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Segmenting complex motion, such as articulated motion and deformable objects, can be difficult if the
prior knowledge of the motion pattern is not available. We present a novel method for motion segmen-
tation by learning the motion priors from exemplar motions to guide the segmentation. Instead of mod-
eling the motion field explicitly, we decompose each video frame into a number of local patches and learn
the spatio-temporal contextual relations among them, e.g., if their motion relationships are consistent
with that from the training data. Based on a novel motion feature to measure the relative motion of
two patches, the SVM classifier learns their pairwise relationship. We convert the motion segmentation
problem to a binary labeling problem, and propose an iterative solution to group the local patches whose
motions are consistent. Compared with other approaches, such as the graph cut and normalized cut
methods, this new method is computationally more efficient and is able to better handle the inaccurate
inference of pairwise relationships. Results on both synthesized and real videos show that our method
can learn to segment different types of complex motion patterns.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Segmenting a scene based on its motion is an important prob-
lem in computer vision. A common approach to motion segmenta-
tion is to extract the local motion features (e.g., optical flow [1]) of
all the pixels, then perform grouping based on the coherence in
these local motion features.

The coherence among these local motion features actually de-
pends on the complexity in the motion of the object, and thus also
on the semantic levels of the object. Conventionally, most motion
segmentation methods are either based on the coherence in terms
of simple motions (such as rigid or affine motion [2–4]), or based
on the smoothness in the motion (e.g., smooth motion layers, or
Markov random fields [5–9]). Methods based on the coherence in
simple motions may result in over-segmentation if the object
exhibits more complex motion, e.g., articulation or deformation.

However, these methods are confronted when we want to seg-
ment an object presenting more complex motion, e.g., a shearing
scissors or a walking person (Fig. 1). Although the motion of the
parts can be simple, the entire motion of the object does have more
degrees of freedom, and cannot be covered by simple rigid motions
or smooth motions. This paper is concerned on a new learning-
based solution to this problem.
ll rights reserved.
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This is a quite difficult problem as the motion can be quite com-
plex. However, in reality, it is not uncommon that the complex mo-
tions may exhibit good structures, implying that the intrinsic
dimension of these motions can be actually low. In the example
of the shearing scissors, the opening–closing motion pattern is
quite predictable so that a specific motion model can be easily
specified. However, in the case of a walking person, although the
cyclic motion pattern does have a low intrinsic dimension, it is
very difficult, if not impossible, to have an explicit model for such
a motion.

In this paper we propose to learn the complex motion from
training examples for motion segmentation. The complex motion
patterns are labeled in the training video. After learning, we can
segment objects in video that exhibit the same motion pattern.

To achieve this goal, we decompose each video frame into a few
local image patches and focus on learning the spatio-temporal
relationship among the patches. Specifically, suppose i and j are
two local patches, we formulate the pairwise relationship fi,j as a
binary classification problem: fi,j = 1 if two patches belong to the
target motion, and fi,j = �1 otherwise. Given a test video where
the pairwise relations among the patches are inferred, a novel seg-
mentation approach is further proposed in this paper to find the
most stable group iteratively. As the pairwise relationships are
mostly consistent to each other in the stable group, it provides a
robust segmentation of the target motion pattern, despite the
noisy and cluttered backgrounds.
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Fig. 1. Examples of motion that cannot be segmented by traditional methods. (a) Center-symmetrical motion, such as two trains passing by. (b) Mirror-symmetrical motion,
such as a shearing scissors. (c) Articulated motion, such as human walking. The intrinsic dimensionality of the motion patterns above is not very high. However, we cannot
simply use the rigid-body prior or smooth prior to segment those structured motions out.
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To provide robust motion segmentation, we address the follow-
ing two critical questions:

(1) How can we learn the pairwise relationship fi,j between two
patches i and j?

Given two local patches, i and j, we need to identify whether
their relative motion is consistent with that from the training
examples. This is a two-class classification problem, as f i,j is either
1 or �1. To learn the pairwise relation fi,j, a novel spatio-temporal
contextual feature, called motion profile symmetry correlation, is
presented to characterize the relative motion of the two patches
Fig. 2. Top row: the region for motion profile extraction. Middle row: the motion profile
motion profiles, we can observe the arm region is moving up-left in those frames. Bottom
one is 90Pt

i

� �T
.
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i and j. This type of feature can be used to describe complex mo-
tion, such as opposite motion and mirror-symmetric motion. In
the training sequences, we manually label the region of the target
motion pattern, in order to obtain the ground truth of the pairwise
relations fi,j. Then a support vector machine (SVM) is applied to
learn the binary relation fi,j using the proposed feature.

(2) How to segment the target motion pattern given the pair-
wise relation fi,j?

