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Abstract

Shape decomposition is a fundamental problem for part-
based shape representation. We propose a novel shape
decomposition method called Minimum Near-Convex De-
composition (MNCD), which decomposes 2D and 3D arbi-
trary shapes into minimum number of “near-convex” parts.
With the degree of near-convexity a user specified param-
eter, our decomposition is robust to large local distortions
and shape deformation. The shape decomposition is formu-
lated as a combinatorial optimization problem by minimiz-
ing the number of non-intersection cuts. Two major percep-
tion rules are also imposed into our scheme to improve the
visual naturalness of the decomposition. The global optimal
solution of this challenging discrete optimization problem
is obtained by a dynamic subgradient-based branch-and-
bound search. Both theoretical analysis and experiment re-
sults show that our approach outperforms the state-of-the-
art results without introducing redundant parts. Finally we
also show the superiority of our method in the application
of hand gesture recognition.

1. Introduction
It is natural to represent an object by its parts and there

has been strong evidence for part-based representations in
human vision [15]. According to Siddiqi et al. [15],

Part-based representations allow for recognition that is robust in the
presence of occlusion, movement, deletion, or growth of portions of an
object. In the task of forming high-level object-centered models from low-
level image-based features, parts serve as an intermediate representation.

Given an arbitrary shape, it is thus of great interests to
decompose it into a number of natural parts, where each
part satisfies certain geometric constraint. The most popular
constraint is convexity constraint, because (1) a convex part
is visually natural and geometrically simple [3,17], thus can
serve as a satisfactory primitive for recognition; (2) many
operators, which are too complicated to be applied on the
original objects, can be easily applied to its convex parts
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Figure 1. A robust shape representation via our method. The first
column shows the same objects with different degrees of local dis-
tortions; the second column shows the near-convex decomposition
results using our method; the third column shows the shape rep-
resentations by replacing each part with its convex hull; and the
fourth column shows the graph representations by replacing each
part with a node. Despite severe local distortions, as our method
decomposes a shape into minimum number of near-convex parts,
it avoids introducing redundant parts and thus brings consistent
decomposition results. The last two columns are the results of ex-
isting near-convex decomposition methods: [10] and [12], respec-
tively.

[4, 13]. To this end, strict convex decomposition has been a
well studied problem in computational geometry [7, 8].

However, in practice, strict convex decomposition is not
robust because it is sensitive to small variations of the shape,
such as the local distortions on the contour, which are com-
monly caused due to imperfect image segmentation and
shape deformations. In such cases, to satisfy the strict con-
vex requirement, it usually results in a large number of re-
dundant small parts, thus does not lead to consistent shape
representation.

To handle this problem, near-convex decomposition has
been proposed. As illustrated in Fig.1, instead of requir-
ing each part to be strictly convex, it allows near-convex
parts. In [10,11], Lien et al. proposed a greedy strategy for
near-convex decomposition, which exhaustively partitions
the most concave feature in the shape until all the parts sat-
isfy the convexity constraint. A recent method proposed by
Liu et al. [12] formalized the near-convex decomposition
as a linear programming problem by minimizing the total
length of cuts, and obtained an approximate optimal solu-
tion. Generally, by tolerating local non-convex distortions,



Figure 2. Illustration of near-convex decomposition. (a) The original image. (b) The extracted shape with some sampled candidate cuts
inside. (c) An incorrect near-convex decomposition which does not satisfy the non-overlapping constraint, as the purple line ab intersects
with the cyan line cd causing the part abc overlaps with the part bcd. (d) An incorrect near-convex decomposition which does not satisfy
the convexity constraint, as concave(P1) > ψ. (e) A near-convex decomposition of 7 parts. (f) A minimum near-convex decomposition
of 5 parts. (g) Another minimum near-convex decomposition of 5 parts, but looks more natural.

near-convex decomposition leads to more robust shape rep-
resentation.

