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Abstract
The co-occurrence pattern, a combination of binary or

local features, is more discriminative than individual fea-
tures and has shown its advantages in object, scene, and
action recognition. We discuss two types of co-occurrence
patterns that are complementary to each other, the con-
junction (AND) and disjunction (OR) of binary features.
The necessary condition of identifying discriminative co-
occurrence patterns is firstly provided. Then we propose
a novel data mining method to efficiently discover the op-
timal co-occurrence pattern with minimum empirical error,
despite the noisy training dataset. This mining procedure
of AND and OR patterns is readily integrated to boosting,
which improves the generalization ability over the conven-
tional boosting decision trees and boosting decision stumps.
Our versatile experiments on object, scene, and action cat-
egorization validate the advantages of the discovered dis-
criminative co-occurrence patterns.

1. Introduction
Due to the compositional property of visual objects,

scenes, and actions, the discovery of discriminative co-
occurrence pattern is of fundamental importance in rec-
ognizing them. Although the extracted features, such as
color, texture, shape, or motion features, can be quite
weak individually, an appropriate combination of them will
bring a strong feature which is much more discrimina-
tive [31] [29] [3] [16] [2] [9]. There has been a recent
trend in mining co-occurrence patterns for visual recogni-
tion. For example, every real-world object is associated
with numerous visual attributes in terms of its material,
structure, shape, etc, [11] [4] [10], although it is difficult
to differentiate them using a single visual attribute, theycan
be well distinguished by the co-occurrence of specific at-
tributes, as illustrated in Fig.1.

In a binary classification problem, given a collection
of N binary features, the problem of co-occurrence pat-
tern mining is to select a subset from theseN fea-
tures, such that the co-occurrence of them can best dis-

Figure 1. By inferring binary visual attributes from raw image fea-
tures, such as wheels, furry [6] [4], we can distinguish bikes from
people by a co-occurrence of certain attributes, for example a bike
hasmetalandwheels, but does not havehead. Given two classes
of objects, described by (possibly quite noisy) attributes, can we
efficiently discover the co-occurrence of attributes that can best
discriminate them ?

criminate the two classes. In spite of many previ-
ous works in mining and integrating co-occurrence pat-
terns [22] [20] [3] [29] [33] [16] [24] [9] [27], none of
these methods is targeted at finding the most discrimina-
tive co-occurrence pattern with the smallest classification
error. GivenN binary features, because the co-occurrence
pattern can contain an arbitrary number of features (up to
N ), the total number of candidates of co-occurrence pat-
terns is exponentially large (e.g.3N if considering the neg-
ative value or2N if only considering the positive value.)
As a result, it is computationally intractable to perform
an exhaustive search. Even worse, unlike conventional
feature selection task, the monotonic property of feature
subset does not hold in searching co-occurrence patterns.
Namely, a(K + 1)-order binary feature is not necessarily
better than aK-order one. Therefore, the branch-and-bound
search cannot be applied directly [18]. Existing approaches
for co-occurrence pattern search, such as sequential for-
ward selection [16] [24], or recent data mining-driven ap-
proaches [22] [20] [3] [29] [33], do not guarantee the op-
timality of the selected co-occurrence patterns. In general,
when the training data is noisy, it is still an open problem to
find the co-occurrence pattern of the best performance,e.g.,
minimum classification error [17].
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Besides the computational issue, it is difficult to com-
bine co-occurrence patterns appropriately. When the target
class exhibits a multi-mode distribution in the feature space,
i.e. the intra-class variation is large, a single co-occurrence
pattern is not enough to cover the positive training sam-
ples. Thus multiple co-occurrence patterns must be consid-
ered. Most previous works integrate co-occurrence patterns
through a boosting procedure: boosting high-order features
rather than individual ones [29] [13] [33]. However, all of
these works only consider one type of co-occurrence pat-
tern, namely the conjunction form (AND), while the dis-
junction form (OR) is neglected. As these two types of clas-
sifiers are complementary to each other [34], the OR pattern
should also be considered.