To segment a frame in a test sequence, we use all of the local
patches xi to construct a graph, where each xi corresponds to a
s of the patch at the center of the region, from frame t � 2 to frame t + 2. From the
row: the steering and reflection motion profiles. The left one is 90Pt

i , and the right
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vertex. Instead of labeling the local patches xi directly, we first label
each edge fi,j using the SVM. Then we can infer the binary label of
local patches from their pairwise relations fi,j. However, this is a
non-trivial problem because the estimation of fi,j can be inaccurate.
We thus propose a new method, called bipolar segmentation, to
handle the unreliable fi,j for robust segmentation. It provides an
efficient iterative solution to this NP-hard binary labeling problem.
Compared with other alternative solutions, such as approximate
graph cut and normalized cut, our method shows clear advantages
in both numerical experiments and real video sequences. It is ro-
bust to the cluttered and noisy backgrounds, in both learning
and segmentation processes.

The rest of the paper is organized as follows. We introduce the
related work in Section 2 and propose the new feature to learn the
pairwise relationship in Section 3. After that, in Section 4, the bipo-
lar segmentation is presented and discussed. Our experiment re-
sults are shown in Section 5, followed by the conclusion in
Section 6.

2. Related work

Rigid motion segmentation has been studied extensively in the
literature. There are mainly two categories of approaches: para-
metric and non-parametric motion segmentation.

For the parametric method, it assumes that the object motion
follows some parameterized model, such as the 2-D affine motion
[2], and 3-D rigid body motion [10]. The expectation–maximiza-
tion (EM) algorithm is popularly utilized for model fitting. Some
other works formulate the problem as matrix factorization
[11,12,3]. In [13], it discusses how to select the motion model,
Fig. 3. Top left: one frame for learning. Top right: ground truth. Lower: patches (shown
samples (shown in blue lines). Because we cannot compute motion profiles at the b
interpretation of the references to color in this figure legend, the reader is referred to th
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and GPCA [4] provides a unified view to deal with the problem.
Also, there are related works that consider multiple cameras for
motion segmentation [14], where the EM algorithm is also applied.
However, these approaches cannot well handle complex motions.

The second type of motion segmentation is non-parametric ap-
proach. In [15], a hierarchical tree is applied for bottom-up seg-
mentation. In [16], a pyramid was built to organize the local
similarities. When assuming that the motion field is smooth
[17,18], Markov random fields (MRF) [19], discriminative random
fields (DRF) [20], and conditional random fields (CRF) [21] are ap-
plied. This category of approaches has a similar objective function,
and the segmentation is usually associated with energy minimiza-
tion, where the solutions include minimal cuts [22], graph cuts
[23], or normalized cut [24]. These approaches guarantee the glo-
bal optimum by the graph theory [22,23] or spectral analysis
[25–27,24,28,29]. Despite certain success, these methods are still
confronted when segmenting complex motion patterns, e.g., wav-
ing water or a traffic flow. The smoothness prior may not be simply
applied due to the structure of the motion patterns. Therefore, in-
stead of extracting the motion field explicitly, some existing ap-
proaches treat the complex motions as dynamic textures and
apply stochastic processes to model them [30,31]. Although the
stochastic modeling is effective for motion patterns that follow sta-
tionary processes, the method cannot be used when the motion is
not a ‘‘dynamic texture’’, for example, a shearing scissor or a walk-
ing person (Fig. 1).

Besides the above approaches, there are learning-based ap-
proaches for motion segmentation. Some previous works learn
the model of the segmentation boundary, such as [32–34]. Other
works consider the context of pixels in the image, such as the
in red boxes). Some positive samples (shown in yellow lines) and some negative
oundary, the boundary region is neglected in the segmentation algorithm. (For
e web version of this article.)
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Fig. 4. Top: outlines of three image regions to compute their center patch’s force to their nearby patches. Bottom: the corresponding force map. In (a), its center patch is
attracted by its left neighbors and repelled by its right neighbors. In (b), its center patch is attracted by its neighbors shaped as the leg. In (c), its center patch is repelled by all
of its neighbors.

Fig. 6. Illustration of the definition of stable group. (a) The patch i is out of the
group X, and it is repelled by the group. (b) The patch i is inside the group X, and it
is attracted by the group’s other patches.

Fig. 5. The difference between our problem and most of others. (a) In unipolar
segmentation, a data point can only attract other data. (b) In bipolar segmentation,
a data point can attract or repel other data.
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auto-context [35]. Moreover, if the moving object can be learned
from the training examples, segmentation can be interlaced with
object detection [36], or object recognition [37]. For example, to
segment the vehicle from static backgrounds, motion segmenta-
tion becomes the detection and tracking problem [38–40]. For seg-
menting articulated bodies, bottom-up segmentation based on
learning can be utilized [41].

3. Learning the pairwise relation fi,j

Our goal of learning is to identify the condition under which the
two patches should be grouped together, i.e., they both belong to
the same target object. To describe the pairwise relation between
i and j, we extract the motion profiles for each individual patch,
and then extract the motion profile symmetry correlation from
Please cite this article in press as: J. Xu et al., Learning spatio-temporal depende
Understand. (2011), doi:10.1016/j.cviu.2010.11.010
the two patches. Only motion feature is considered here, although
other types of features, e.g., appearance, can also be applied to fur-
ther improve the segmentation result.