Despite previous works in near-convex shape decompo-
sition, there still remain two unsolved problems. First, the
existing methods cannot avoid introducing redundant parts.
For example, the greedy algorithm proposed in [10, 11] in-
evitably results in redundant parts. Also by only optimiz-
ing the total cut length, [12] can produce redundant parts as
well. Thus, these methods cannot generate robust shape de-
composition, as illustrated in the last two columns of Fig.1.
Secondly, without any priori knowledge of the object, it is
difficult to obtain visually natural parts through unsuper-
vised decomposition.

To handle these two problems, we present a novel
near-convex decomposition method called Minimum Near-
Convex Decomposition (MNCD) to decompose arbitrary
2D and 3D shapes. By finding a collection of candidate cuts
to partition the shape into near-convex parts, we formulate
the shape decomposition problem as a combinatorial opti-
mization problem by selecting the best subset of candidate
cuts that has both a minimum size and high visual natural-
ness. Two major perception rules, the minima rule [6] and
the short cut rule [18], are also imposed to improve the vi-
sual naturalness of the decomposition. The global optimal
solution of this challenging discrete optimization problem
is found by a dynamic subgradient-based branch-and-bound
search.

Extensive experiments on both 2D and 3D shapes show
that our algorithm is robust to local distortions and shape de-
formation. The comparisons with the state-of-the-art results
validate the advantages of our method in terms of reducing
the number of redundant parts. With less and better recog-
nition primitives, we also demonstrate the superiority of our
method in the application of hand gesture recognition. The
contributions of our method are summarized as follows:
• It decomposes an arbitrary shape into minimum num-

ber of near-convex parts, and can be easily extended to
decompose 3D shapes.

• With the degree of near-convexity a user specific pa-
rameter, it can well handle local shape distortions and
shape deformation.

• It imposes perception rules in cognitive science to
guide the shape decomposition, thus is visually more
natural.

2. Problem Formulation
2.1. Overview

In near-convex decomposition, each decomposed part
may not be strictly convex, thus the user has to specify a pa-
rameter ψ which indicates the near-convex tolerance of the
decomposed parts. Formally, a ψ-near-convex decomposi-
tion of a shape S, Dψ(S), is defined as a decomposition that
only contains ψ-near-convex non-overlapping parts, i.e.:

Dψ(S) = {Pi|
∪
i

Pi = S,∀i̸=jPi ∩ Pj = ∅, concave(Pi) ≤ ψ}, (1)

where Pi denotes the decomposed part; concave(Pi)
is the concavity of Pi. We say Pi is ψ-near-convex if
concave(Pi) ≤ ψ. Pi is strictly convex if concave(Pi)=0.
According to the definition, near-convex decomposition has
two constraints: the non-overlapping constraint, ∀i ̸=jPi ∩
Pj = ∅; the convexity constraint, ∀Pi, concave(Pi)≤ ψ.

The partition {Pi} is formed by some cuts. For any two
vertices p, q on the contour, if the line connecting p and
q locates inside the shape, line pq is a cut. As shown in
Fig.2(b), the red lines are some sampled cuts. We denote
the complete set of all possible cuts in shape S as the can-
didate cut set, C(S). Therefore, as shown in Fig.2, a near-
convex decomposition of S is to select a subset of cuts from
C(S) to form {Pi} such that the two constraints in Eq.1 are
satisfied: (1) as illustrated in Fig.2(c), to ensure the non-
overlapping constraint, the selected cuts cannot intersect
with each other; and (2) as illustrated in Fig.2(d), to ensure
the convexity constraint, we restrict ∀Pi, concave(Pi) ≤ ψ.

Figure 3. At the concave contour, some lines (such as v1v2, v1v3)
intersect with the contour or locate outside the contour, which form
the mutex pairs; while vertices v2, v3 are not a mutex pair.

In order to measure concave(Pi), we apply the shape
feature mutex pair in [12]: for any two vertices on a shape
contour, v1 and v2, if the connecting line between v1 and v2
intersects with the contour or locates outside the contour,
(v1, v2) is a mutex pair. As shown in Fig.3, (v1, v2) and
(v1, v3) are two mutex pairs. The concavity of a part Pi is



defined as the maximal concavity of the mutex pairs in the
part:

concave(Pi) = max
(v1,v2)∈Pi

{concavem(v1, v2)}, (2)

where (v1, v2) denotes the mutex pair in Pi; concave(Pi)
denotes the concavity of Pi; concavem(v1, v2) is the con-
cavity of mutex pair (v1, v2).

