, without significantly degrading the quality of thg21] [22] [23] [24]. In [19], spatio-temporal interest pa
detection results. (STIP) are proposed and applied to characterize human
The benefits of our new method are three-fold. First, thections. In [18], local spatio-temporal features are quan-
proposed discriminative pattern matching can well handilized into “visual words” and the support vector machine
action variations by leveraging all of the training datés applied for classification. In[[25], a video sequence
instead of a single template. By incorporating the negativ® characterized by a “bag-of-words”, where each frame
training information, our pattern matching has stronger dicorresponds to a “word”. A semi-latent topic model is
criminative power across different action classes. Secortlen trained for action recognition. These previous good
our method does not rely on object tracking, detection, anelcognition results validate the advantages of using the
background subtraction. It can handle background cluttesgatio-temporal local features.
and other moving objects in the background. Last but Besides using local features, there are many previous
not the least, the proposed spatio-temporal branch-amgbrks in designing and fusing various types of features



for classification. In[[26], a set of kinematic features arbead detection and tracking are required to help locate the
proposed for action recognition. 1h [27], mid-level motiorperson. To learn the action representations,| [49] proposes
features are developed from low-level optical flow inforto collect images from the Web and use this knowledge to
mation for action recognition. In_[28], a motion descriptoautomatically annotate actions in videos. [nl[50], boosted
based on optical flow measurements in a spatio-temposplace-time window classifiers are introduced to detect hu-
volume is introduced. All of these methods require opticahan actions on real movies with substantial variation of
flow estimation. In [[28], a motion-based representaticactions in terms of subject. Both human motion and shape
called motion context is proposed for action recognitiam. Treatures are applied. As an earlier version of this paper,
improve the recognition performance, both shape and nd90] proposes an efficient 3-dimensional branch-and-bound
tion information are used for action detection|[30]I[31][32 search for efficient action detection. This method is furthe
In [33], multiple features are fused using Fiedler Embedieveloped in[[51] for transductive action detection, where
ding. To select informative features, PageRank algoriththe requirement of training labels is reduced.

is applied in [1¥]. Based on the Gaussian processes with

multiple kernel covariance functions, [ _[34] proposes 2.3 Object Recognition and Detection

Bayesian classification method to automatically select apdsiqes action recognition and detection, some recent

weight multiple features. Spatio-temporal context infafm s in object recognition and detection were also related
tion is utilized in [11] to improve the performance of, o,r work. A recent work in[[52] proposed the naive-
action recognition. In'[35], a generative model is leamneg, o5 nearest-neighbor (NBNN) classifier for image clas-
by using both semantic and structure information for actiQication. In [1], object detection is formulated as finding
recognition and detection. the optimal bounding box that gives the highest detection
score in the image. An efficient branch-and-bound method
2.2  Action Detection is proposed to search for the optimal bounding box in
_ . . . the image. Despite the successful applications in object
I_3|ﬁerent from  action recogmt!on or _Categor!z_a'detection [1] and image retrieval [53], it still is a non-
tion [36] [19] [37], where each action video is classifiedyia problem to extend the efficient search method from

into one of the pre-defined action classes, the task of actign, spatial image space to the spatio-temporal video space.
detection [[38] [[39] [[4] [40] [41] needs to identify notrhus. a further study is required

only which type of action occurs, but also where (spatial

location in the image) and when (temporal location) i CLASSIFICATION MODEL OF ACTIONS
occurs in the video. As discussed in [42], it is in genera

a more challenging problem as it needs to not on@rl Interest Point Representation for Actions

recognize the action, but also to locate it in the videe represent an action as a space-time object and charac-
space[[30]([4] [43] [[40][[41] [44]. Some previous methodserize it by a collection of spatio-temporal interest psint
apply template-based action matching [B]1[3B]1[45]. Fo{STIPs) [6]. Two types of features are used to describe the
example, two types of temporal templates are propos&dIPs [19]: histogram of gradient (HOG) and histogram
in [B] for characterizing actions: (1) the motion energpf flow (HOF), where HOG is the appearance feature and
image (MEI); and (2) the motion history image (MHI). ToHOF is the motion feature. These features have showed
provide a viewpoint-free representation for human actiongromising results in action categorizationi[19]. We derwte
[46] introduces motion history volume (MHV). Besidesvideo sequence by = {I,}, where each fram&, consists
motion templates, some other approaches also characte@iz@ collection of STIPs. We do not select key-frames but
an action as a sequence of postures, so that sequeeiéect all STIPs to represent a video clip W= {d;}.
matching methods can be applied to action recognition

and detection[[47][[48][[32]. In general, template-base®l2 Naive-Bayes Mutual Information Maximization
approach is sensitive to the cluttered and dynamige genote byl € RV a feature vector describing a STIP
backgrounds. To addres_s this problem,_ [4] Proposes 484 py C € {1,2,..,C} a class label. Based on the
over-segment the video into many spatio-temporal videgyiye-Bayes assumption and by assuming the independence
volumes. An action template is then matched by searchlgghong the STIPs, we can evaluate fh@ntwise mutual

among these over-segmented video volumes. HoweVgfiormation between a video clip® and a specific class
because only one template is utilized in matching, previoys- {1,2,..,C} as:

templates-based methods also have difficulties in handling MI(C = ¢, Q)
intra-class action variations. ’ I P(d,|C = ¢)

In addition to template matching, discriminative learning = 1o PQC=c) = log 44€9 i
methods have also been applied to action detection. Mo- P(Q) [la,e0 P(dg)
tivated by the successful face detector [2]. 1[38] extends P(d4|C =¢) .
the Haar features to the 3-dimensional space, followed — Z log P(d,) - Z 5°(dg), 1)

dqe€Q daeQ

by the boosting algorithm to integrate these features for
classification. In [[4ll], multiple instance learning is prewheres®(d,) = MI(C = c,d,) is the pointwise mutual
sented for learning a human action detector. Howevémformation score to measure the association betwgen



and classc. Assuming the independence amodg the we adopt the nearest neighbor approximation ag_in [52].
final decision ofQ is based on the summation of the mutuarhe likelihood ratio becomes:

|Cnformat|0n from all primitive featured, ¢ Q w.r.t. class PAIC#¢c) ITLI g ere- K(d—dy)
' — - 1
To evaluate the contributiosr(d,) of eachd, € Q, we P(d|C =) et Lodyerer K(d = dj)
develop the pointwise mutual information through discrim- & eXp‘z\%z(Hd—d?v’NHz—Hd—d?v*NH2) . (4)
inative learning([54]:
. P(dy|C = ¢) Here dSy and dyy are the nearest ne_ighbors of
5°(dg) = MI(C = ¢,dg) = log —— —~— in Tt and T°~, respectively. We approximate the nu-
(da) merator —— . K(d — d;) by exp~ zz l4-dxnll”
b P(d,|C = ¢) [Te=] 2udgete- SA¢ = & Yy exp ,
= gP(dq|C:c)P(C — )+ P(d,|C £ )P(C £0) and the d(inozmlnatorm >g;ere+ K(d — dj) by
1 exp 707 ld—dyvII,
= log P(C=0)+ P(dq\C;&c)P(C#C)' (2) In kernel based density estimation, it is difficult to
P(dg|C=c) select an appropriate kernel bandwidth A large kernel

If the prior probabilities are equale. P(C = ¢) = 2, bandwidth may over—smoqth the density estimation, while
we further have: a t_oo smaI_I kernel bandW|d_th only counts on the nearest
neighbors in the Parzen estimator. Let
“(dg) =1o ¢ 3) 2 2
¥ \dq) =108 " P(a,[CZ0) ' Y(d) = ||d — diylI* = lld — dyyI*. (5)

. . According to Eq[B and E{] 4, a positiyéd) will generate
From Eq.[3, we can see that the likelihood ratio te%lt positive score“(d,), while a negativey(d) will generate

P(dy|Cc) : o
Pld,|c=c) determines whethat, votes positively or neg- 5 negativesc(d). To avoid the selection of the best band-

atively for the ?JZS%#Y)Vhen MI(C = ¢, dg) > 0, i€ \idth &, we adaptively adjust based on theurity in the

likelihood ratio Plgc= < b dq votes a positive score nejghborhood of a STIR:

5¢(d,) for the classc. Otherwise if MI(C = ¢,d,;) < 0, INNA @]

“(dy) for 1 a1 ) 1] whay W (D) 20

A CALe=n) > 1, d4 votes a negative score for the class 552 ~ | INNT (@) (6)
c. After receiving the votes from every, € Q, we can wvor e W (d) <0

make the final classification decision f@ based on its \yhere NNet(d) = {d; € T : ||d; — d|| < €} is

mutual information toward” classes. . the e-nearest neighbors of point in the positive class
For the C-class action categorization, we build one- .. Nynye—(d) = {d; € T~ : |d; — d|| < €} is
class that gives the maximum detection score. NN.(d) = {d; € T UT*" : ||d; — d|| < €} is the entire
. B . set ofe-nearest neighbors af. With v(d) determining the
¢ =g ce{lf}iafc} MI(e, Q) = arg ce{lfl;fc} t;gs (d) sign of the votes“(d), if d is located in a high purity region

of the corresponding class, its voté(d) is stronger.
We call this naive-Bayes mutual information maximiza-
tion (NBMIM). Compared with the naive-Bayes nearest3.3.1 Efficient Nearest Neighbor Search
neighbor (NBNN) [52], each score(d) corresponds to the To obtain the voting score®(d), for eachd € Q, we
pointwise mutual information and can either be positive gfeed to search for its nearest neighbors (NNs). To improve
negative. As will be explained in Sectibh 4, such a propertie efficiency of searching in the high-dimensional feature
brings extra benefits in formulating action detection aspace and to obtaitV N¢(d) quickly, we employ locality
a subvolume search problem, where a computationalignsitive hashing (LSH) [55] to perform the approximate
efficient detection solution can be found. e-nearest neighbors-\N) search.