3.1. Steering/reflecting motion profile

Let’s first review the motion profile [8]. Let It(Xi) denote the cen-
ter pixel of patch i at time t, the similarity measure w.r.t. spatial
difference dx is based on the sum of squared differences (SSD):

St
i ðdxÞ ¼ exp �

X
w

ðItðXi þwÞ � Itþ1ðXi þ dxþwÞÞ2=r2
ssd

 !
;

ncy of local patches for complex motion segmentation, Comput. Vis. Image

http://dx.doi.org/10.1016/j.cviu.2010.11.010


J. Xu et al. / Computer Vision and Image Understanding xxx (2011) xxx–xxx 5
where w denotes a local neighborhood, and rssd is the stand vari-
ance of SSD. We obtain motion profile by normalizing the similarity
measure

Pt
i ¼

St
i ðdxÞP

dxSt
i ðdxÞ

" #
dx

:

We keep Pt
i in a matrix form, and extend the motion profile idea

by rotating and transposing it. We propose the steering motion
profile aPt

i , where a represents the rotation angle in degrees. For
example, 90Pt

i is the original motion profile rotated by 90�. We also

propose the reflecting motion profile aPt
i

� �T
, where T represents

transposing. For example, 90Pt
i

� �T
is the original motion profile ro-

tated by 90�, then transposed (Fig. 2). For notional convenience, we

also denote aPt
i by aPt

i

� �I
.

3.2. Motion profile symmetry correlation

If we use the original motion profiles of patch i and patch j to
describe the motion coherence of the two patches, one straightfor-
ward consideration is to take the inner product of the motion
profiles

Ptþdti
i ; P

tþdtj

j

D E
;
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Fig. 7. The comparison of bipolar segmentation and QPBOI. The upper row is the value of
and the lower row is the objective function and time usage when positive/negative forc
obtains much larger optimization value than QPBOI, and uses much less time when the
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where h�,�i is the inner product, and this is also the approach taken
in [8]. The inner product is a scalar. The larger the value, the more
similar the two motion profiles, i.e., they move toward the same
direction.

However, the inner product of the motion profile can only
describe whether the two patches perform the same-direction
motion. To describe more complex pairwise relations, such as
the opposite motion, the mirror-symmetric motion, and motion
the coherence with a time delay, we need a more advanced
measure of the two motion profiles. In view of this, we con-
struct the motion profile symmetry correlation feature using the
steering/reflecting motion profile. This feature is a vector, by
concatenating the inner products of steering/reflecting motion
profiles:

Ct
i;j ¼ aPtþdti

i

� �b
; P

tþdtj

j

� �� 	
a;b;dti ;dtj

;

where [�] represents concatenation, dti, dtj are the time differences,
a is the steering angle and takes value of 0�, 90�, 180�, 270�, and b
takes value of I (identical) and T (reflecting). In our experiments,
the time difference ranges from �2 to +2 (frames). Therefore, five
frames are used, and thus Ct

i;j is a 5 � 5 � 8 = 200 dimensional vec-
tor (four steering motion profile and four reflecting motion pro-
file). This feature has much higher dimensionality. As each
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the objective function and time usage when positive/negative forces are equally 10%,
es are 5% and 20%. From both cases, we observe that bipolar segmentation always
number of patches is not so small. (Note: All the figures use logarithmical y-axis.)
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Fig. 8. Row 1: the frame for training, and two different labeling for this frame. Row 2: some frames for segmentation. The black lines show the outlines of the boxes and in the
real video there are no black lines. Row 3–4: corresponding segmentation results for the first labeling. Row 5–7: corresponding segmentation results for the second labeling.
Because we cannot compute motion profiles at the boundary, the boundary region is neglected in the segmentation algorithm.
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dimension of the feature favors one specific coherence pattern,
such as opposite motion, mirror-symmetric motion or identical
motion with time delay, this feature vector is able to describe
more complex motions.
Please cite this article in press as: J. Xu et al., Learning spatio-temporal depende
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3.3. Classification using support vector machine

To provide the training data, we manually label the frames in a
video sequence. In the learning process, if patch i and patch j
ncy of local patches for complex motion segmentation, Comput. Vis. Image
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belongs to the same object, we treat the patch pair {i, j} as a posi-
tive example, and vice versa. Therefore, for each {i, j} pair, we have
positive–negative class label and feature vector Ct

i;j, and we need to
learn a classifier to classify the feature vectors based on the class
labels.
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Fig. 10. Segmentation of articulated motion. Row 1: one labeled f
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As shown in Fig. 3, we randomly choose patch pairs to generate
positive and negative samples, and then use SVM to learn a classi-
fier. As we want to learn a classifier that can produce ‘‘soft’’ classi-
fication result, i.e., output values in the range of (�1,1) instead of
the discrete values {�1,1}, we choose the SVM classifier in LIBSVM
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mented out.

rame. Row 2: testing frames. Row 3: the segmented patches.
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[42], which can produce ‘‘positive probability’’ estimation ranges in
(0,1). We map the probability to (�1,1) linearly as our final classi-
fication result.