Hence, we can measure concave(Pi) by measuring
concavem(v1, v2). We use the same method proposed in
[12] to measure concavem(v1, v2): by projecting the shape
contour in multiple Morse functions, the concavity of a mu-
tex pair is defined as the maximal perpendicular distance
between line v1v2 and the corresponding concave contour.
As in Fig.3, concavem(v1, v2) and concavem(v1, v3) are
shown in the blue dotted lines, and concavem(v1, v2) >
concavem(v1, v3).

To ensure the convexity constraint: ∀Pi, concave(Pi)
≤ ψ, according to Eq.2, the concavities of all the mutex
pairs in each part Pi must be smaller than ψ. Therefore,
for a ψ-near-convex decomposition, we need to separate all
the mutex pairs in S whose concavities are greater than ψ
into different parts to ensure concave(Pi) ≤ ψ. As shown
in Fig.3, cut pq separates the heart shape into two parts,
and the mutex pair (v1, v2) as well as (v1, v3) are separated.
Thus concavem(v1, v2) and concavem(v1, v3) will not af-
fect the concavities of these two parts.

2.2. Minimum NearConvex Decomposition

As illustrated in Fig.2(e), Fig.2(f) and Fig.2(g), in order
to decompose a shape into minimum number of parts with
high visual naturalness, we need to optimize the selection
of cuts. Assume there are in total n possible cuts in a shape
S, namely C(S) = {cut1, ..., cutn}. The final decomposi-
tion consists of a subset of the cuts from C(S), denoted by
C ′(S) ⊆ C(S). We assign a binary variable xi to each cuti
in C(S) where:

xi =

{
1 cuti ∈ C′(S),

0 cuti ̸∈ C′(S).
(3)

Thus xn×1 =(x1, x2, ..., xn)⊤ is a binary vector indicat-
ing the selection/non-selection of cuts from C(S).

With the two constraints in Eq.1, by minimizing the
number of cuts and imposing perception rules, we formu-
late the ψ-MNCD as follows:

min ∥ x ∥0 + λw⊤x,

s.t. Ax ≥ 1, x⊤Bx = 0, x ∈ {0, 1}n, (4)

where ∥x∥0 is the zero-norm of vector x, which counts the
number of the selected cuts in C ′(S). λ ≥ 0 is a parame-
ter introducing the visual naturalness regularization w⊤x to
the decomposition, in order to regularize the cuts selection
by favoring the cuts with high visual naturalness. We will
discuss λ in Section 3.1. Now we explain our formulation.

The visual naturalness regularization: w⊤x

We employ both the minima rule [6] and the short cut rule
[18] to ensure high visual naturalness of the decomposition.
A cost is assigned to each cuti ∈ C(S) to evaluate its own
visual naturalness, and a smaller cost means a higher visual
naturalness:

wpq =
dist(pq)

1 + β · |min{cur(p), 0}+min{cur(q), 0}| , (5)

where cut pq is a candidate cut in C(S); dist(pq) is the
normalized distance between vertices p and q. This cor-
responds to the short cut rule: a shorter cut has a smaller
cost. cur(p) denotes the normalized curvature of the vertex
p, which corresponds to the minima rule: a cut resolving
at positions with greater negative curvatures has a smaller
cost. We normalize the negative curvature among concave
vertices and ignore the convex vertices. β is a parameter
balancing these two rules. As these two rules both are crit-
ical for natural decomposition, we set β = 1 in our experi-
ments.

We denote wn×1=(w1, w2, ..., wn)
⊤ as the costs of n

candidate cuts. From Eq.5, we know that the cuts separat-
ing at positions with greater negative curvatures and with
shorter lengths have smaller costs. Thus by minimizing
w⊤x, those cuts with higher visual naturalness are more
likely to be selected.