Based onV N+ (d) and NN¢~(d), instead of searching
T . for the global nearest neighbor for each class, we approxi-
3.3 Likelihood Ratio Measurement mate it by the closest point to the quetyn the e-NN set.

Denote byT<* = {V;} the positive training dataset of ClaSSTaking the negative class as an example, we have:
¢, whereV; € Tt is a video of class.. As eachV is

characterized by a collection of STIPs, we represent the ld—dyyll= min ||d—d;].

positive training data by the collection of all positive Bt d;€NNE™(d)

T<* = {d;}. Symmetrically, the negative data is denoteg is worth noting thatl$,,, depends on the selection oflf

by T°~, which is the collection of all negative STIPs.  we happen to havieVN¢~(d)| = 0, we assume the negative
To evaluate the likelihood ratio for eaghe Q, we apply nearest neighbor is at distangenamely||d — d5 y||? = €

the Gaussian kernel density estimation based on the toainin Eq.[§. Applying the same strategy to the positive class,

dataT<* andT¢~. With a Gaussian kernel we have:

K(d— dy) = — exp-stalla—d, I, ld—difll = _min_d—d.

1
V20 d;ENNET(d



When |[NNSF(d)| = 0, we assumé|d — dyy||> = €2 in  negative ones. We denote the upper boung @f) for all
Eq.E. V eV by:

4 DISCRIMINATIVE VIDEO PATTERN SEARCH FV) = £ (Vinaz) + £~ (Vinin) > max f(V). (9)

Based on the proposed NBMIM criterion, action detectio
is to find a subvolume of maximum mutual information. A
illustrated in Fig[l, given a video sequeriewe want to
find a spatio-temporal subvolumé&* C V with the highest F(V) = f(V). (10)
mutual information score. Since STIPs are sparse features
and involve only a very small number of pixelsc V, Eq.[9 and EJ_10 thus meet the two requirements discussed
the optimal subvolumé * may not be a unique one. Forin [1] for the effective upper bound in the branch-and-
example, if a frame does not contain any STIPs, it becomlesund search. With the first condition in Hd. 8(V) is
arbitrary for V* to include this empty frame, as it doesan upper bound off (V). Therefore, it does not incur
not affect the total voting score. To avoid this problenmiss detection by using (V) for pruning unsatisfactory
we introduce a very small negative votédy) < 0 to the candidates. It guarantees the optimality of the solution.
empty pixels that are not associated with any STIP. Sudine second condition in E@. 110 provides the termination
a negative prior discourages the inclusion of empty pixet®ndition of the branch-and-bound.
into V*.

Given a specific class, our target is to search for the Algorithm 1: Conventional branch-and-bound (BB)

Moreover, it is easy to see that¥f is the only element in
%, we have the equality:

optimal subvolume: search (extension of[[1])
veo= argr‘}%))(MI(V’ C=o¢ (7) input : videoV € R™*™*%; R
- quality bounding functionf (see text)
c *
= arg glg}))( Z 5°(d) = arg I‘}léiii f(v), output : V* = argmaxvcy f(V)
dev 1 initialize P as an empty priority queue

where f(V) = 3, 5°(d) is the objective function and 2 SetV = [0,n] x [0,n] x [0,m] x [0,m] x [0,¢] > [0,1]
A denotes the candidate set of all valid subvolumewin 3 While V contains more than one elemerho
Suppose the target videp is of sizem x n x t. The SDIt'tV_’Y) v Vi

optimal solutionV* = t* x b* x I* x r* x s* x e* has 6 gﬁsﬁ%?frf(c%;r;?ci(mo)])

parameters to be determined, wheteb* € [0, m] denote get uppér boundf(v2)

the top and bottom positiong;,r* € [0,n] denote the push 2, f(V?)) into P

left and right positions, and*, e¢* € [0, ¢] denote the start retrieve top statd’ from P based onf(V)

and end positions. As a counterpart of the bounding-box .

based object detection, the solutibi is the 3D bounding 1o retum v =V

volume that has the highest score for the target action. | order to distinguish this method from our new method,
The total number of the subvolumes is in the order gfe call it conventional branch-and-bound method (Alg. 1).
O(n*m??). Therefore, it is computationally prohibitive 0 Compared to the spatial bounding box searching, the search
perform an exhaustive search to find the optimal subvalf spatio-temporal subvolume is much more difficult. In
ume V* from such an enormous candidate pool. In thggeos, the search space has two additional parameters (the
following, we first present the conventional branch-andssrt and end on the time dimension) and expands from
bound solution extended directly from 2D bounding-box gimensions to 6 dimensions. As the complexity of the
search inl[1], and then present our new method to ¥id pranch-and-bound grows exponentially with respect to the
more efficiently. number of dimensions, the conventional branch-and-bound
solution is too slow for videos.

© 0 N o 0 b

4.1 Spatio-Temporal Branch-and-Bound Search
4.1.1  Conventional branch-and-bound search 4.1.2 Spatio-temporal branch-and-bound search

A branch-and-bound solution is proposediin [1] for searchy,, present a new method called spatio-temporal branch-
N9 the (_)p_tlmal boundmg box in an image fqr object de_te ind-bound search (STBB) to search the video space. Instead
tion. This |d_ea can be directly thended to_f|nd the (_)pt|m% directly applying branch-and-bound in the 6D parameter
subvolum_e in videos, by replacing the spatial bounding b%’bace, our new method decomposes it into two subspaces:
by a spatio-temporal su_bvolume. 1) 4D spatial parameter space and (2) 2D temporal param-

Denote byV a collection of subvolumes. Assume ther ter space. We denote by € R x R x R x R a spatial
;X'St§W3 SUbC\’?/u??/ymm ﬁ'\qd mehsuch that for any window andT’ € R x R a temporal segment. A subvolume

€ Vs Vmin & V- & Vmaz. 1NEN WE NAVE V is uniquely determined bi# andT'. The detection score

FOV) < Vinaz) + = (Vinin), (8) of a subvolumef(Viy ) is:

wheref* (V) =3 o, max(s°(d), 0) contains the positive f(Vwxr) = fW,T) = Z s(d). (11)
votes, while f~ (V) = > .y, min(s°(d),0) contains the dew xT
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Fig. 2. lllustration of the upper bound estimation. W denotes a set of spatial windows. W, ., and W,,,;,, are the
maximum and minimum windows in W, respectively. F' and G are two matrices obtained through Eg. and
Eq 7 respectively. Empty cells in ' and G matrices correspond to null entries. Left figure: the first upper bound
in Lemma/[il The upper bound is £} (W) = 19 + 9 + 7 = 35. Right figure: the second upper bound in Lemma 2l
The upper bound is F,(W) =21 — (=3 -9 — 1) = 34.

Let W = [0, m] x [0, m] x [0,n] x [0, n] be the parameter Let F* (i) = max(F'(i),0), we have the first upper bound
space of the spatial windows, aritl = [0,¢] x [0,t] be for F(W), as presented in Lemnia 1.
the parameter space of temporal segments. Our objective
here is to find the spatio-temporal subvolume which hasLemma 1:(upper bound £} (W))

the maximum detection score: Given a spatial parameter spdge= {W : Wi, CW C
[W*, T*] = arg Werg@ggﬂf(W, T). (12) Winas}, We have
The optimal detection score is: FW) < Fi(W) = F(Wpn) + Z FT(i).