3.4. Pairwise relation as force

Given a testing sequence, at time t, for each patch pair {i, j}, we
are able to compute their corresponding pairwise feature Ct

i;j, then
use the SVM classifier learnt to determine the pairwise coherence
of the patches, which ranges in (�1,1). We denote by f t

i;j and call it
force between patch i and patch j. Coherent patches have positive
force between them and attract each other, and vice versa (Fig. 4).

4. Bipolar segmentation

Given a test video, after learning the pairwise relation fi,j be-
tween local patches, we can perform motion segmentation. Before
describing our method, it worths comparing with some existing
segmentation methods that also rely on affinity matrix, such as
minimum cut and normalized cut. In those cases, the affinity value
fi,j describes the relations between two pixels or patches (similarity
or dissimilarity) and fi,j is always positive, e.g., ranges in (0,1). As an
analogy, there are forces among data points, and for any data point,
it ‘‘attracts’’ all the rest at different strengths. We call this type of
segmentation as unipolar segmentation, which refers to the situa-
tion when only one kind of force is considered.

In contrast, in our case, in order the describe whether two
patches belong to the same target motion pattern or not, the pair-
wise relation fi,j learned through an SVM can be either positive or
negative, e.g., ranges in (�1,1). Therefore we use bipolar segmenta-
tion to refer to our new segmentation solution, because both
attraction and repulsion forces are considered (Fig. 5). Interest-
ingly, most existing approaches cannot be applied directly for
bipolar segmentation, because of the negative values of fi,j. For
example, the min-cut max-flow solution requires the capacity of
each edge, fi,j, to be a positive value, thus cannot be applied here.
Some other works [43,44] consider both positive and negative
affinities, but their formulation and objective function are totally
different and cannot be applied in our case. As a result, we need
a new segmentation algorithm for our task. In the experiment sec-
tion, we will justify that choosing fi,j within (�1,1) instead of (0,1)
provides better result.

4.1. Stable group

We consider our segmentation problem based on the physical
meaning of our force modeling. In the real world, an object is stable
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the false negative rate raises up a lot at about frame 35, which corresponds to the time
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in its own form, because it attracts its own atoms, and repels other
atoms. Therefore, following this analogy, we propose the definition
of stable group as: given all patches P and the forces between each
pair of patches, a stable group X � P is a collection of patches that
satisfy the following constraints (Fig. 6):

(1) The patches outside the group is repelled by the group, or
0
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kground
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ncy of
8i R X;
X
j2X

f t
i;j 6 0:
(2) The patches inside the group is attracted by the group, or
8i 2 X;
X

j2Xnfig
f t
i;j P 0:
In our problem, we expect each stable group corresponds to a target
complex motion and we can segment them one by one.

4.2. Solution of one stable group

To find one stable group, we define the inverse-potential func-
tion of the group X as

SðXÞ ¼
X

i2X;j2X
f t
i;j;

and the solution to the following optimization problem gives a sta-
ble group:

X� ¼ argX max
X # P

SðXÞ; ð1Þ

which means, the group that gives the smallest potential is the most
stable one, and the proof is given in A.

Assume we want to segment frame t, and denote the segmenta-
tion label of patch i at frame t by xt

i ¼ �1. If xt
i ¼ 1, patch i should be

segmented out, and vice versa.
We convert the subset optimization in Eq. (1) to an indicator

optimization problem. For the patches of frame t, given a group
X, let x ¼ xt

i


 �N
i¼1. As the value of x and group X are one-to-one

correspondence, Eq. (1) can be equivalently rewritten as

max
x

X
xt

i
¼1;xt

j
¼1

� � f t
i;j; ð2Þ

s:t: xt
k ¼ �1; k ¼ 1; . . . ;N:

The objective function only has pairwise terms, so it can be
optimized by graph cuts [23]. Converting Eq. (2) to an energy min-
imization problem for graph cuts is straightforward: we define the
pairwise energy term as
10 20 30 40 50

False negative rate

Frame index

is fixed. The false positive rate does not fluctuate much (±0.01 at most), but
he person walks into the homogeneous background (the white wall).
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Ei;j xt
i ; x

t
j

� �
¼

�f t
i;j; xt

i ¼ 1; xt
j ¼ 1;

0; otherwise;

(

and define the energy function to minimize as

E xt
1; x

t
2; . . .