The convexity constraint: Ax≥1

As mentioned in Section 2.1, to ensure the convexity con-
straint: ∀Pi, concave(Pi) ≤ ψ, we need to separate all the
mutex pairs in S whose concavities are greater than ψ into
different parts. So we first obtain the ψ-mutex set of S,
Mψ(S), which is defined as the set of mutex pairs whose
concavities are greater than ψ. Then we separate all the
mutex pairs in Mψ(S) with the selected cuts from C(S).
A candidate cut may separate several mutex pairs, such as
the cut pq in Fig.3. For every candidate cut in C(S), cuti,
the mutex pairs it can separate form a subset of Mψ(S),
denoted by M ′

i . In this way, we obtain {M ′
i , i = 1, ..., n}.

Suppose there are m mutex pairs in the ψ-mutex set,
Mψ(S) = {mp1, ...,mpm}. For each mutex pair in
Mψ(S),mpi, among all the cuts that can separate it, at least
one cut must be in set C ′(S). Thus, for eachmpi, this gives
a constraint:

n∑
j=1

aijxj ≥ 1, where aij =

{
1 mpi ∈M ′

j ,

0 mpi ̸∈M ′
j .

(6)

Let us denote Am×n=(aij |i = 1, ...,m; j = 1, ..., n),
1m×1=(1, ..., 1)⊤. Consider all the m mutex pairs in
Mψ(S), we have the convexity constraint: Ax≥1, which is
also used in [12].



ACD [10] CSD [12] MNCD
a NCD with the a NCD with minimum number ofObjective a NCD without optimization

minimum length of cuts parts and high visual naturalness
Candidate cut set complete set of all possible cuts incomplete set from Reeb graph complete set of all possible cuts
Perception rules minima rule and short cut rule short cut rule minima rule and short cut rule

non-overlapping constraint non-overlapping constraintConstraints
convexity constraint

convexity constraint
convexity constraint

Solution greedy algorithm approximation algorithm global optimal algorithm
Table 1. The comparison among ACD, CSD and MNCD, where NCD denotes near-convex decomposition.

The non-overlapping constraint: x⊤Bx=0
As for two cuts in C(S), cuti and cutj , they may intersect
with each other. We define an intersection matrix, Bn×n, to
indicate the intersection relations in C(S):

bij =


0 cuti does not intersect with cutj , and i ̸= j,

1 cuti intersect with cutj , and i ̸= j,

0 i = j.

(7)

As mentioned in Section 2.1, to ensure the non-overlapping
constraint ∀i ̸=jPi∩Pj= ∅, the selected cuts inC ′(S) cannot
intersect with each other, namely ∀ xi, xj ∈ x, xi × bij ×
xj = 0. Thus we have the intersection constraint: x⊤Bx=0.

3. Our solution
3.1. Selection of parameter λ

As mentioned earlier, λ is an important parameter intro-
ducing the visual naturalness regularization to the decom-
position. If we do not consider the visual naturalness of the
decomposition, while only focus on the minimum number
of parts, the problem can be reformulated by setting λ = 0,
i.e.:

min ∥ x ∥0 s.t.Ax ≥ 1, x⊤Bx = 0, x ∈ {0, 1}n. (8)

The solution x of this formulation is not unique, but it
ensures exactly minimum number of parts. Although with
different objective functions, we can prove that our formula-
tion in Eq.4 can obtain the same minimum number of parts
as Eq.8 if selecting λ appropriately. Theorem 1 tells the re-
lationship between Eq.8 and our formulation in Eq.4:

Theorem 1 minimum decomposition rule
We consider two objective functions as follows:

f(x) =∥ x ∥0 +λw⊤x, s.t.Ax ≥ 1, x⊤Bx = 0, x ∈ {0, 1}n,
g(x) =∥ x ∥0, s.t.Ax ≥ 1, x⊤Bx = 0, x ∈ {0, 1}n,

Let:

x′ = argmin
x
f(x), x′′ = argmin

x
g(x).

We have ∥ x′ ∥0=∥ x′′ ∥0 when 0 ≤ λ ≤ 1/
∑n
i=1 wi.