1€Wmaz,i&Wmin
When Wyoe = Wi, We have the tight bound
We take different search strategies in the two subspagesw) = F(W,,;,) = F(W*).
W andT and search alternately betwe@handT. First, if
the spatial windowV' is determined, we can easily search Symmetrically, for each pixel € W,,.., we denote the
for the optimal temporal segment in speEe minimum sum of the 1D sub-vector at pixé$ location by:

F(W) = max f(W, T), (14 G(i) = min f(i, T). 7

F(W?) = max F(W) = max max f(W,T). ~ (13)

This relates to the max subvector problem, where given a
real vector, the output is the contiguous subvector of thet G~ (i) = min(G(i),0), and Lemmd2 presents the
input that has the maximum sum (see Hig. 3). We wibither upper bound of'(W).
discuss its efficient solution later.

To search the spatial parameter spatie we employ  Lemma 2:(upper bound £5(W))
a branch-and-bound strategy. Since the efficiency of @iven a spatial parameter spade= {W : W,,;, C W C
branch-and-bound based algorithm critically depends en tiW,,, ... }, we have
tightness of the upper bound, we first derive a tighter upper

bound. F(W) < Fy(W) = F(Winao) — > G~ (i).
Given an arbitrary parameter spat& = [mq, ma] X 1€Wnaz i€ Wmin
[m1, ma] X [n1,ne] X [n1,ng], the optimal solution is: When W,0o. = Wiin, We have the tight bound

W* = arg max F(W). (15) Fy (W) = F(Winaz) = F(W™).
Wew

We defineF (W) = F(W*). Assume there exist two sub- The proofs of Lemmé&ll and Lemria 2 are given in the
rectanglesW,,;, and W,,., such thatW,,,, € W C Appendix. The two lemmas are illustrated in Hig. 2, where
Winae for any W € W. For each pixeli € Wiap, we  F(Winin) = 19, and F(W,,q.) = 21. The values off'(i)
denote the maximum sum of the 1D subvector along ti@e shown in theé’ matrix where blank cells indicate zeros.
temporal direction at pixef's location by: The values ofG(i) are shown in thes matrix. LemmdlL

i) — % 16 gives the upper bound’ (W) = 19 +9 + 7 = 35 and

(@) = %S%f(“ ): (16) Lemmal2 gives the upper boudd (W) =21 — (-3 -9 —



1) = 34. Based on Lemmia 1 and Lemilna 2, we can obtai|ﬂnn mn

a final tighter upper bound, which is the minimum of th(aFig. 3. Max subvector search: the highlighted element by

two available up-per bounds. . red is the subvector of max sum, whichis 8 — 1 + 5 = 12.
Theorem 1:(Tighter upper bound F'(W))

Given a spatial parameter spdge= {W : Wi, CW C
Wnaz }» the upper bound of the optimal solutidi(W) is:

F(W) < F(W) = min{F} (W), F,(W)}.  (18)
) . . spatial windowlV, we design an efficient way to evaluate
Based on the tighter upper bound derived in Thedrem %’(W )s F(Wyin), and in general (W).

we propose our new branch-and-bound solution in the

spatial parameter spad¥ in Alg.[2l Since the convergence According to EqCIH, given a spatial winddi of a fixed
speed of branch-and-bound method highly depends on #jge we need to search for a temporal segment with maxi-
tightness of the bound, the new algorithm can convergg,m summation. To present our efficient solution, we first
much faster with a better upper bound estimatiopeyiew the classic max subvector problem in one-dimension
Moreover, compared to the conventional branch-and-bouggtern recognition. It is the degeneration of the maximum
solution in Alg.[1, the new STBB algorithm keeps trackypyolume problem in spatio-temporal space. There exists
of the current best solution which is denotedy". Only 41y glegant solution called Kadane’s algorithm which is
when a parameter spac® contains potentially better of 5 Jinear complexity using dynamic programming[56].

solution {.e. F(W) > F~), we push it into the queue.\e present Kadane’s algorithm in Algl 3. The max sum
Otherwise, we discard the whole spage It thus saves proplem is illustrated in Fig]3.

the memory in maintaining the priority queue @f.
Kadane’s algorithm can accelerate the temporal search
Algorithm 2: Spatio-temporal branch-and-bound and provide an efficient estimation of the upper bounds.

(STBB) search Given any spatial window//, the summation withini//
input : videoV e R™*"xt at each framegi is f(W,j) = > yew; 5(d). By applying
quality bounding function? (see text) the trick of integral-imagef (W, j) can be obtained in a
output : V* = argmaxvcy f(V) constant time. Let(j) = f(W, j), the evaluation of’ (1)
1 initialize P as an empty priority queue in Eq.[13 is to find the max subvector in By using
2 setW = [T, B, L, R] = [0, n] x [0,n] x [0,m] x [0,m] Kadane's algorithm, it can be done in a linear time. As
3 set/(W) = min{F1 (W), F2(W)} a result, both upperbounds in Lemida 1 and Leriina 2 can
4 push W, F(W))into P~ = be obtained in a linear time. Therefore the estimation of the
° f:;:;t”em best solutiofW”, F”"} = {Wimaz, F(Wmaa)}: - upper bound? (W) in TheorenflL is of a linear complexity
7 retrieve top statéV from P based onF'(W) o).
2 i (ZE}'}X)W? E \\;thhﬁ%vg The complexity comparison between our proposed
10 CheckToUpdatéy/,, W*, F*, P); method _(AIg.[I) and_the conventional branch-and-bound
11 CheckToUpdatély,, W*, F*, P); (Alg. ) is presented in Tablg 1. As our branch-and-bound
12 else is only performed in the spatial space, the worst case
13 L I" = argmaxrcio.q f(W", T); complexity of our Alg.L2 O(m?n?t)) is better than that
14 . retum V" = [W, 7). of Alg. [ (O(m?n?t?)) which needs to perform branch-
15 until stop; and-bound in the spatio-temporal space.
16 Function CheckToUpdatd{y, W*, F*, P) Algorithm 3: The linear algorithm of max subvec-
17 Get Winin, and Wiao of W tor [56]

18 if (F(Wiin) > F*) then
19 | update{W*, F*} = {Wiin, F(Winin)};

20 if (F(Wiae) > F*) then

input : real vectorv of lengtht + 1
output : T* = argmaxpcio,q Y ;e V(%)

T 1 setMaxSofar = MaxEndingHere = 0,
21 | update{W", F"} = {Wias, F(Wmas)}; 2 setStart = End = 0;
22 if (Wiazs # Wimin) then 3for i=0:¢tdo
23 get F(W) = min{F1 (W), Fo(W)} 4 Maa:EndmgHerg = .
24 it F(W)> F* then max (0, MaxEndingHere + v(1));

5 if MaxEndingHere =0 then

6 | CurStart = min(i 4 1,t);

7 if MaxSoFar < MaxFEndingHere then
8

9

- . . Start = CurStart,;
4.1.3 Efficient upper bound estimation for branch- End = i;

and-bound search 10 | MaxSofar = max(MaxzSofar, MaxEndingHere);
To estimate the upper bound in Theoréin 1, as well A4S etyn 7+ — (Start, End];

to search for the optimal temporal segmdrit given a

25 | push W, F(W)) into P




| [ BB (Alg.M) [ STBB (Alg.7) | _ ] _
Dimensions for B&B || 6 (spatio-temporal] 4 (spatial) although the final detection may not be the optimal
Upper bound est. o) o) subvolumeV*, it still provides a valid detection where
Worst case O(m*n?t?) O(m*n?t) f(V) > D,. Therefore, it leads to a much faster search
TABLE 1 without significantly degrading the quality of the deteantio

. : . results.
Complexity comparison between spatio-temporal

branch-and-bound and conventional branch-and-bound.