� �
¼
X
i<j

Ei;j xt
i ; x

t
j

� �
; ð3Þ

then minimizing Eq. (3) is equivalent to optimizing Eq. (2). Accord-
ing to [23], if all the energy terms satisfies the inequality

Ei;jð0;0Þ þ Ei;jð1;1Þ 6 Ei;jð0;1Þ þ Ei;jð1;0Þ;

the graph cuts algorithm can obtain the global optimum. Otherwise,
the optimization is NP-hard. We notice that when f t

i;j ¼ �1, the
Fig. 12. Segmentation of human walking with moving background. The background is a
Row 3: result of QPBOI. Row 4: the first segment of normalized cut (totally cut into fou
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inequality above is not satisfied. Therefore, our optimization is an
NP-hard problem.

We relax Eq. (2) to make the optimization feasible. We relax
each dimension of the indicator vector xt

i from {�1, +1} to be
real-valued, but keep the L2 norm of x, i.e., kxk ¼

ffiffiffiffi
N
p

. Using the fact
that 1þx

2 is the indicator vector for xi = 1, where 1 is the all-one vec-
tor with proper dimension. We rewrite Eq. (2) by relaxing its con-
straints as

max
x

ð1þ xÞT Fð1þ xÞ; ð4Þ

s:t: xT x ¼ N

where F is the force matrix of the system, and its element at posi-
tion (i, j) is f t

i;j. The diagonal elements f t
i;i ¼ 0, as one patch cannot at-

tract itself.
moving picture. Row 1: some input frames. Row 2: result of bipolar segmentation.
r parts).
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Solving the optimization in Eq. (4) is still difficult, as it cannot
be converted to some eigenvector-related optimization. Therefore,
we look at the Lagrangian

Lðx; kÞ ¼ ð1þ xÞT Fð1þ xÞ � kðxT x� NÞ:

Taking the derivative and let @Lðx;kÞ
@x ¼ 0, @Lðx;kÞ

@k ¼ 0, we obtain

Fð1þ x�Þ ¼ kx�; ð5Þ
x�T x� ¼ N:

This is a necessary condition.
Solving Eq. (5) explicitly is impractical, because the order can be

very high. Therefore, we design a fixed-point iteration solution to
solving all the N + 1 unknowns. We denote by

y� ¼ Fð1þ x�Þ;

then from Eq. (5), we obtain

y� ¼ kx�;

y�T y� ¼ ðkx�ÞTkx� ¼ k2N:

Based on the three equations above, we obtain our iterative
method to solve Eq. (5) by going through the following iterations:

yðsþ 1Þ ¼ F1þ FxðsÞ;

kðsþ 1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yðsþ 1ÞT yðsþ 1Þ=N

q
;

xðsþ 1Þ ¼ yðsþ 1Þ=kðsþ 1Þ:

When the number of patches is large, the matrix F becomes
huge. Fortunately, the matrix F is usually very sparse, because
we only consider a small fraction of all forces. Another good thing
is that we only care about the relative value of the indicator vector
x to a threshold, so the precision requirement of x is low. In our
implementation, we terminate the iteration when

kxðsÞ � xðs� 1Þk
kxðsÞk 6 e;

and the threshold e can be set to a robust not-so-small value be-
cause of the low precision requirement of x. In our experiments,
we set e = 0.1.

We set x(0) to be an all-one vector and start the iteration. When
the iteration terminates, we segment out all patches i that satisfies
xt

i > g. We determine g by trying some possible g values in [�1, 1],
and select the optimal one that can maximize Eq. (1). There exists a
trivial solution for Eq. (5) when x = �1 and k = 0. However, in our
real and synthesized cases, we have not encountered this case.
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After some patches are segmented out, we continue our algo-
rithm on the remaining patches until the number of remaining
patches is less than a threshold. In most of our experiments, we
choose the threshold to be 2% of the total number of patches.

5. Experiments

We design three types of experiments: (1) Numerical experi-
ments to compare our bipolar segmentation to QPBOI optimization
[45]. (2) Motion segmentation comparison on different training
data sets. (3) Complex motion segmentation. All experiments are
run on a desktop PC, with Intel Core 2 (TM) CPU 2.40 GHz and
3.0 GB of RAM. We implement our algorithm using Matlab.

5.1. Comparison between bipolar segmentation and QPBOI

To show the advantages of our method, we compare our meth-
od with the quadratic pseudo-Boolean optimization improved
(QPBOI) [45] algorithm, which is the state-of-the-art algorithm to
find approximate solution in the graph cut problem where the en-
ergy function does not satisfy the sub-modular condition, as in our
Eq. (2). We synthesize a force matrix F to test (1) how much better
our solution can achieve and (2) how much faster it can be. Be-
cause QPBOI requires integer parameters to obtain good results,
we let fi,j = {�1,0,1}. The QPBOI implementation is obtained from
http://www.robots.ox.ac.uk/ojw/software.htm.

In Fig. 7, we compare the performance and speed between our
algorithm and QPBOI. From the figure, it is clear that bipolar seg-
mentation can find a much better solution, i.e., a much larger max-
imization of the objective function, and converges much faster
than QPBOI algorithm.