The proof of Theorem 1 is in the Appendix. x′′ is the so-
lution of Eq.8 whose zero-norm is minimized, and x′ is the
solution of our formulation in Eq.4. Therefore, our formula-
tion can decompose a shape into minimum number of parts

as well when 0 ≤ λ ≤ 1/
∑n
i=1 wi. It is worth mention-

ing that although Eq.4 and Eq.8 both minimize the number
of parts, their cuts are not necessarily the same subset from
C(S), as Eq.4 favors visually more natural cuts.

3.2. Branchandbound search

Algorithm 1: MNCD(S, ψ)
Input: A shape, S, and a concavity tolerance, ψ;
Output: ψ-MNCD of S, {Pi}.

1 ⋄ compute the candidate cut set, C(S);
2 ⋄ compute ψ-mutex set of S→Mψ(S);
3 foreach mpi in Mψ(S) do
4 foreach cutj in C(S) do
5 check whether cutj separates mpi → aij ;

6 foreach cuti in C(S) do
7 compute its cost → wi;
8 foreach cutj in C(S) do
9 check whether cuti intersects with cutj → bij ;

10 ⋄ solve the optimization problem in Eq.4;
11 ⋄ obtain its global optimal solution→ {Pi}.

The shape decomposition problem formulated in Eq.4 is
a challenging combinatorial optimization problem, as the
solution space is of size O(2n).

In order to obtain the global optimal solution efficiently,
we employ a dynamic subgradient-based branch-and-bound
search [2]. The main characteristic of dynamic subgradient-
based branch-and-bound procedure is that at every node of
the search tree, instead of using the simplex method to solve
the linear programming relaxation of the given subproblem,
it uses primal and dual heuristics with subgradient optimiza-
tion applied to a Lagrangian dual, to generate the upper and
lower bounds on the objective function.

The dynamic subgradient procedure is embedded into a
branch-and-bound algorithm. We use a breadth first search
strategy. The branch-and-bound algorithm does one or sev-
eral of the following things: improves the lower bound; im-
proves the upper bound; fixes some variables at 0 or 1. It
gradually makes the dual solution feasible, to attempt to find
a better cover, and to recursively fix as many variables as
possible. The resulting partial cover is then completed to a
full cover when the global optimal solution is found.



Algorithm 1 shows the overall procedure of our method.
In our experiment, the x vector generally contains n =
10, 000 ∼ 100, 000 elements. Although we have a large
number of variables, because of the sparsity of the solution,
i.e., typically only several or tens of cuts will be selected,
the global optimal solution can be found efficiently in sev-
eral seconds using the branch-and-bound search.

3.3. Comparison to other methods

Table 1 presents a comparison among our MNCD and
the state-of-the-art methods: ACD [10] and CSD [12]. Our
method aims at the minimum number of parts with high
visual naturalness for robust shape representation, and the
global optimal solution is found by the algorithm above.

Specifically, CSD is a special case of our formulation in
Eq.4 if discarding the ∥x∥0 term and setting β = 0 in Eq.5.
The ∥x∥0 term in our formulation guarantees the minimum
number of decomposed parts, which reduces all the redun-
dant part in near-convex decomposition. This point is very
essential for robust shape representation and can improve
the efficiency of further applications, as shown in Fig.1. β
in Eq.5 is the parameter imposing the minima rule and short
cut rule into our near-convex decomposition scheme, β = 0
means discarding the minima rule. This point is essential as
well because these two perception rules are introduced for
high visual naturalness which guarantees better recognition
primitives, the minima rule inhibits the decomposition by
cuts at positions with small negative curvatures or even at
convex contour.

4. Experiments
4.1. 2D Shape Decomposition

Figure 4. An example of each shape category selected from the
MPEG-7 dataset [9] is displayed.

In order to evaluate our method on 2D shapes, we test
the MPEG-7 shape dataset [9]. Excluding simple shapes
such as the heart shape that can be easily decomposed, we
select 20 complex shape categories from MPEG-7 dataset,
in which each category has 20 shapes (20×20=400 shapes).
Fig.4 shows an image for each selected category.

Evaluation of parameters
In our algorithm, there are 2 parameters, ψ and λ, where
ψ is the user specified concavity tolerance for near-convex
decomposition; λ is the parameter introducing the visual
naturalness.

The parameter ψ tells how small degree of concave fea-
tures the user want to ignore in near-convex decomposition.