Algorithm 5: Accelerated STBB (A-STBB) search

: video Y € Rmxnxt:
detection threshold; B
output : a subvolumeV’ C V, s.t. f(V) > D; (if no valid
detection, returd/ = ()
1 setW = [T, B, L, R] = [0,n] x [0,n] x [0,m] x [0, m]

. . 2 get F(W) = min{ £} (W), F»(W)}
The branch-and-bound approaches in Alg. 1 and Blg. 2 ate,, i, w, (W) into empty priority queue?

designed to search for a unique subvolume of maximupset current best solutiofiV*, F*} = {Winaz, F(Wimaz)}:
score. For multiple instance action detection, the samerepeat

algorithm needs to be performed multiple rounds. A retrieve top stat&V from P based oni’(W)

each round, the score of the detected subvoldifeis 7 it F(W) < D then

compared against a predefined detection thresligldn 8 L returnV = {)

order to determine whether it is a valid detection. If it is g it (F(W)> F*) then

valid detection, we clear it by setting the scoreiaf V* 19 ‘ split W — Wt U W2

input

5 MULTI-CLASS MULTIPLE -INSTANCE AC-
TION DETECTION

5.1 Multiple-instance detection algorithm

to s(dy) and continue to find the next subvolume of tha CheckToUpdaté{y., W*, ™", P),
maximum detection score. This process continues until e CheckToUpdatéy/>, W=, F~, P);

. . . Ise
current best subvolume is not a valid detection. 13 € . .
14 L T™ = argmaxrc(o,g FW=Ty;

15 returnV = [W*,T*].
16 until stop;

Algorithm 4 : Multiple-instance action detection

. videoV € R™*"xt:
detection threshold,
output : a collection of detectionst’* C V, s.t.

input

17 Function CheckToUpdatéyy, W*, F*, P)

fV*) = Dy 18 if (F* > D) then
1 repeat 19 clear priority queueP push (W, F'(W)) into empty
2 V* = STBBSearchy); priority queueP
3 clearV* to zero values and updalé. 20 else

21
22

Get Wiin and Winaz of W if (F(Wim) > F*) then
|_ Update{W*7F*} = {W'rni'ruF(Wmin)};

it (F(Winaz) > F*) then
|_ Update{W*7 F*} = {W’HL(L(L'7 F(szaw)};

if (Wmaw # Wmin) then

4 until the current detection is invalidf (V*) < Dy ;

23

5.2 Accelerated STBB (A-STBB) for multiple- 24

instance detection 25

To Improve the efficiency of multiple-instance detectiom, ws
modify the original STBB search in Al] 2 and propose ay)
accelerated STBB (A-STBB). We briefly explain the maig),
idea below. For multiple-instance detection, the detectio

L get £(W) = min{ F1 (W), F5(W)}
if F(W)> F* then

| push W, F(W)) into P

threshold D; > 0 can be used to speed up the search
process by terminating many unnecessary branches earlieincorporating the above two heuristics, we present the ac-
during the branch-and-bound process. First of all, if theelerated STBB (A-STBB) search in Alg. 5. Compared with
is no valid detection in a video sequence, then instedlie STBB search in Ald.]2, during each search iteration, we
of finding the optimal subvolum&* with the maximum retrieve an upper bounded estimatiBiW) from the heap.
detection score, we can safely terminate the search IfaF(W) < Dy, we directly reject the whole video sequence
an earlier stage. For example, if a parameter spdceV, since noV* can achieve the detection threshold. This
satisfies f(V) < D, it indicates thatV is an invalid strategy largely speeds up the scanning of negative video
parameter space, because the score of the best candidatpiences which do not contain the target action. Moreover,
is still below the detection threshold. Therefof¢,does at each search iteration, we also keep track of the current
not require a further inspection. If none of the remainingest scord™. WhenF'* > Dy, it indicates that there exists
candidates satisfieg(V) > D,, then the search can bea valid detection in the corresponding parameter sfi#ice
safely terminated because no valid detection will be founth such a case, we speed up the search by limiting the rest
Furthermore, if a subvolumé  with valid detection of the search space withi only. In other words, instead
scoref (V') > D, is already found, we can quickly finalizeof searching for the optimagl(1"*) globally, we are satisfied
the detection based on the current solution, instead with the local optimal solutiorf (V') > D;. Since only one
keeping looking for the maximun’*. In such a case, subvolume with qualified score will be selected while other



subvolumes are discarded, our A-STBB performs the notiat the NBNN classifier cannot be directly applied to the
maxima suppression implicitly during the search procesdetection formulation of Eq.]7, because its voting score is
always positive.

6 EXPERIMENTS | [e=18]e=20]e=22]e=24]e=26 |

6.1 Action Categorization adaptive || 91.8% | 93.0% | 93.7 % | 93.4 % | 93.3 %

T 0 0 0 [) [)
We use the KTH dataset to evaluate the proposed NBMIN 222 —1 || 919% | 922% | 92.7% | 92.7 % | 92.6 %

o ; R NBNN 91.7% | 91.8% | 925% | 92.6% | 92.7 %
classifier on action categorization. The KTH dataset cor=
tains six types of human actions: walking, jogging, run- TABLE 2
ning, boxing, hand waving and hand clapping, each dihe comparison between NBMIM (adaptive and fixed kernel
which is performed several times by 25 subjects. There bandwidth) and NBNN, with different selections of e.
are 4 different environments where the video sequences are

captured: outdoors, outdoors with scale variation, outsloo The best action categorization results are presented in

with different clothes and indoors. The_ video is capt_ureflalble [3, withe — 2.2 and using the adaptive kernel

at 25 frames per second and at a low image resolution ol jyidth. Among thes63 testing actions, we obtained

160 x 120. ) ) 54 errors, and the total accuracy is 93.7%. Among the
We follow the standard experiment setting of KTHsix types of actions, hand clapping, walking and boxing

dgtaset as in[[36][[19]. The whole dataset contains S98ceive 100% accuracy. Most of the errors are due to the
video sequences, taken over homogeneous backgroupfls |assification of running to jogging.
with a static camera. Each sequence is further segmented | [ clap [ wave | walk | box [ Tun [ jog |
into 4 subsequences according[tol[36], thus it gives in total clapping || 144 | O 5 5 5 5
2391 action videos. Each action video has an average length [ waving 139 0 0 0 0

of four seconds. Among the 25 persons, 16 of them are used | walking 0 1441 O 0 0

N| | O Ol 01

for training and the rest 9 are used for testing. The training r?l?]’gi’:]% 8 8 133 185 3?8
dataset contains 1528 individual actions and the testing jogging 0 7 0 Z 1134
dataset contains 863 individual actions. We apply both TABLE 3

motion (histogram of motion) and appearance (histogram
of gradient) features as i [19]. By concatenating the HOG
and HOF features, a 162-dimensional feature vector is used
to characterize each STIP. The average Euclidean length of
the STIP descriptor ig.46. The training dataset generates In Table[4, we further compare our results with that
a pool 0f308,110 STIPs. Given a query STIP, we searclyf [19], by applying exactly the same trainifigand testing
its e-nearest neighbors using locality sensitive hashing. Thi@taset, as well as the same STIP features. However, we
E2LSH package [55] is employed and the probability faio not quantize STIPs into “words”. Instead of using
correct retrieval is set tp = 0.9. the SVM, we match the raw STIPs in the original high-
The threshold of the nearest neighbor searchs the dimensional feature space and apply the NBMIM classifier.
only parameter of the proposed NBMIM classifier. It®ur results show that, without quantizing primitive feasir
influence is two-fold. First of all, it affects the search ege into “words”, the classification performance can be further
and the quantity of the nearest neighbors. The largee theéimproved. This is consistent with the discussion [in] [52]
the slower the approximateNN search using LSH, but the which pointed out that the nearest neighbor approach has
more nearest neighbors it will find. Secondiwlso controls the potential to provide better classification performance
the bandwidthr in the kernel density estimation accordinghan the SVM based on the “bag-of-words” representation,
to Eq.[6. To evaluate the influence afwe test different where the quantization step can introduce a loss of discrim-
choices ofe and compare three different classificatiomative information.
models: NBMIM (adaptive kernel bandwidth), NBMIM
(fixed kernel bandwidth), and NBNN ir_[52]. To make . . .
. . 6.2 Detecting two-hand waving action
a fair comparison to NBNN, we use the same parameter
for the approximate nearest neighbor search as descrity¥@ select the two-hand waving action as a concrete exam-
in Section[3.311. All of the three classifiers share thle for action detection. To validate the generalizatioit-ab
samedS/, and dS,,. The only difference is the voting ity of our method, we apply completely different datasets
score s.(d). In this experiment, since each action clasir training (KTH dataset) and testing (CMU action dataset
has approximately the same number of video sequenciéd). As summarized in Tablg]5, for the positive training
we assume the prior probabilities are equal and apgiita, we apply the KTH hand waving dataset that contains
Eq.[3 to calculates.(d). The result in Tabl&]2 shows thatl6 persons. The negative training data is constituted by
the classification performance is not very sensitive to ti@o parts (1) the KTH walking dataset which contains 16
selection ofe. Our proposed NBMIM with the adaptive 1. In [18], 8 persons are used for training and another 8 perswe
kernel bandwidth performs slightly better than NBMIM,seq as’ cross-validation for parameter tuning of the SVM. uske the
with a fixed bandwidth, as well as NBNN. It is worth notingwhole 16 persons as the training data.

Confusion matrix for the KTH action dataset. The total
accuracy is 93.7%.
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| I training | testing | features | classifier | accuracy |

[19] || 8 persons + 8 person CV 9 persons| STIP + “bag of words”| non-linear SVM| 91.8 %
ours 16 persons 9 persons STIP NBMIM 93.7 %

TABLE 4
Comparison between NBMIM and SVM.