To address the above issues, we propose an efficient data
mining-based approach to discovering discriminative co-
occurrence patterns and integrating them to a boosting clas-
sifier. Our contributions are two-fold: (1) in terms of mining
co-occurrence patterns, the necessary conditions of discrim-
inative patterns are obtained and theoptimalco-occurrence
pattern of minimum empirical error can be discovered effi-
ciently from the noisy training data; (2) in terms of boosting
co-occurrence patterns, we expand the pool of weak learn-
ers by considering both AND and OR patterns and incor-
porate them through a multi-class Adaboost. It improves
conventional boosting decision stumps and boosting deci-
sion trees. The versatile experiments on the PASCAL VOC
2008 dataset, 15-scene dataset, and KTH action dataset val-
idate the effectiveness and efficiency of our method.

2. Related Work
Because co-occurrence patterns are more discrimina-

tive than individual features, they have been extensively
applied in classification tasks, such as the feature co-
occurrence [16], multi-local feature [2], compositional fea-
ture [29] [30], high-order feature [13], and visual grou-
plet [27]. In [24] [2] [16], co-occurrence local features are
applied for object categorization and detection. Because of
the complexity in searching co-occurrence features, only
the second-order feature is considered in [13]. To han-
dle the huge search space, frequent itemset mining is ap-
plied [31] [32] [29] [22] [33] for mining co-occurrence pat-
terns. Despite many previous work, however, few of them
carefully studied the optimality of the co-occurrence pat-
terns from a theoretical perspective, but ad-hoc methods
were usually applied to find co-occurrence patterns to avoid
the exponential cost of mining. Thus, these methods cannot
guarantee the optimality of the mined co-occurrence pat-
terns.

As each co-occurrence pattern serves as a classification
rule, co-occurrence pattern mining is also related to rule in-
duction in machine learning and data mining. Some conven-
tional methods, such as the version space approach and the

candidate-elimination algorithm, normally require noise-
free training data for efficient rule induction [17]. When
a perfect rule (i.e. a co-occurrence pattern) with zero train-
ing error does not exist, these approaches cannot work well.
It remains an open problem to efficiently find the discrimi-
native co-occurrence pattern from noisy training data [19].

3. Discriminative Co-occurrence Patterns
3.1. Basic definitions and formulation

We consider a2-class problem for discriminative analy-
sis. The training dataset containsN samples of two classes:
DN = {xt, ct}

N
t=1, wherext ∈ R

P denotes the feature vec-
tor andct ∈ {0, 1} is the label ofxt. We define anattribute
as a Boolean-valued function,f(·) : x → {0, 1}.

Such a binary feature ofx can be semantic if defined as
the visual properties of objects. For example, some recent
works introduced such attributes as color, texture, shape to
describe visual objects [11] [4] [6] and faces [10], wherex

represents an object andfi(x) ∈ {0, 1} indicates whether
the ith attribute is active or not,e.g., the object is furry or
not. Different object categories can share the same vocabu-
lary of the pre-defined attributes.

In addition, a binary featuref can also be non-semantic
if it is induced fromx by a simple classifier. Taking the
decision stumpfor example:

fj(x) =

{

1 if x(j) ≥ θj

0 if x(j) < θj
, (1)

wherex(j) is thejth element inx andθj ∈ R is the thresh-
old to determine the response off . The induced features do
not necessarily have semantic meanings, yet they are still
informative to describex.

Considering a set of Boolean-valued featuresA =

{fi(x)}
|A|
i=1

, aco-occurrence patterncorresponds to a subset
B ⊆ A of features:

F(x) =

{
∧

i∈B fi(x) conjunction
∨

i∈B fi(x) disjunction
. (2)

Now the co-occurrence patternF(·) : x → {0, 1} serves as
a classifier to distinguish the two classes. It can contain an
arbitrary number (up to|A|) of featuresf (or f̄ ).