Figure 5. The decomposition results by MNCD, with ψ= 0.005R,
ψ=0.01R, ψ=0.03R and ψ=0.06R, from left to right, respectively,
where R is the radius of the shape’s minimum enclosing disk.

Fig.5 shows the decomposition results at different value of
ψ. A very small ψ means that the decomposed parts are al-
most strictly convex, which will introduce a large number
of small parts to ensure the convexity constraint, thus is not
robust to local distortions. When ψ increases, the decom-
position can tolerate more severe distortions.

Figure 6. The decomposition results of MNCD when ψ=0.03R,
with λ= 0, λ=0.5/

∑n
i=1 wi, λ=1/

∑n
i=1 wi, from left to right,

respectively.

The parameter λ introduces the visual naturalness to the
decomposition in Eq.4. Fig.6 shows the decomposition re-
sults of MNCD at different values of λ. If 0 ≤ λ ≤
1/

∑n
i=1 wi, the number of parts by MNCD is minimized.

But a larger λ brings a more natural decomposition as it
counts more weight of the visual naturalness term in Eq.4.
In our experiments below, we use λ=1/

∑n
i=1 wi.

Evaluation of the number of parts
One advantage of our method is that it does not introduce
redundant part as it decomposes the shape into minimum
number of parts. In terms of the number of parts, table 2
presents the average reduction rate comparing our method
with ACD [10] and CSD [12] at 4 different ψ, on MPEG-7
dataset. The average reduction rate scores are defined as:

ACD ↓= (#ACD−#MNCD)/#ACD ,

CSD ↓= (#CSD−#MNCD)/#CSD .

As it shows, we produce the least number of parts. Com-
paring to ACD [10], up to 32.7% number of redundant parts
are reduced, and up to 30.7% number of redundant parts are
reduced comparing to CSD [12]. On average, comparing
to ACD 19.18% number of parts are reduced and 10.62%
comparing to CSD. Thus, the efficiency of further applica-
tions on the decomposed parts can be highly improved. On
the other hand, from the table, we notice that all the ACD↓
and CSD↓ scores are greater than 0 on every shape category
and every ψ, which means that MNCD produces minimum
number of parts at all time, as proved in Theorem 1.

Decomposition results
To further evaluate the visual naturalness of our decomposi-
tion, Fig.7 compares our method with the method proposed



MPEG-7 ψ=0.005R ψ=0.01R ψ=0.03R ψ=0.06R
dataset ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓ ACD↓ CSD↓

bat 14.3% 8.9% 20.8% 11.3% 16.2% 6.8% 8.6% 6.5%
beetle 23.8% 10.3% 22.9% 9.0% 21.9% 16.0% 19.3% 14.4%
bird 18.5% 13.6% 23.8% 12.5% 12.8% 7.6% 17.4% 10.6%

butterfly 4.4% 5.8% 13.1% 7.2% 16.9% 8.8% 32.7% 12.9%
camel 16.1% 10.5% 15.2% 3.3% 21.1% 9.5% 21.3% 4.8%

carriage 5.5% 3.7% 13.8% 9.2% 15.6% 9.5% 18.4% 13.3%
cattle 24.9% 14.6% 24.5% 10.7% 27.4% 8.9% 23.0% 12.3%

chicken 19.0% 10.0% 23.1% 15.2% 24.0% 10.5% 3.1% 5.2%
chopper 8.9% 7.7% 16.2% 10.4% 22.1% 10.7% 17.4% 11.3%
crown 16.0% 9.2% 20.7% 11.9% 27.8% 14.6% 19.4% 16.7%
deer 18.0% 14.5% 24.2% 10.5% 15.3% 4.2% 22.6% 13.3%
dog 23.8% 15.4% 18.8% 7.6% 24.5% 9.2% 15.7% 10.5%

elephant 24.1% 12.0% 24.0% 8.9% 24.9% 9.7% 25.2% 7.8%
fly 11.9% 9.2% 8.9% 5.6% 4.2% 3.9% 10.6% 8.4%

horse 20.1% 8.0% 23.8% 5.1% 19.8% 1.1% 18.8% 6.1%
horseshoe 26.1% 18.6% 21.9% 11.7% 23.5% 14.8% 12.2% 12.2%

lizard 18.2% 10.4% 15.9% 10.0% 27.5% 15.2% 11.7% 7.3%
Misk 29.8% 30.7% 24.2% 11.9% 25.8% 20.3% 13.2% 15.4%