We apply the efficient A-STBB search to detect two
hand waving actions. To evaluate the influence of the
parameters(dy), we test a number of different values of
s(dy), including s(dyp) = —10 x 107°, —=7.5 x 1077,
—6x107°, —=5x107°, —4x107°, —2.5x 1075, —1x10~°.
Fig.[4 presents the precision-recall curves by increasiag t
detection threshold); from 5 to 40. It shows thats(dp)
is an important parameter that can influence the detection

results significantly. When a smail(dy) is selected, the
Jos@mtox0®) detected maximum subvolume is of a large size, thus having
A a sufficient overlap with the ground truth. Therefore, we
) obtain a higher recall score while the precision score gets
Fig. 4. Performance of two-hand wave detection in CMU  \ygrse. On the other hand, when a largd,) is selected,
?néggzﬁﬁér\ggzt g;h;)erréec?;i gr?gr?gsre(é;f é‘i?,)r'ess_ee text for the th_e detected subvolume is of a small size thus th_e overlap
with the ground truth volume becomes smaller. This results

persons and (2) one office indoor sequence which contalis? Worse recall score bUt? better precision score. When
actions of sitting down and standing up. selectings(dy) = —4 x 107°, both precision and recall
The testing dataset has 48 sequences, which include H%9"€S achieve above 70% at a specific detection threshold.
types of actions in the CMU dataset: (1) two-hand waving SOMe detection examples are presented from[Eig. 10 to
and (2) jumping jacks. Both of them contain the twof ig.[I4. The yellow bounding box is the ground truth label

hand waving actions. The duration of each test sequerfeth® whole human body action and the red bounding
ranges from 10 to 40 seconds, and the video resolution@X iS our detection of the two-hand waving action. Since
160 x 120. Among the 48 sequences, 19 of them contaffPth motion and appearance features are used, our method
a total number of 52 positive instances. The other Z&" tolerate action pattern variations caused by the change

sequences do not contain positive examples. For the den&ftySUbJeCts' Our detection method can also handle scale
estimation, we set — 2.6 for the nearest neighbor searchthanges of the actions, performing speed variations, back-

To avoid noisy detection, we regard a detection as invalfiound clutter, and even partial occlusion. Fiigl 10 shows
if its temporal duration is shorter than4 seconds. the same person performing two-hand waving with two

To evaluate the results, we apply a similar measuremedrlﬂzferent styles and_d|fferent speeds. In figl 11, two '0
proposed in [[4], but with a relatively loose criterion. Fo?’vIth large scale variations are detected successfully(Eg

the precision score, a detection is regarded as correct ifSQPWS action detection results on cluttered backgrounds an

leastl/8 of the volume size overlaps with the ground truthWIth severe partial occlusions, where target tracking iy ve

For the recall score, the ground truth is regarded as reﬂie\}j'ﬁ'cu't' o .

if at least1/8 of its volume size is covered by at least one Most Of. thg mlssmg.gnd false detections are causeql by

detection. We use such a measurement because the grotnﬁdbad lighting cond!tlons, crowded scenes, large view

truth labels cover the entire human body while the regioﬁﬁomt c_:hanges, or moving cameras. gl 13 presfents a_false
%etectlon example where two single-hand waving actions

that exhibits hand waving action is much smaller. Eve togeth d bri false detect f the t
though the localized bounding box of the proposed meth%&cur ogether and brings a Talse detection ot the two-

is not very accurate, one can always refine the bounding b ?(nd waving action. As the naive-Bayes assumption does

by using other cues after roughly determining the locatioR°! consider the ge.ome.trlc relations among STIPS’ our
proach cannot distinguish whether the two waving hands

We apply the precision and recall scores to evaluate tAB

detection performance, where precision = # correct dete@'F from the same person or not. To better handle this

# total detect, and recall = # correct detect / # total actioH.rO_b_lem_’ a ge(_)metrlc mOdeI would be required for a further
verification. Finally, Fig.[I4 shows an example of the

missed detection. Although it is indeed a partial detegtion

1
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0.6

0.5

—e—s5(d)=-1x10"°
——s(d)= -2.5x 10
0.3 —*s(d)=-4x10"°
——s(d)=-5x 10"
—+—5(d)=-6x10"°
0.1 s(d)=-7.5x107°

0.4+

Precision

0.2

positive training hand-waving 16 persons (KTH) the overlap region with the ground truth is less thas,
negative training || walking 16 persons (KTH) + 1 indoor seq. thus it is treated as a missed detection.
testing two-hand waving + jumping jacks (CMU)
o TABLE 5 _ 6.3 Multi-class multiple-instance action detection
Cross-dataset training and testing of two-hand waving . . .
detection Based on the multi-class action recognition model, we

can perform multi-class multiple-instance action detetti
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Fig. 5. Examples of multi-class multiple-instance action detection. Each row shows an action class: hand waving (first row),
hand clapping (second row) and boxing (third row). Each image is a sample frame from the action video. The first column
shows the training videos from the KTH dataset. The second to the fifth columns show some detection results. The highlighted
bounding boxes correspond to the detected spatial window W* and we apply different colors to distinguish different action
classes: clapping (turquoise), waving (magenta), and boxing (yellow). The final column shows miss detection examples,
where the bounding boxes are ground truth labeling: clapping (red), waving (green), and boxing (blue). The whole dataset is
accessible at http://research.microsoft.com/en-us/downloads/fbf24c35-a93e-4d22-a5fe-bc08f1c3315e/.

To validate the generalization ability of our method, wéasts between 20 and 200 frames. For the kernel density
still apply a cross-dataset training and testing. We selexdtimation, we set the nearest neighbor search parameter to
three classes of actions for positive training from the KTHe ¢ = 2.6.
dataset: boxing, hand waving and hand clapping, includingwe apply the A-STBB search for multi-class multiple-
16 subjects for each class of action. Because the actipgtance action detection. In Fif] 6, we show the pre-
instances are captured in different environments and vigigion and recall curves for three action classes, by in-
points, and exhibit spatial scale and style variations, tleeasing the detection threshold; from 3 to 30. We
intra-class variations of actions are well captured in theso compare a few different values efdy), including
training data. To better distinguish the three types ofetrgs(dy) = —1 x 107%, -2 x 107° — 3 x 107°, —4 x 1072,
actions from other types of movements, we also use thad —6 x 10~°. For different action classes, the optimal
walking class in the KTH dataset as the common negatiparameters of); ands(dy) may be different. Among the
class. As a result, for each of the three action classeéisiee classes of actions, hand waving and boxing provide
the negative training dataset includes the STIPs from thetter performance, where both precision and recall rates
walking class, as well as the STIPs from other two acticsre higher than or close to 65%. However, hand clapping
classes. is more challenging, especially if the clapping movement is
The testing videos are captured by ourselves. Each tesigbtle. Hand clapping is also easily confused with the hand
ing sequence is of a higher resoluti®20 x 240, compared waving action. For all of the three classes, most missing
with that of 160 x 120 in the training videos in the KTH detections are due to the small spatial scales, bad lighting
dataset. The frame rate is 15 frames per second. Te¢enditions, or crowded scences. In Fig. 7, we show the
testing dataset contains 16 video sequences. Each videdection results of multiple actions in the same scene.
sequence is between 32 and 76 seconds. It has in total 63he computational cost of multi-class multiple-instance
action instances: 14 hand clapping, 24 hand waving, aadtion detection contains three parts: (1) extraction of
25 boxing, performed by 10 different subjects who do n@TIPs; (2) kernel density estimation and calculation of
appear in the training data. Each sequence contains neultipbting scores for each class; and (3) search for qualified
types of actions, performed by one or multiple subjectsubvolumes for each class. First, for videos at resolution
As a challenging dataset, all of the video sequences &20 x 240, the speed of STIP detection is 2-4 frames per
captured in cluttered and moving backgrounds, includirspcond using the binary code provided byl[19]. Second,
both indoor and outdoor scenes. The style and scale thé major cost of obtaining the voting scosg(d) comes
actions can vary significantly depending on the subjedtom the e-NN search in density estimation. By using the
To evaluate the performance, we manually label a spati®B2LSH code for efficient NN search, the query time of
temporal bounding box for each action instance. A detectedch STIP is 40-50 milliseconds with= 2.6 and retrieve
action is regarded as correct if at ledg8 of the volume probability p = 0.9. However, if performing exhaustive
size overlaps with a ground truth label. On the other hanskarch ofe-NN, the query time of each STIP increases
an action is regarded as retrieved if at leag8 of its to 130 milliseconds. If parallel search can be performed
volume size overlaps with that of a valid detection. Tasing a four-core CPU, the estimated query time can
filter out noisy detections, we require a valid detectioachieve around 12 milliseconds per STIP. As each frame
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Fig. 6. Performance of three-class action detection. Left: hand clapping; middle: hand waving; right: boxing.