For simplicity, in Eq. (2), we call the conjunction as the
ANDpattern, denoted byFA, and the disjunction as theOR
pattern, denoted byFO. Our target co-occurrence pattern is
the one with the minimum empirical error:

F∗ = arg min
F

εF , (3)

whereF is either an AND or OR pattern, andεF is the
empirical error to measure the discriminative ability ofF
on the 2-class problem:

εF = P (F(x) 6= c(x)|DN ),

whereF(x) is the binary prediction ofx and c(x) is the
ground truth; andDN is the training dataset.
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Because each co-occurrence patternF is uniquely deter-
mined by the selected subsetB ⊆ A, all of the candidatesB
form a powerset of size2|A| or 3|A|, depending on whether
the negative values are considered. For example, if the neg-
ative valuef̄i is considered in Eq. (2), then each attribute
fi ∈ A has3 possible status inF : f̄i, fi and null. Thus
the total number of candidates is3|A|. As a result, it is in-
tractable to search forF∗ exhaustively if|A| is large.

Before discussing how to find the optimalF∗ through
data mining in Sec.4, we first explain the duality between
the AND and OR patterns in the next subsection.

3.2. Duality between AND and OR patterns
If the negative responses are considered, the total num-

ber of OR combinations is also3|A|. According to the De
Morgan’s law, we have the duality between the AND and
OR:

FO = ∨i∈B fi(x) = ∧i∈B fi(x) = FA. (4)

Therefore, an OR pattern,FO, can be transformed to an
AND pattern,FO, by inversing its prediction and the at-
tribute values. This duality leads to a uniformed way to find
the discriminative co-occurrence patterns.

Remark 1 Duality between AND and OR Patterns
An OR pattern that predicts for the positive class is equiva-
lent to the AND pattern that predicts for the negative class.

4. Efficient Mining of Co-occurrence Patterns
4.1. Necessary conditions of optimalF∗

Due to the duality between AND and OR patterns, we
only discuss how to find an optimal ANDF∗

A. The search
of F∗

O follows the same strategy. To explain how to perform
an efficient search, we first discuss the requirements for dis-
criminative patterns. We denote thefrequencyof a pattern
F by:

P (F) =
frq(F)

N
=

|{t : F(xt) = 1}|

N
, (5)

whereN is the total number of samples.P (c = 1|F) is
the precision rate andP (F|c = 1) is the recall rate. For a
perfect patternF∗, we haveP (c = 1|F) = P (F|c = 1) =
1, thus the empirical errorεF = 0.

In the case of noisy training data, a perfect pattern may
not exist. To find the optimalF∗ with the smallestεF , we
establish the necessary conditions of a discriminativeF .
Lemma1 states the mild-frequency requirement. A pat-
tern of high frequency is likely to appear in both positive
and negative samples, thus leads to a low precision rate. On
the other hand, a pattern of low frequency cannot cover the
whole positive class and thus leads to a low recall rate. Both
of them are not discriminative. To complement Lemma1,
Lemma2 states the recall requirement. Clearly, a classifier
of a low recall cannot be discriminative.

Lemma 1 the mild-frequency requirement for a dis-
criminative F
For anyF of small errorεF ≤ ε̂, where0 ≤ ε̂ ≤ r+, and
r+ = P (c = 1), it must satisfy the following mild frequency
requirement:

r+ − ε̂ ≤ P (F) ≤ r+ + ε̂.

Proof: supposeP (F) > r+ + ε̂, then becauseP (F =
1, c = 1) ≤ P (c = 1) = r+, we haveP (F = 0, c =
1) = P (F) − P (F = 1, c = 1) > r+ + ε̂ − r+ = ε̂.
Therefore the error is at leastP (F 6= c) = P (F = 0, c =
1) + P (F = 1, c = 0) ≥ P (F = 0, c = 1) > ε̂. On the
other hand, ifP (F) < r+ − ε̂, then it is easy to show that
P (F 6= c) ≥ P (F = 1, c = 0) > ε̂.

Lemma 2 the recall requirement for a discriminativeF
For any co-occurrence patternF of small error εF ≤ ε̂,
where0 ≤ ε̂ ≤ r+, andr+ = P (c = 1), it must satisfy the
following recall requirement:

P (F|c = 1) ≥ 1 −
ε̂

r+

Proof: supposeP (F = 1|c = 1) < 1 − ε̂
r+ , then

P (F = 0|c = 1) > ε̂
r+ and P (F = 0, c = 1) =

P (F = 0|c = 1)P (c = 1) > ε̂. Thus we have
P (F 6= c) ≥ P (F = 0, c = 1) > ε̂.