Mickey 24.6% 13.4% 14.0% 10.5% 19.8% 12.9% 17.3% 8.5%
spring 22.6% 12.6% 25.1% 13.7% 24.5% 15.8% 25.7% 6.9%

Table 2. The average reduction rate of MNCD comparing with
ACD [10] and CSD [12], on the MPEG-7 dataset, where R is the
radius of the shape’s minimum enclosing disk.

Figure 7. The first row shows the decomposition results of [14],
and the second row shows the results of MNCD.

by Mi and Decarlo [14]. Mi’s method is specifically de-
signed to decompose 2D shapes into natural parts. The first
row are the decomposition results of their method, and the
second row are the results of MNCD. As we can see, when
considering the minima rule and short cut rule in our formu-
lation, our method decomposes shapes into parts with high
visual naturalness comparable to [14], such as the legs, head
and body of the animal, the leaf and stem of the tree, etc.

In Fig.11, more comparisons among ACD [10], CSD
[12] and our method are provided, with ψ=0.03R. The
decompositions of our method produce the least and more
natural recognition primitives. At this concavity tolerance,
MNCD decomposes the animals into primitives such as
head, body, legs and tail, and avoid decomposing them into
redundant parts as [10, 12].

Without introducing redundant parts, MNCD is robust to
local distortions, as shown in the first row of Fig.12. The ro-
bustness of our method is more obvious when there are large
local distortions as shown in the last row of Fig.1, while the
existing decomposition methods produce many redundant
noise parts. Besides, our MNCD imposes two perception
rules to guide the decomposition, thus it produces more nat-
ural parts, which makes MNCD robust to shape deforma-
tion, as illustrated in the second row of Fig.12.

Figure 8. Illustration of our hand gesture recognition using the
Kinect depth camera and MNCD. The first and second columns
are the color and depth image in the new dataset; the third column
is the image segmentations of hands; the last column is the MNCD
decompositions of the hand shapes.

Thanks to the robust shape representation of our MNCD,
it has a high potential for shape-based visual recognition
tasks. In the next section, we apply it to hand gesture recog-
nition.

4.2. Hand Gesture Recognition

For hand gesture recognition based HCI [5], usually the
color, texture, shading, and context information are not
robust for successful recognition, while the shape feature
alone is often sufficient. However, the vision-based hand
gesture recognition is extremely hard, because of two pri-
mary problems: 1. It is hard to segment the hand out of the
image with cluttered background; 2. Even with the shape of
a hand, existing representations are not robust enough for
gesture recognition. For example, the contour-based and
the skeleton-based representations can be affected by large
local noises.

With the advent of Kinect depth camera [1], we can
accurately segment the hand shape using both image and
depth information, as shown in Fig.8. After that, we can
use MNCD to robustly represent the hand shape for ges-
ture recognition. With the Kinect depth camera, we col-
lect a new hand gesture dataset with both color images and
depth maps. Our dataset contains 3 hand gesture categories,
namely Rock, Paper and Scissors, each category has 50
samples. For each category, an example is shown in the
first two columns of Fig.8.

However, even with the help from the Kinect depth cam-
era, the image segmentation of the hand is not perfect. Due
to low-resolution, it easily introduces large local distortions
or other types of noises on the contour, as shown in the third
column of Fig.8. However, our MNCD is robust to handle
most of the variations, and decomposes hand shapes into
natural primitives such as fingers and palm. We can recog-
nize the hand gesture among Rock, Paper, Scissors by only
counting the number of parts. Suppose k is the number of



Figure 9. Hand gesture recognition using MNCD. The hand shapes
are extracted in real environments using the Kinect depth camera.
The first 4 columns are correct recognitions in different environ-
ments, and the last column shows some imperfect results.

parts, we classify a gesture to Rock if k ≤ 2, Paper if k ≥ 5,
and Scissors otherwise. Fig.9 shows some recognition re-
sults using MNCD under various scale, orientation and il-
lumination conditions. The last column is some imperfect
results because of unsatisfactory hand image segmentation.
Our hand gesture recognition method using MNCD is ro-
bust to local distortions, scale and orientation changes. Ta-
ble 3 presents the confusion matrix of our method on our
new dataset. The mean accuracy of our method recognizing
these three hand gestures is 94.7%.