Fig. 7. Detection of multiple actions in the same scene. Top: detection of two boxings (yellow). Bottom: detection of one
boxing (yellow) and one hand waving (purple).

contains 20-40 STIPs on average, the processing time afrthe conventional method. In Al§] 1, the upper bounded
achieve 2-4 frames per second. Finally, to evaluate the CRstimation f (V) decreases slowly when the current state
cost of subvolume search through A-STBB, we record tfenverges to the optimal solution. In comparison, the
computational cost for each of the 16 testing sequencescionvergence of the upper bound in our proposed method
Table[6. The test is performed on a four-core CPU desktqilg. [2) is much faster. For example, after 2000 branches,

In Table[®, we notice that the computational cost afur method reaches a very good solutipfl’) = 15.78,
A-STBB depends on the video sequence, including thehich is close to the optimal ong(V*) = 16.21. On the
number of STIPs and the number of action instances. @ther hand, after 2000 branches, the largest upper bound
average, the A-STBB search can achieve 4-5 frames mgven by the conventional branch-and-bound is still asdarg
second using a four-core CPU. The search tends to &&f (V) = 24.06.
slower for video sequences with a larger number of moving As mentioned earlier, another advantage of our method
objects in the background since a lot of STIPs will bé&s that it keeps track of the current best solution. A
extracted. On the other hand, if a video sequence does new subvolume is pushed into the queue only when its
contain any target actions, the search will finish quicklypper bound is better than the current best solution. In
thanks to the early termination strategy. comparison, the method proposedih [1] needs to push every
middle state into the priority queue, as there is no record
of the current best solution. In Fig] 8, we also compare
. the required size of the priority queue between our method
6.4.1 Comparison between STBB search and con-  ,nq the conventional branch-and-bound. The size of the
ventional BB search priority queue in our method is well controlled and is
To validate the efficiency gain of our STBB search, wehuch smaller. In our method, during the branch-and-bound
compare our STBB (Algl12) to the conventional branchprocess, the size of the priority queue decreases afterka pea
and-bound (Algl11) by searching the MVI-142a sequence \ialue. However, for the conventional branch-and-boure, th
the CMU action dataset[4]. The max subvolume is of sizgize of priority queue always increases, almost linearly to
43x32x112. The input vided) is of size120x160x141,a the number of branches. Since each insertion or extraction
temporal segment from MVI-142a. We intentionally choosgperation of priority queue i©(logn) for a queue of size,
such a target video of a short length, such that the sizesthé size of the priority queue affects both the computationa
its 3 dimensions are balanced. This gives a fair comparisgAd memory costs. It is especially important to limit a queue
to the conventional branch-and-bound, because the longgra moderate size for the video space search because it
the video lengtht, the less efficient the conventional branchean generate a much larger number of candidates than the
and-bound will be. spatial image case.

The left figure in Fig[B shows that our proposed method
converges much faster than the conventional branch-ae4.2 Evaluation of the accelerated STBB search
bound. In terms of the number of branches, our methd@ evaluate the efficiency of the proposed accelerated
converges afteri0,302 branches, an order of magnitudeSTBB (A-STBB) algorithm in Alg.[5 for branch-and-
faster than the conventional branch-and-bound which nedatsund, we select the first five video sequences of the
103,202 branches before convergence. This validates thato-hand waving action in the CMU action dataset [4].
the upper bound proposed in Theorieém 1 is tighter than tHaach sequence contains one two-hand waving action. The

6.4 Search complexity and efficiency comparison
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video # 1 2 3 4 5 6 7 8 9 10 11 | 12 13 14 T 15 16
length #min || 0.75 | 0.73 | 095 | 057 | 1 | 0.82| 0.65| 0.85| 0.85 | 1.05| 0.90 | 0.63 | 0.53 | 1.27 | 0.72 | 0.88
cost #min || 0.25 [ 2 3 15 | 15] 6 | 075|025 275 05 [ 125] 025| 0.25| 10 | 3.75| 10.25
TABLE 6
The CPU cost of the A-STBB search on the MSR action dataset for multiple-instance detection of three classes of actions.
The algorithm is implemented in C++ and runs on a four-core CPU desktop. Only the A-STBB search cost is listed, while the
STIP extractions and score calculation are not included. The measurement of CPU cost is rounded into 1 minutes.

S0 15x10° ‘
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© N 3
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3 8_101%\1\1\/\/ i
2 s I
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number of branches % 10° number of branches <10

Fig. 8. Comparison between our STBB search (Alg.[2) and conventional BB search in 3-dimensional spatio-temporal space
(Alg. [I). Left: Comparison of the convergence speed. Both methods can find the optimal subvolume with detection score
f(V*) = 16.21. The red-circle curve and the blue-square curve show the convergence of the upper bound estimation of
STBB method and conventional BB. Right: comparison between the length of the priority queue in branch-and-bound search.

algorithm searches for the subvolume of high detectiofRECVID 2008, we only use the running action since it is
score, such that it covers the action. Compared with origingimilar to those in the KTH dataset. We u$é running
STBB which targets the optimal subvolume with maximumersons from the KTH dataset for positive training and
score, A-STBB finds approximate optimal subvolume buts walking persons for negative training. The two selected
at a faster search speed. For the original STBB seartbsting sequences are taken by the 2nd camera (five cameras
we do not need to specify the detection threshold, @stotal). The video resolution i$80 x 144 with 25 frames
it returns the subvolume with maximum detection scorger second. Fid.]9 shows the detection results where each
For the accelerated STBB (A-STBB) search, the detectioow corresponds to a video sequence.
threshold is selected a®; = 10. Under this detection
score, the first subvolume returned by A-STBB is compar
with the optimal subvolume returned from the origina CONCLUSION
STBB algorithm. As the detection score of all of the fivesimilar to the sliding window based search for object
target subvolumes is higher thdn = 10, such a detection detection, detection of actions is to search for qualified
threshold will not affect the efficiency comparison betweegubvolumes in the volumetric video space. To address the
the original STBB and A-STBB search algorithms. search complexity of this new formulation of action de-
The comparison between the A-STBB in Alg. 5 with theection, a novel spatio-temporal branch-and-bound (STBB)
original STBB in Alg.[2 is presented in Tablé 7V* is search solution is proposed. We extend the previous branch-
the spatial window containing left, right, top, and bottonand-bound solution from searching spatial image patterns t
parametersI™* includes the start and end frames. TdBle Jearching spatio-temporal video patterns. By tightenieg t
shows that detection results of A-STBB in Ald. 5 are closepper bound and reducing the parameter space from 6 di-
to those of STBB in Algl.R. Both algorithms provide similamensions to 4 dimensions, the STBB search is significantly
detections results, in terms of detection scores, locatiomore efficient in searching video patterns. For multi-class
and sizes of the subvolumes. However, the number wiultiple-instance action detection, the accelerated STBB
branches in STBB can be up to 20 times more than th@-STBB) search validates its efficiency and effectiveness
of A-STBB. It validates the efficiency of the proposed Aon the CMU and MSR datasets.
STBB. Moreover, if a video sequence does not containin order to tolerate the intra-class action variations, we
any target actions, A-STBB can be even more efficient ytopose a discriminative pattern matching method, called
terminating the search process at a very early stage, amlve-Bayes mutual information maximization (NBMIM),
returns with non-valid detection found. for action classification. Compared with conventional
To show the performance of our A-STBB search in reaémplate-based pattern matching, instead of using a single
video surveillance scenario, we also test on two sequent¢esiplate for pattern matching, we apply both positive and
from the TRECVID 2008 event detection dataset, whichegative templates for discriminative matching. Despite
is a very challenging one for video surveillancel[57]. Thas simplicity, the proposed NBMIM approach can well
videos are captured by the real surveillance camerasdistinguish one action class from other classes, as well
an airport. Although there are a lot of actions defined ias the background class. Although such a naive-Bayes
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| video [ w* | 7™ | scoref(V*) [ # of branches|

V1. STBB (Alg.12) 5597 23 54 | 442 553 16.21 206933

V1. A-STBB (Alg.[5) 5597 2352 | 442 546 15.97 4549
V2: STBB (Alg.[2) 61 122 20 38| 673 858 37.39 67281

V2: A-STBB (Alg.[5) || 60 122 20 39| 673 858 37.36 4668
V3: STBB (Alg.[2) 72 118 22 71| 11 700 89.01 71594

V3: A-STBB (Alg.[5) 82 114 23 73| 10 705 85.21 2275
V4 STBB (Alg.[J) || 73 112 23 77| 420 1083 73.42 63076

V4 A-STBB (Alg.19) || 77 108 23 78| 420 1083 70.93 2363
V5: STBB (Alg.[2d) 18 144 7 114| 418 451 46.50 315770