Combining Lemma1 and Lemma2, if the optimalF∗

satisfiesεF∗ ≤ ε̂ in the training dataDN , where0 ≤ ε̂ ≤
r+, thenF∗ must meet both requirements and be included
in the following candidate set:

F∗ ∈ {F : r+ − ε̂ ≤ P (F) ≤ r+ + ε̂}
⋂

{F : P (F|c = 1) ≥ 1 −
ε̂

r+
}.

As a result, we have the following theorem.

Theorem 1 a necessary condition of optimalF∗

For a co-occurrence patternF to predict the positive class,
suppose its empirical error satisfiesεF ≤ ε̂, where0 ≤ ε̂ ≤
r+ andr+ = P (c = 1). LetΨ1 = {F : P (F) ≥ r+ + ε̂},
Ψ2 = {F : P (F) ≥ r+ − ε̂}, Ψ3 = {F : P (F|c = 1) ≥
1 − ε̂

r+ }, then the optimalF∗ must reside in the candidate
set:

F∗ ∈ (Ψ2\Ψ1) ∩Ψ3, (6)

whereΨ2\Ψ1 = {F : F ∈ Ψ2,F /∈ Ψ1}.

According to Theorem1, sinceΨ1, Ψ2 are two sets of fre-
quent patterns for the entire training samples, whileΨ3 is
the set of frequent patterns for positive training samples,all
of them have a small size and can be efficiently obtained
through frequent pattern mining. As a result, although the
full search space ofF∗ is exponentially large, the above
candidate set ofF∗ is much smaller and can be exhaustively
checked.
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Algorithm 1 : Mining Optimal AND pattern

input : Training datasetD = {D+,D−}, minimum error̂ε
output : F∗

A = arg minF∈FA
εF

Mining frequent patterns from D:
Ψ1 = {F : P (F) ≥ r+ + ε̂},
Ψ2 = {F : P (F) ≥ r+ − ε̂}.
Mining frequent patterns from D+ :
Ψ3 = {F : P (F|c = 1) ≥ 1− ε̂

r+ }
let ΨA = (Ψ2\Ψ1) ∩Ψ3

returnF∗
A = arg minF∈ΨA

εF

4.2. Algorithm implementation
Our algorithm is designed based on Eq. (6). We present

the search of discriminative AND patterns for a positive
class in Alg.1. First of all, frequent patterns are discov-
ered from the whole training dataset (Ψ1 andΨ2). Then
frequent patterns of the positive class are discovered (Ψ3).
Finally, we perform an exhaustive check of the candidate
set(Ψ2\Ψ1) ∩ Ψ3 to find F∗. It is worth noting that for
multi-class problems, different classes can share the same
Ψ1 andΨ2 as they are discovered from the whole dataset.
Therefore, we only need to search for the frequent pattern
Ψ3 for each individual class.

To avoid the exhaustive search of all possible combi-
natorial patterns, classic frequent pattern mining methods
apply a branch-and-bound search. By using the bounds,
they either apply a breath first search (Apriori algorithm)
or a depth first search (FP-growth algorithm) to over-
come the exponential complexity in the search [8]. Al-
though the worst case complexity can still be exponential,
its average complexity is mild if it is properly designed.
In order to obtainΨ1, Ψ2 and Ψ3, we apply the FP-
growth algorithm in [7] for closedfrequent itemset mining.
Closed frequent itemsets are compact representations of fre-
quent patterns. They have been recently applied in com-
puter vision literature for visual pattern and feature min-
ing [29] [20] [22] [33].

For searching the OR pattern in thepositiveclass, ac-
cording to the duality between AND and OR, we can target
on the AND pattern in thenegativeclass instead. Due to
the space limit, we omit the mining procedure of the best
OR pattern, which follows the same procedure as mining
the AND pattern. The only differences are thatΨ3 is a fre-
quent pattern set from the negative class and we need to
replacer+ with r− in Alg. 1.