Rock Paper Scissors
Rock 0.96 0 0.04
Paper 0 0.98 0.02

Scissors 0.1 0 0.9
Table 3. The confusion matrix of our method on the new dataset.
The mean accuracy is 94.7%.

4.3. 3D Shape Decomposition

To test our algorithm on 3D shapes, we project 3D
shapes into 2D planes multiple times, and obtain 3D shape
features from the 2D projections. The 3D decomposition
is formulated the same as 2D in Eq.4. Fig.10 shows some
decomposition results of the shapes from Mcgill 3D Shape
Benchmark [16]. As it shows, MNCD can decompose 3D
shapes into parts with high visual naturalness, such as the
fin of the whale, the legs of the bear, the lenses of the
glasses, the fingers of the hand, etc.

The last row in Fig.10 illustrates the robustness of
MNCD decompositions for 3D human postures. Although
the human body varies significantly with different postures,
the MNCD decomposition results are stable.

5. Conclusion
In this paper, we proposed a novel near-convex shape

decomposition approach for robust shape representation,

Figure 10. The 3D shape decompositions results of MNCD. The
last row illustrates the robustness of our method to shape deforma-
tion.

which decomposes 2D and 3D shapes into minimum num-
ber of parts with high visual naturalness. With the convex-
ity constraint, the non-overlapping constraint and by im-
posing the perception rules, we formulate the shape de-
composition problem as a combinatorial optimization prob-
lem, where the global optimal solution is found by a dy-
namic subgradient-based branch-and-bound search. We
have proved that our method can decompose the shapes
into exactly minimum number of near-convex parts. Ex-
periments on complex 2D and 3D shape datasets show that
our proposed method outperforms the state-of-the-art meth-
ods in terms of the number of decomposed parts and the
visual naturalness. We also demonstrate the robustness of
our method in the application of hand gesture recognition
with Kinect camera.

Appendix
We prove Theorem 1 here. In order to prove ∥ x′ ∥0=∥ x′′ ∥0,
when 0 ≤ λ ≤ 1/Σni=1wi, first we have:

min
x
f(x) =∥ x′ ∥0 +λw⊤x′ ≤∥ x′′ ∥0 +λw⊤x′′, (9)

min
x
g(x) =∥ x′′ ∥0≤∥ x′ ∥0, (10)

As wi > 0, so when 0 ≤ λ ≤ 1/Σni=1wi, ∀ x ∈ {0, 1}n,
0 ≤ λw⊤x ≤ 1. Therefore, from Eq.9 we further have Eq.11,
and from Eq.10 we further have Eq.12:

∥ x′ ∥0 +λw⊤x′ ≤∥ x′′ ∥0 +1. (11)

∥ x′′ ∥0≤∥ x′ ∥0 +λw⊤x′. (12)

Combining Eq.11 and Eq.12, we have:
∥ x′′ ∥0≤∥ x′ ∥0 +λw⊤x′ ≤∥ x′′ ∥0 +1.

As 0 ≤ λw⊤x′ ≤ 1, and ∥ x′ ∥0, ∥ x′′ ∥0 are integers, thus
∥ x′ ∥0=∥ x′′ ∥0 when 0 ≤ λ ≤ 1/Σni=1wi.
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Figure 11. Some decomposition results of ACD [10], CSD [12] and MNCD. Our MNCD method produces the least number of near-convex
parts and our decompositions are visually more natural.

Figure 12. The robust decomposition results of MNCD. The first row is the results of shapes with local distortions; the second row is the
results of shapes with deformation. Without introducing redundant parts and by considering perception rules, MNCD is robust to local
distortions and shape deformation.
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