V5: A-STBB (Alg.[5) 41 151 7 114| 419 451 45.36 133027

TABLE 7

Comparison between STBB in Alg.Rland accelerated STBB (A-STBB) in Alg.[Bl V* = [W*, T*] is the detected subvolume
through branch-and-bound search. The four parameters of W* determine the spatial location and the two parameters of T~
determlne the start and end frames

Fig. 9. Detection of person running in surveillance video using A-STBB search. Each row shows a detection instance. Top:
a man runs in the corridor. Bottom: a child runs in the corridor.

assumption ignores the spatio-temporal dependency amengrei € (W:\W>) denotesi € Wl,i ¢ Wo. When W, =
interest point features, it leads to a better tolerance Bfmin, We havezle(w e\ Wy FH(1) = 0, which gives the
intra-pattern variations. Our action detection methodsdo&ght bound F'(W™) = F(Winin).
not rely on the detection and tracking of a person. |
can well handle scale changes, performing speed and s EPENDIX B ,
variations of actions, cluttered and dynamic backgroundse PTOv€ tPe upper bound in Lemith 2 here.
even partial occlusions. The future work includes extegdin JWRLTY) = FW) = Z s(0)
the STBB search to find subvolumes of more flexible eWrxT
shapesi.e., non-rectangle shapes, and relaxing the naive- Z s(i) — Z s(1)
Bayes assumption in discriminative matching to consider 1€ Wmaz xT* € (Wmaa \W?)xT™
the spatio-temporal dependency among the interest points. F(Winaz) — Z G(i)

1€ (Wmaz \W*)

< F(Wmao)— Y. G7(i)

IN

ACKNOWLEDGMENT ) .
This work was supported in part by the Nanyang AssistanteBeafrship 1€ (Wmaz\W™)
to Dr. Junsong Yuan, the National Science Foundation gi8+0347877, < F(Wias) — Z G~ ().

11S-0916607, and US Army Research Laboratory and the US Army
Research Office under grant ARO W911NF-08-1-0504. We thamk/@&n

Ke, Dr. Cha Zhang and Dr. Zhengyou Zhang for helpful disarssiand \\hen Winaz = Winin, We havey"
Liangliang Cao for the help on the experiments of the TREC#aset.

1€ (Wimaz \Winin)

e W\ W) G (1) = 0,

which gives the tight bound”(W™) = F(Wnaaz).

APPENDIX A REFERENCES
We prove the upper bound in Lemrh 1 here. [1] C.H. Lampert, M. B. Blaschko, and T. Hofmann, “Beyonddsiig
ey o . windows: Object localization by efficient subwindow sedgtcim
fweTT) = FW7) = Z s(1) Proc. IEEE Conf. on Computer Vision and Pattern Recognjtion
TEW* XT* 2008.
— Z s(i) + Z s(i) [2] P. Viola and M. J. Jone_s, “Robust real-time face detectidntl.
) . ) . . Journal of Computer Visigrvol. 57, no. 2, pp. 137-154, 2004.
$EWmin xT €W A Winin) XT [38] M. B. Blaschko and C. H. Lampert, “Learning to localizejetts
< F(Wpin) + Z F(i) with structured output regression,” iRroc. European Conf. on
(W W) Computer Vision2008.
men [4] Y. Ke, R. Sukthankar, and M. Hebert, “Event detection ioveded
< F(Whin) + Z F+(7,) videos,” in Proc. |IEEE International Conf. on Computer Visjon
W\ Win) 2007, . y
[5] A.F. Bobick and J. W. Davis, “The recognition of human reawent
< F(Whin) + Z FT(), using temporal templatesJEEE Trans. on Pattern Analysis and

i€ (Wimaz\Wnin) Machine Intelligence (PAMJ)vol. 23, no. 3, pp. 257-267, 2001.



(6]
[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

I. Laptev, “On space-time interest pointsiitl. Journal of Computer
Vision, vol. 64, no. 2-3, pp. 107-123, 2005.

C. Rao, A. Yilmaz, and M. Shah, “View-invariant repretsion and
recognition of actions,’International Journal of Computer Vision [31]
(13CV), vol. 50, no. 2, pp. 203-226, 2002.

N. Nguyen, D. Phung, S. Venkatesh, and H. Bui, “Learningl a
detecting activities from movement trajectories usingttieearchical
hidden markov models,” ifProc. IEEE Conf. on Computer Vision
and Pattern Recognitiqr2005.

S. Ali, A. Basharat, and M. Shah, “Chaotic invariants fouman
action recognition,” inProc. IEEE International Conf. on Computer
Vision, 2007.

V. Parameswaran and R. Chellappa, “View invariancehfoman ac-
tion recognition,” International Journal of Computer Vision (IJCV)
vol. 66, no. 1, pp. 83-101, 2006.

J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li, “Hienécal
spatio-temporal context modeling for action recognitian, Proc.
IEEE Conf. on Computer Vision and Pattern Recognitid@09.

F. Lv and R. Nevatia, “Single view human action recogmitusing
key pose matching and viterbi path searching,Pioc. IEEE Conf.
on Computer Vision and Pattern Recogniti@007.

D. Weinland and E. Boyer, “Action recognition using exglar-based [37]
embedding,” inProc. IEEE Conf. on Computer Vision and Pattern
Recognition 2008.

A. Yilmaz and M. Shah, “Actions as objects: a novel actiep-
resentation,” inProc. IEEE Conf. on Computer Vision and Pattern
Recognition 2005.

M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Bas [39]
“Actions as space-time shapes,” ifroc. IEEE International Conf.
on Computer Vision2005.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Beior
recognition via sparse spatio-temporal features,”Froc. IEEE
Intl. Workshop Visual Surveillance Performance Evaluafizacking
Surveillance pp. 65 — 72, 2005.

J. Liu, J. Luo, and M. Shah, “Recognizing realistic an8 from
videos “in the wild",” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition2009.

J. Liu and M. Shah, “Learning human actions via inforioat
maximization,” inProc. IEEE Conf. on Computer Vision and Pattern
Recognition 2008.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeldgétning
realistic human actions from movies,” iRroc. IEEE Conf. on
Computer Vision and Pattern Recognitja2008.

K. Jia and D.-Y. Yeung, “Human action recognition usitaral
spatio-temporal discriminant embedding,” Rroc. IEEE Conf. on
Computer Vision and Pattern Recognitja2008.

J. Niebles, H. Wang, and L. Fei-Fei, “Unsupervised réag of
human action categories using spatial-temporal wotdggtnational
Journal of Computer Visigrvol. 79, no. 3, pp. 299-318, 2008.

I. Laptev, B. Caputo, C. Schu, and T. Lindeberg, “Locelocity-
adapted motion events for spatio-temporal recogniti@@gmputer
Vision and Image Understandingol. 109, no. 1, pp. 207-229, 2007. [46]
P. S. Dhillon, S. Nowozin, and C. H. LamperGombining Ap-
pearance and Motion for Human Action Classification in ViEleo
Technical Report, Max-Planck-Institute for Biological l&&rnetics,
2008.

P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional discriptor
and its application to action recognition,” Rroc. ACM Multimedia
2007.

Y. Wang and G. Mori, “Human action recognition by semient
topic models,”IEEE Trans. on Pattern Analysis and Machine Intel-
ligence vol. 31, no. 10, pp. 1762-1774, 2009.

S. Ali and M. Shah, “Human action recognition in videosing
kinematic features and multiple instance learnin&EE Trans. on
Pattern Analysis and Machine Intelligenceol. 32, no. 2, pp. 288— [50]
303, 2010.

A. Fathi and G. Mori, “Action recognition by learning dievel
motion features,” inProc. IEEE Conf. on Computer Vision and
Pattern Recognition2008.

A. A. Efros, A. C.Berg, G. Mori, and J. Malik, “Recognigj action
at a distance,” ifProc. IEEE International Conf. on Computer Visjon
2003.

Z. Zhang, Y. Hu, S. Chan, and L.-T. Chia, “Motion contex
new representation for human action recognition,Pioc. European
Conf. on Computer Visiqr2008.

[30]

[32]

(33]

[34]

[35]

[36]

(38]

[40]

[41]

[42]

[43]

[44]

[45]

[47]

(48]

[49]

[51]

[52]

(53]

15

P. Natarajan and R. Nevatia, “View and scale invariaotioa
recognition using multiview shape-flow models,” ifroc. IEEE
Conf. on Computer Vision and Pattern Recogniti@008.

S. N. Vitaladevuni, V. Kellokumpu, and L. S. Davis, “Agh recog-
nition using ballistic dynamics,” iflProc. IEEE Conf. on Computer
Vision and Pattern Recognitior2008.

Z. Lin, Z. Jiang, and L. S. Davis, “Recognizing actiong $hape-
motion prototype trees,” irProc. IEEE Intl. Conf. on Computer
Vision, 2009.