5. Integration of AND and OR Patterns
The singleF∗ discovered via data mining yields the min-

imum empirical error, nevertheless, it may not be a good
classifier individually. For example, if the target class has
a multi-mode distribution, rather than relying on a single
F∗ (e.g. a decision node), it is desirable to have a set

of co-occurrence patterns (e.g. a decision list) to cover
all of the training samples. Moreover, AND and OR pat-
terns are complementary to each other: AND patterns gen-
erally bring high precisions but with low recall rates, while
OR patterns bring high recalls by scarifying the precision.
Therefore, incorporating both of them in learning a classi-
fier is expected to result in a balanced precision and recall.

Algorithm 2 : Mining AND/OR patterns for boosting

input : training datasetD = {D+,D−}, a pool of weak
learnersΩ = {fi}, # of iterationsM

output : a binary classifier,g(·) : x→ {0, 1}

Init: set the training sample weightswi = 1/N ,1

i = 1, ..., N .
for m = 1, 2, ..., M do2

Fm = arg minf∈Ω

∑

N

i=1 wiI(ci 6= f(xi)),3

if training error decreases slowlythen4

mining AND and OR candidates:5

Ψ = ΨA ∪ΨO (using Alg.1 and its variant)6

Fm = arg minF∈Ψ

∑

N

i=1 wiI(ci 6= F
m(xi))7

Compute weighted training error:8

errm =
∑

N
i=1 wiI(ci 6=Fm(xi))

∑

N

i=1
wi

.9

Compute:αm = log 1−err
m

errm .10

Update weight:wi ← wi · exp[αm
I(ci 6= F

m(xi))].11

Re-normalizewi.12

Returng(x) = arg maxk

∑

M

m=1 αm · I(Fm(x) = k)13

Both AND and OR patterns can be naturally integrated
through the boosting procedure. The new algorithm is pre-
sented in Alg.2, where we follow the standard Adaboost al-
gorithm for binary classification. The threshold of a single
decision stump is determined by the conventional boosting
procedure,i.e., given the training samples and their weights
at current step, we search the optimal threshold for a de-
cision stump to minimize the weighted training error. The
only difference is when a single decision stump cannot ef-
fectively decrease the training error. In such a case, it im-
plies that a decision stump is too weak to distinguish the
hard samples and over-fitting may occur. Thus, we apply
the proposed data mining method to discover more discrim-
inative high-order AND or OR patterns to help. By applying
such a strategy, we can achieve the demanded performance
faster with fewer weak learners. Moreover, as less complex
decision stumps are used in the initial rounds of boosting,
practically it does not tend to over-fit the dataset. Com-
pared with previous method [13] of boosting first-order and
second-order features, we do not constrain the order of the
AND/OR. It relies on data mining method to find good co-
occurrences.

6. Experiments
To demonstrate the advantages of discriminative co-

occurrence patterns, we apply the proposed method to 3
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Table 1. Selected results of the pair-wise discriminative analysis. The top 5 examples are the pairs that are difficult todiscriminate based on
the attributes,i.e., with largest testing errors. The next 10 examples are the pairs that can be easily distinguished. ’+’ denotes that attribute
appears; ’-’ denotes it does not. We highlight the testing error if it is not larger than training error.

objects train/ test err discriminative AND
bottle v.s. pottedplant 0.490 /0.473 -Occluded

cat v.s. dog 0.418 / 0.467 -Occluded+Tail+Head +Ear+Foot/Shoe
dog v.s. cat 0.427 / 0.439 +Leg

chair v.s. pottedplant 0.308 / 0.431 +Occluded
chair v.s. bottle 0.320 / 0.420 +Occluded

train v.s. person 0.000 / 0.003 -Occluded-Head-Ear -Eye-Torso-Leg -Foot/Shoe+Metal
bicycle v.s. person 0.003 /0.003 -Head-Ear-Eye-Torso -Leg-Foot/Shoe+Metal
horse v.s. person 0.004 /0.004 +Furry
cow v.s. person 0.003 / 0.004 +Furry