We test the two algorithms in different synthesized data sets.
The top row of Fig. 7 shows the results of the first set of synthe-
sized data. In these experiments, we synthesize different number
of patches from 100 to 1000. Then we randomly choose 10% patch
pairs and assign their fi,j = +1, and another 10% of the patch pairs
and assign their force fi,j = �1. For performance evaluation, we
run 10 times and report the average of the optimized value for
bipolar segmentation and QPBOI, and the average running time.
The top-left figure in Fig. 7 compares the maximization value
found by the two algorithms. When the number of patches is
100, the solution found by bipolar segmentation is about 10 times
larger than that found by QPBOI. If we increase the number of
patches, bipolar segmentation performs much better than QPBOI:
when the number of patches is 1000, the solution found by bipolar
segmentation is more than 100 times larger than that of QPBOI.
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Moreover, the top-right figure in Fig. 7 compares the running time
of both algorithms. We observe that both algorithms are efficient
when the number of patches is small. For example, both algorithms
converge within about 0.2 s to optimize a graph with 200 patches.
However, when the number of patches increases, bipolar segmen-
tation becomes much faster than QPBOI. For example, in the case of
1000 patches, bipolar segmentation finishes within about 1 s,
while QPBOI needs about 10 s.

The bottom row in Fig. 7 shows the results of the second syn-
thesized experiments. In this case, we randomly choose 5% of the
Fig. 14. Segmentation of basketball playing. The background is full of moving audiences
QPBOI. Row 4: the third segment of normalized cut (totally cut into four parts).
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patch pairs and assign their fi,j = +1, and 20% of the patch pairs with
fi,j = �1. We keep the rest of the pairs with fi,j = 0. Similar to the pre-
vious experiment, the solution found by bipolar segmentation is
more than 10 times larger than that by QPBOI. When the number
of patches is small, e.g., 100 or 200 patches, QPBOI runs faster than
bipolar segmentation. But when the number of patches increases,
QPBOI becomes more than 10 times slower than bipolar segmenta-
tion. From the experiments above, we conclude that for optimizing
our objective function in Eq. (2), bipolar segmentation is much bet-
ter than QPBOI, and is scalable to a large number of patches.
. Row 1: some input frames. Row 2: result of bipolar segmentation. Row 3: result of

ncy of local patches for complex motion segmentation, Comput. Vis. Image

http://dx.doi.org/10.1016/j.cviu.2010.11.010


12 J. Xu et al. / Computer Vision and Image Understanding xxx (2011) xxx–xxx
5.2. Motion segmentation comparison on different training data

5.2.1. Experimental settings
The image resolution of both training and testing video is

352 � 240. For each frame, we decompose it into non-overlapping
patches of size 5 � 5. There are in total 2280 valid patches for each
frame, excluding those boundary patches that cannot extract the
motion profiles. It takes 40 s to extract all of the 2280 motion pro-
files with our Matlab implementation. Among the 2280 patches,
we randomly select 1000 patch pairs (500 positive, 500 negative)
for training. It costs 3 s to obtain the motion profile symmetry cor-
relations. We then use PCA to reduce the dimension by keeping
95% energy, and use an SVM to train an RBF-kernel SVM classifier.
We perform grid search [42] to select the best parameters for the
SVM.
Fig. 15. Experimental result of segmenting two dynamic textures: moving escalator and
1: the left one is the original frame for training, and the right one is the labeled frame, w
Row 3: segmentation result of bipolar segmentation. Row 4: segmentation result of nor
coherent segment is posted).
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In the segmentation process, we first extract the motion profiles
of the patches from the testing video, then randomly select patch
pairs and estimate fi,j between them. To speed up, we control the
total number of patch pairs and each patch is selected 50 times
on average. If a patch pair is not selected, we set its fi,j = 0. Such a
treatment will have the least effect on our formulation in Eq. (2),
in which the forces are additive.

In bipolar segmentation, there are 57,000 non-zero fi,j for the
2280 � 2280 matrix. Our iteration terminates after less than 10
rounds and only costs about 0.2 s for each frame. After one object
is segmented out, we keep segmenting the remaining patches until
the number of the remaining patches is less than 2% of the total
number of the patches.

To evaluate the performance of our algorithm, we compare the
segmented object to the labeled ground truth. We use two
waving water. Our method performs well, but normalized cut fails in this case. Row
here the white region (upper half) is the foreground object. Row 2: testing frames.

malized cut (totally cut into four parts, and the part which is correspondent to the
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quantities for evaluation: (1) false positive rate, which is the num-
ber of patches falsely segmented as the object, divided by the num-
ber of true patches that belong to the object. (2) False negative rate,
which is the number of missed patches, divided by the number of
patches that belong to the object.