J. Liu, S. Ali, and M. Shah, “Recognizing human actionsing
multiple features,” inProc. IEEE Conf. on Computer Vision and
Pattern Recognition2008.

D. Han, L. Bo, and C. Sminchisescu, “Selection and cdnfer
action recognition,” inProc. IEEE Intl. Conf. on Computer Visipn
2009.

S.-F. Wong, T.-K. Kim, and R. Cipolla, “Learning motiaategories
using both semantic and structural information,Prroc. IEEE Conf.
on Computer Vision and Pattern Recogniti@007.

C. Schuldt, I. Laptev, and B. Caputo, “Recognizing tmmactions: A
local svm approach,” inCPR’'04, vol. 3, (Cambridge, UK), pp. 32—
36, Aug. 23-26, 2004.

K. K. Reddy, J. Liu, and M. Shah, “Incremental actionaguition
using feature-tree,” irProc. IEEE Intl. Conf. on Computer Visipn
2009.

Y. Ke, R. Sukthankar, and M. Hebert, “Efficient visualeet detec-
tion using volumetric features,” ifProc. IEEE International Conf.
on Computer Vision2005.

E. Shechtman and M. Irani, “Space-time behavior baseckation,”

in Proc. IEEE Conf. on Computer Vision and Pattern Recognijtion
2005.

J. Yuan, Z. Liu, and Y. Wu, “Discriminative subvolumeaseh for
efficient action detection,” ifProc. IEEE Conf. on Computer Vision
and Pattern Recognitiqr2009.

Y. Hy, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang, “Acti
detection in complex scenes with spatial and temporal aniti#g,”

in Proc. IEEE Intl. Conf. on Computer Visip2009.

J. Yuan and Z. Liu, “Video-based human action detectonrces,”
IEEE Signal Processing Magazingol. 27, no. 5, pp. 136 — 139,
2010.

C. Yeo, P. Ahammad, K. Ramchandran, and S. S. SastnghHi
speed action recognition and localization in compresseahaito
videos,”|[EEE Trans. on Circuits and Systems for Video Technglogy
vol. 18, no. 8, pp. 1006-1015, 2008.

J. Yuan, Z. Liu, Y. Wu, and Z. Zhang, “Speeding up spatio-
temporal sliding-window search for efficient event detattiin
crowded videos,” inProc. ACM Multimedia Workshop on Events
in Multimedia 2009.

M. D. Rodriguez, J. Ahmed, and M. Shah, “Action MACH a
spatio-temporal maximum average correlation height fitteaction
recognition,” inProc. IEEE Conf. on Computer Vision and Pattern
Recognition 2008.

D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoirttien
recognition using motion history volumesComputer Vision and
Image Understandingvol. 104, no. 2-3, pp. 207-229, 2006.

H. Jiang, M. S. Drew, and Z.-N. Li, “Successive convextchiang
for action detection,” inProc. IEEE Conf. on Computer Vision and
Pattern Recognition2006.

W. Li, Z. Zhang, and Z. Liu, “Expandable data-driven ginécal
modeling of human actions based on salient postute&£E Trans.
on Circuits and Systems for Video Technologgl. 18, no. 11,
pp. 1499-1510, 2008.

O. Duchenne, |. Laptev, J. Sivic, F. Bach, and J. Pon&atdmatic
annotation of human actions in videos,” ifroc. IEEE Intl. Conf.
on Computer Vision2009.

I. Laptev and P. Pérez, “Retrieving actions in moviés,Proc. IEEE
Intl. Conf. on Computer Visiqr2007.

L. Cao, Z. Liu, and T. S. Huang, “Cross-dataset actiotect®n,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognijtion
2010.

O. Boiman, E. Shechtman, and M. Irani, “In defense ofrasa
neighbor based image classification,” Rmoc. IEEE Conf. on Com-
puter Vision and Pattern Recognitip008.

C. H. Lampert, “Detecting objects in large image cdilees and
videos by efficient subimage retrieval,” Proc. IEEE Intl. Conf. on
Computer Vision2009.



[54] P. C. Woodland and D. Povey, “Large scale discrimiretikaining

of hidden markov models for speech recognitio@@mputer Speech

and Languagevol. 16, no. 1, pp. 25-47, 2002.

M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Lodisy-

sensitive hashing scheme based on p-stable distribufiof®toc. of
Twentieth Annual Symposium on Computational Geompfry253—
262, 2004.

[55]

[56]
vol. 27, no. 9, pp. 865-871, 1984.

M. Dikmen and et al., “Surveillance event detectionii Video
Evaluation Workshop2008.

[57]

Junsong Yuan (M’'08) received the Ph.D.
and M.Eng degrees from Northwestern Uni-
versity, lllinois, USA, and National Univer-
sity of Singapore, respectively. Before that,

PLACE he graduated from the special program for
PHHE%I—S the gifted young in Huazhong University of

Science and Technology, Wuhan, P.R.China,
and received his B.Eng in communication
engineering. During the summer 2008, 2007
and 2006, he was a research intern with the
Communication and Collaboration Systems
group, Microsoft Research, Redmond, WA, Kodak Research Labo-
ratories, Rochester, NY, and Motorola Laboratories, Schumburg, IL,
respectively. From 2003 to 2004, he was a research scholar at the
Institute for Infocomm Research, Singapore.

In Sept. 2009, he joined Nanyang Technological University as a
Nanyang assistant professor. His current research interests include
computer vision, image and video data mining and content analysis,
multimedia search etc. He was a recipient of the Doctoral Spotlight
Award from IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR’09), a recipient of the Nanyang Assistant Professorship from
Nanyang Technological University, and received the Outstanding
Ph.D. Thesis award from the EECS department in Northwestern
University. He is a member of IEEE and ACM.

Zicheng Liu (SM'05) is a senior researcher
at Microsoft Research, Redmond. He has
worked on a variety of topics including com-
binatorial optimization, linked figure anima-

PLACE tion, and microphone array signal process-
PHHE%TI? ing. His current research interests include

activity recognition, face modeling and ani-
mation, and multimedia collaboration. He re-
ceived a Ph.D. in Computer Science from
Princeton University, a M.S. in Operational
Research from the Institute of Applied Math-
ematics, Chinese Academy of Science, and a B.S. in Mathematics
from Huazhong Normal University, China. Before joining Microsoft
Research, he worked at Silicon Graphics as a member of technical
staff for two years where he developed a trimmed NURBS tessel-
lator which was shipped in both OpenGL and OpenGL-Optimizer
products. He has published over 70 papers in peer-reviewed interna-
tional journals and conferences, and holds over 40 granted patents.
He has served in the technical committees for many international
conferences. He was the co-chair of the 2003 ICCV Workshop on
Multimedia Technologies in E-Learning and Collaboration, the tech-
nical co-chair of 2006 IEEE International Workshop on Multimedia
Signal Processing, and the technical co-chair of 2010 International
Conference on Multimedia and Expo. He is an associate editor of
Machine Vision and Applications journal, and a senior member of
IEEE.

J. Bentley, “Programming pearlsAlgorithm Design Techniques

16

Ying Wu (SM'06) received the B.S. from
Huazhong University of Science and Tech-
nology, Wuhan, China, in 1994, the M.S. from
Tsinghua University, Beijing, China, in 1997,

PLACE and the Ph.D. in electrical and computer
PHHE%TI? engineering from the University of lllinois at

Urbana-Champaign (UIUC), Urbana, lllinois,
in 2001.

From 1997 to 2001, he was a research as-
sistant at the Beckman Institute for Advanced
Science and Technology at UIUC. During
summer 1999 and 2000, he was a research intern with Microsoft Re-
search, Redmond, Washington. In 2001, he joined the Department
of Electrical and Computer Engineering at Northwestern University,
Evanston, lllinois, as an assistant professor. He is currently an
associate professor of Electrical Engineering and Computer Science
at Northwestern University. His current research interests include
computer vision, image and video analysis, pattern recognition,
machine learning, multimedia data mining, and human-computer
interaction. He serves as associate editors for IEEE Transactions on
Image Processing, SPIE Journal of Electronic Imaging, and IAPR
Journal of Machine Vision and Applications. He received the Robert
T. Chien Award at UIUC in 2001, and the NSF CAREER award in
2003. He is a senior member of the IEEE.




Fig. 10. A detection example with performing speed and style variations. The yellow bounding box is the ground truth label

of the whole human body action and the red bounding box is our detection of two-hand waving.

Fig. 12. A detection example with cluttered and moving background, as well as severe partial occlusions.

Fig. 14. An example of missed detection. Although the action is detected in the first few frames, the whole action instance

is still treated as a missed detection due to limited overlap with the ground truth labeling.
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