aeroplane v.s. person 0.002 / 0.005 -Head-Ear-Eye-Torso -Leg-Foot/Shoe+Metal
motorbike v.s. person 0.002 / 0.006 -Head-Ear-Eye-Torso-Leg-Foot/Shoe+Metal

cat v.s. person 0.002 / 0.006 +Furry
dog v.s. person 0.005 / 0.007 +Furry

pottedplant v.s. sheep 0.029 /0.009 -Tail-Head-Ear -Snout-Eye-Torso -Leg-Foot/Shoe
pottedplant v.s. train 0.000 / 0.013 -3D Boxy-Window -Wheel-Door-Headlight -Taillight-Exhaust -Metal-Shiny

different tasks. Specifically, we conduct discriminative ob-
ject category analysis on the PASCAL VOC 2008 dataset,
scene recognition on the 15-scene dataset, and action recog-
nition on the KTH dataset. All of these experiments vali-
date the effectiveness and efficiency of mining discrimina-
tive AND/OR patterns.

6.1. Discriminative analysis between object cate-
gories

To evaluate the discriminative ability of the discovered
AND/OR classifier, we test our method on an attribute
dataset provided in [4]. With the purpose to describe, com-
pare, and categorize objects, this dataset provides 64 at-
tribute labels for the PASCAL VOC 2008 trainval set of
roughly 12,000 images in 20 categories. Learned from the
raw image features, each image is described by 64 binary
visual attributes. Following its experimental setting, into-
tal of 6340 images are used for training and another6355
images are used for testing.

Given two categories of objects, our task is to discover
discriminative co-occurrence attributes for classification.
For each of the 20 categories, we compare it to the rest 19
categories for discriminative analysis. In total we have 380
individual pairs of object categories. For each pair of ob-
jects, we treat one object as the positive class and the other
as the negative class.The minimum error is set toε̂ = 0.3.
If the error of the optimal AND/OR is lower than0.3, it
ensures to find the optimal AND/OR combination. Given
a pair of objects, we discard the attributes that never ap-
pear in both classes and perform data mining on the rest
of attributes. An optimal AND classifier from the training
samples is discovered for each pair, and the corresponding
testing error is presented in Fig.2. Each elemente(i, j) of
the matrix in Fig.2 is the testing error, which evaluates the

AND pattern that predicts for theith category (the positive
class). Similarly,e(j, i) is the testing error of the AND for
thejth category. Due to the duality between AND and OR,
e(j, i) is also the testing error of the OR pattern predicting
for theith category. As a result, the pair-wise analysis is not
symmetric sincee(i, j) 6= e(j, i).

Among the 380 pair-wise analysis, only 5 pairs can find a
perfect discriminative co-occurrence pattern with zero train-
ing error. It validates that the training data is noisy. This
is not surprising because the learned attributes are not per-
fect. The mean training error among the 380 pairs is0.0814,
while the mean testing error is0.1126. This result validates
the good generalization ability of the AND/OR classifiers.

In Table1, we list the top 5 most difficult pairs, as well
as the top 10 easiest pairs, ranked by their testing errors. We
notice that unreliable attributes (based on the measurement
in [4]), such as ‘occluded’, appear more often in the difficult
pairs. On the other hand, reliable attributes appear more of-
ten in easy pairs, such as ‘metal’ and ‘furry’. Although we
do not provide the classification results of the 20 categories,
the pair-wise discriminative analysis provides a guidanceof
objects that can be easily confused. For example, to better
distinguish cat and dog, bottle and potted plant, more reli-
able attributes should be introduced.

6.2. Boosting co-occurrence patterns for scene
recognition

We also evaluate the effectiveness of the AND and OR
co-occurrence patterns for scene recognition on the 15-
scene category dataset and improve the state-of-the-art re-
sults. The 15 scene category dataset was collected gradu-
ally by several research groups [21, 5, 12] and it consists
of a variety of indoor and outdoor scenes:bedroom, livin-
groom, suburb, industrial, kitchen, coast, forest, highway,
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Figure 2. Pair-wise discriminative analysis based on inferred visual attributes. Each element shows the testing errorin classifying two
object categories:e(i, j) ande(j, i) are the testing errors of the OR and AND patterns, respectively, for thejth category.

inside city, mountain, open country, street, tall building, of-
fice, andstore. Each scene category includes 216 to 410
images with resolution around300 × 250.