5.2.2. Segmentation of opposite motion
To test if our algorithm can learn the complex motion, we use

the opposite motion as an example, and want to see if different
learning (ground truth labeling) may produce different segmenta-
tion results. We synthesized a 48-frame video for our experiment.
In the synthesized video, there are two moving boxes. One is on the
upper side, moving from left to right. The other is on the lower side,
moving from the right to the left. The background is fixed.

We test our bipolar segmentation in two different scenarios: (1)
we label the two boxes as one object and (2) we label the two
boxes as two different objects. In the first setting, the algorithm
segments the background first, and then segments the two boxes
as a whole. We obtain the false positive rate 4.51%, and the false
negative rate 14.22%. In the second setting, the algorithm always
segments the background first, and then segments the larger
boxes, followed by the smaller one. The false positive rate is
2.42%, and the false negative rate is 1.34%. The comparison is
shown in Fig. 8.

From the experiment result in the first scenario, we observe
that the opposite motion coherence can be learnt and adopted in
segmentation. By comparing the results in the first and the second
scenarios, we observe that different learnings have different ef-
fects. There are two major reasons to explain the good perfor-
mance: (1) the background is static and the motion is relatively
simple and (2) our method can learn the opposite motion coher-
ence. On the contrary, if we use original motion profile feature in
[8], it cannot segment two opposite-moving boxes together.

Fig. 9 shows the iteration process of the second round of seg-
mentation in the second scenario. Initially, both boxes are assigned
by the same value. During the iterations, the value corresponding
to the larger box becomes larger and larger. After six iterations,
the algorithm terminates and the larger box is segmented out. This
example also shows that our algorithm converges fast.

5.3. Segmentation results of complex motion

5.3.1. Motion segmentation of articulated motion
We test our segmentation algorithm on the human articulation,

to see if our approach can segment walking people from videos. We
use the Dataset A of CASIA Gait Database [46]. In this dataset, there
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Fig. 16. False positive rate and false negative rate versus frame index (time) of our algor
positive rate is always less than 0.1, and the false negative rate does not fluctuate much
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are people walking in a static background. The length of each video
is about 50 frames, and the ground truth is provided in the data-
base. We convert the original videos to grayscale videos. To learn
the human walking coherence, we use eight frames in one se-
quence for training. After that, we use the rest sequences to evalu-
ate the segmentation. In the training video, the person walks from
left to right. In the testing video, the person walks from the right to
the left. We test our algorithm on the original dataset first. On
average, the false positive rate is 1.392%, and the false negative rate
is 21.59%. Some segmentation examples are shown in Fig. 10.

We observe that the performance is not as good as the result
of segmenting opposite motion. The reasons are: (1) articulated
motion is much more complex than the opposite motion and
(2) the background in the human walking videos has large pieces
of homogeneous regions, and our motion feature cannot work
well in those regions. For example, in the third frame of Fig. 10,
the shoulder part of the person is not segmented out. This is be-
cause the shoulder is in the same color as its local background:
one is with white clothes and the other is a white wall. The white
wall is a large homogeneous region, so our motion profile sym-
metry correlation feature cannot distinguish the motion in that
region well. The false positive rate and false negative rate of every
frame are shown in Fig. 11. We observe that the false negative
rate raises up a lot at about frame 35, which corresponds to the
time when the person walks into the homogeneous background
(the white wall).

To make the articulated motion segmentation a more challeng-
ing task, we substitute the background by a moving picture to
make a ‘‘moving background’’ effect, as if the camera is following
the person. We perform the same learning and testing procedure,
and some segmentation results are shown in Fig. 12.

To further validate our method, we also compare our method
with other methods. The first method to compare is the normalized
cut. As our feature incorporates the learnt information, it is unfair
to compare to normalized cut that uses normal motion profile.
Therefore, we map our forces fi,j back to (0,1) as similarity, then ap-
ply normalized cut using the similarity. The second method to
compare is the quadratic pseudo-Boolean optimization improved
(QPBOI) [45] algorithm.