We investigate two recent features for scene recognition:
(1) a holistic feature–CENTRIST [25], and (2) a local de-
scriptor based feature–linear coordinate coding (LCC) [28].
For the CENTRIST feature, we follow the standard setting
in [25]. Each image is partitioned into 25 blocks (level 2),
5 blocks (level 1), and 1 block (level 0), respectively. After
using the principal component analysis to reduce the dimen-
sionality of CENTRIST to 40, each scene image results in a
1240-dimensional feature. For the LCC feature, we calcu-
late the dense SIFT [15] features every 8 pixels with 4 patch
sizes,i.e., 7 × 7, 16 × 16, 25 × 25, and31 × 31, to learn a
4096-dimensional codebook using clustering, which is used
in the linear coordinate coding to encode the textural char-
acteristics of images. Following the idea of the spatial pyra-
mid matching (SPM) [12], we partition an image to 10 cells,
i.e., 1 × 1 and3 × 3, to delineate the spatial layout, where
the LCC codes of each cell are concatenated. Thus, each
scene image is represented by a 40960-dimensional feature.
Combining both CENTRIST and LCC features, each image
has in total 40960 + 1240 = 42200 features.

In the first experiment, we discover the AND/OR fea-
tures only from the LCC codes to train the boosting classi-
fiers (Alg. 2), and compare it with the linear SVM classi-
fiers and the boosting classifiers with single features. Fol-
lowing the same test protocol in [12, 25], we use 100 im-
ages in each category for training and the rest of the im-
ages for testing. The proposed algorithm achieves the aver-
age recognition accuracy 83.7%, which improves over the
boosting with single features by about 1.7%. The improve-
ment boils down to the capacity of the compositional pat-
terns to delineate more sophisticated decision boundaries

than merely using the single features. As shown in Table
1, the boosting with co-occurrence AND/OR patterns from
LCC codes achieves comparable performance to the state-
of-the-art methods.

We further explore the AND/OR patterns from both the
CENTRIST and LCC codes, and train the boosting clas-
sifiers using Alg. 2. Now an AND/OR feature can be a
combination of both CENTRIST and LCC features, thus
is likely to be more discriminative than individual fea-
tures. The combination of these two complimentary fea-
tures shows excellent description power for the scene im-
ages. As shown in Table2, the boosting with co-occurrence
AND/OR patterns further improves the state-of-the-art re-
sults, from83.9% to 87.8%. Comparing to the boosting
of individual features from the CENTRIST+LCC pool, we
also observe a 1.9% improvement when boositng AND/OR
features, from85.9% to 87.8%. This further validates the
effectiveness of boosting higher order features. The confu-
sion matrix of the proposed method is presented in Fig.3.

The training time of our method is determined by the
number of training samples, the feature dimensionality, and
the mining step of the AND and OR patterns. As the fea-
ture dimensionality is 42200 and the number of training
samples is 1500, it costs around 4-5 seconds to mine one
co-occurrence pattern, on a laptop with a CPU Core 2 Duo
2.6GHz. Considering both AND and OR patterns, it takes
about 9-10 seconds to select one composite feature. How-
ever, the classification is very efficient just like the conven-
tional boosting classifiers.

6.3. Boosting co-occurrence patterns for action
recognition

We apply the proposed boosting algorithm with co-
occurrence patterns (Alg.2) to the action recognition task
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Method Avg. accuracy

SPM + SIFT with 400 clusters [12] 81.4%
SPM + SIFT with 400 concepts [14] 83.3%
SP-pLSA + SIFT with 1200 topics [1] 83.7%
CENTRIST+ RBF SVM [25] 83.9%
LCC+Linear SVM 80.7%
LCC+Boosting 82.0%
LCC+Boosting (AND/OR) 83.7%
CENTRIST+LCC+Boosting 85.9%
CENTRIST+LCC+Boosting (AND/OR) 87.8%

Table 2. Comparison of the average recognition accuracy on the
15-scene category dataset.
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Figure 3. The confusion matrix of 15-scene recognition.