From the figures shown in Fig. 12, we observe that our bipolar
segmentation performs the best, much better than QPBOI’s result.
The normalized cut simply fails if we convert the fi,j from (�1,1) to
(0,1). Using our algorithm, the false positive rate is 0.8%, and the
false negative rate is 35.4% on average. The false positive rate
and false negative rate of every frame are shown in Fig. 13. We ob-
serve that comparing to the previous experiment, the average false
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Fig. 17. Experimental result of segmenting two dynamic textures: flying smoke and oscillating material. Our method performs better than normalized cut. Row 1: the left one
is the original frame for training, and the right one is the labeled frame, where the white region (right half) is the foreground object. Row 2: testing frames. Row 3:
segmentation result of bipolar segmentation. Row 4: segmentation result of normalized cut (totally cut into four parts, and the part which is correspondent to the coherent
segment is posted).
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Fig. 18. False positive rate and false negative rate versus frame index (time) of our algorithm in segmenting flying smoke and oscillating material dynamic textures. As the
smoke pattern is not so stable, the result is not as good as the one in the previous experiment.
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positive rate decreases, while the false negative rate increases. The
variations of false positive rate and false negative rate are both
Fig. 19. Experimental result of segmenting waving water. The camera is moving, and the
performs well: they can distinguish the waving water, but mis-segment some waving foli
for training, and the right one is the labeled frame, where the white region is the f
segmentation. Row 4: segmentation result of QPBOI. Row 5: segmentation result of nor
coherent segment is posted).
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decreased, because there is no large homogeneous region in the
background.
water nearby is waving, while the water far away is static. Our method and QPBOI
age as well. Normalized cut fails in this case. Row 1: the left one is the original frame
oreground object. Row 2: testing frames. Row 3: segmentation result of bipolar
malized cut (totally cut into four parts, and the part which is correspondent to the
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Some articulated motions do not have consistent patterns, for
example, basketball players always change their motion pattern.
Fig. 20. Segmentation of wave fronts. Row 1: the left one is the original frame, and the r
bipolar segmentation. Row 4: segmentation result of QPBOI. Row 5: segmentation result
Because we cannot compute motion profiles at the boundary, the top boundary region is n
missed in all of three scenes.
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The performance of our algorithm is degraded in that situation
(Fig. 14).
ight one is the labeled frame. Row 2: testing frames. Row 3: segmentation result of
of normalized cut (totally cut into four parts, and no part looks like the wave fronts).
eglected in the segmentation algorithm. Thus the top foreground regions are largely
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5.3.2. Motion segmentation of dynamic textures
As another example of segmenting complex motion patterns,

we test our algorithm on dynamic textures, and the dataset is from
DynTex [47].

In this set of experiments, we only manually label one frame for
learning, and the learning/testing procedure is the same as previ-
ous experiments.

In the first set of experiments, we synthesize dynamic texture
videos by concatenating two different dynamic textures. Fig. 15
shows some synthesized frames, which are composed of escalator
steps (upper part) and water waves (lower part). We can easily ob-
tain the false positive rate and false negative rate of our algorithm
for each frame using the synthetic data. Fig. 15 shows the experi-
ment results of three frames using our method and normalized
cut. From the results, we observe that our method works well,
but the normalized cut cannot perform well. The false positive rate
and false negative rate of our algorithm are given in Fig. 16.

In the second experiment, we segment the smoke and oscillat-
ing material. Fig. 17 shows some synthesized frame and the corre-
sponding experiment results using our method and normalized
cut. The result of our method is better than normalized cut, and
the false positive rate and false negative rate of our algorithm are
given in Fig. 18. This set of results is not as good as the previous
one, because the smoke pattern is not so stable as the escalator,
or the waving water.

In the next set of experiments, we try to segment one type of
dynamic texture from its real background. Fig. 19 shows a chal-
lenging example to segment waving water, with a moving camera.
We label one frame of waving water for learning, and use other
frames for testing. From the results, we observe that by using the
pairwise relations, both our method and QPBOI can segment the
waving water out, while normalized cut fails again. Fig. 20 shows
another challenging example: segmenting out wave fronts. We la-
bel only one frame for learning, and use other frames for testing.
Again, in this example, our method performs better than QPBOI
and normalized cut.
6. Conclusions and future work

Learning motion priors can help segment complex motions. By
using our motion profile feature to characterize the relative mo-
tion, our method is able to learn the pairwise relationship between
image patches, and model the complex motion. The experiments
show that our method can correctly learn the motion coherence
and segment different types of complex motions from extremely
noisy backgrounds, includes articulated motion and non-rigid ob-
ject motion. Compared with conventional graph cut algorithm,
such as QPBOI, the proposed bipolar segmentation algorithm pro-
vides better solution with faster convergence. Such a bipolar seg-
mentation method is generally applicable to other applications.

The performance of our learning-based algorithm largely
depends on the reliability of inferring the pairwise relationship.
Besides motion feature, we will explore other types of features to
learn the pairwise relationship of local patches, including appear-
ances, texture, to improve the learning of pairwise relation and
the segmentation results.
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Appendix A. Proof by contradiction

If 9k R X�;
P

j2Xfk;j > 0, then we construct X
0
= X⁄ [ {k}, and

obtain

SðX0Þ ¼
X

i2X0 ;j2X0
fi;j ¼

X
i2X� ;j2X�

fi;j þ
X
j2X�

fk;j >
X

i2X� ;j2X�
fi;j ¼ SðX�Þ:

This contradicts X⁄ is the optimal solution of Eq. (1).
If 9k 2 X�;

P
j2X�nfkgfk;j < 0, then we construct X

0
= X⁄n{k}, and

obtain

SðX0Þ ¼
X

i2X0 ;j2X0
fi;j ¼

X
i2X� ;j2X�

fi;j �
X

j2X�nfkg
fk;j >

X
i2X� ;j2X�

fi;j ¼ SðX�Þ:

This contradicts X⁄ is the optimal solution of Eq. (1).
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