Figure 4. Sample frames of 6 action categories in the KTH dataset.

on the benchmark KTH dataset. The KTH dataset was first
recorded for [23] and includes 6 types of actions:box, clap,
wave, jog, run, andwalk. There are 25 subjects perform-
ing these actions under 4 different scenes: outdoors (s1),
outdoor with scale variations (s2), outdoors with different
clothes (s3), and indoors (s4). In total, there are 2391 se-
quences with image resolution160 × 120. Sample frames
are illustrated in Fig.4.

We apply the same features in [26] to recognize the ac-
tions. The candidate regions are first located by human de-
tection and tracking. For each detected human, an enlarged
region around the tracked head is cropped in the so called
motion edge history images (MEHI) [26]. Then, a large
number of 2D Haar features are extracted to train classi-
fiers for each action category. We perform a 5-fold cross-
validation to evaluate the performance, where the sequences
of 20 persons are used in training and those of the other 5
persons for testing.

Our approach is compared against two methods: (1) a
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Figure 5. For the s1 scenario, false positive rates in training the
boosting classifiers using single Haar features onlyv.s. using the
compositional Haar features as well.

boosting classifier using decision stumps of single Haar fea-
tures (denoted byB-stumps); and (2) a boosted 4-node de-
cision tree classifier based on Haar features (denoted byB-
trees). In our method, we treat the Haar features as weak
learners and discover the AND and OR patterns from bi-
nary Haar features. During the boosting procedure, when
the false positive rate decreases less than1× e−3 by adding
a single Haar feature, we switch to add AND/OR patterns.
We specify the desired detection rate to be 0.99 and false
positive rate 0.005 in training, which can derive the mini-
mum errorε in Alg. 1. The size ofΨ in Alg. 2 is around
several thousands. We observe that the false positive rates
drop faster when compositional features are employed, as
shown in Fig.5. For an example, forjog if only using single
Haar features, the training requires a selection of 575 weak
classifiers to reach a false positive rate of 0.005. In con-
trast, when using the co-occurrence features, it only needs
82 Haar features. Even though there may be multiple Haar
features in an ANR/OR pattern, the number of total Haar
features is actually fewer, as shown in Table3. Therefore, it
brings less computation at the testing stage. In the boosted
decision tree classifier, we enforce it to have the same total
number of Haar features as our method for fair compari-
son. To test the generalization ability, we perform a 5-fold
cross validation for each scene and the results are listed in
Table4. By incorporating the compositional AND and OR
features, the average testing accuracy is improved by about
3% over the method in [26].
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# of Haar features box clap wave jog run walk

# of Haar (AND/OR) 71 46 24 113 105 76
# of Haar (dec. stump) 152 67 61 575 243 214

Table 3. The comparison of the number of Haar features: boosting
decision stumps + AND/OR v.s. boosting decision stumps only.

Scene B-stumps B-trees Ours

s1 73.9% 73.5%77.03%
s2 71.0% 70.3%73.98%
s3 73.6% 73.1%77.48%
s4 78.9% 79.3%80.80%

Scene B-stumps B-trees Ours

s1 83.7% 85.3%87.83%
s2 84.4% 85.5%87.05%
s3 82.6% 84.5%86.89%
s4 92.4% 93.6%94.36%

Table 4. The average recognition accuracy of a 5-fold cross-
validation on the KTH dataset: per-frame results (up); per-video
segment results (bottom).

7. Conclusions
We present a data mining approach to discovering dis-

criminative co-occurrence patterns for visual recognition.
The complementary AND and OR patterns are elaborated,
as well as the derivation of the necessary condition in
identifying discriminative patterns (both AND and OR).
Based on the necessary condition, the proposed data min-
ing based method is capable to efficiently find the optimal
co-occurrence pattern with the minimum empirical error,
despite the exponentially large search space and the noisy
training data. The versatile experiments on object, scene,
and action recognition validate the advantages of the dis-
covered AND and OR patterns.
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