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Abstract
The co-occurrence pattern, a combination of binary or @wz m ﬂ m
local features, is more discriminative than individual fea Wheels v v v X X v
tures and has shown its advantages in object, scene, and :‘;:: § § ; ‘; 3 :
action recognition. We discuss two types of co-occurrence Torse X " X X " "
patterns that are complementary to each other, the con- Leg X X X v X X
junction (AND) and disjunction (OR) of binary features. window | X ] ; ] . ;
The necessary condition of identifying discriminative co- Object

bicycle | bicycle | bicycle | people | people | people

occurrence patterns is firstly provided. Then we propose  Letesorv | — . . -
a novel data mining method to efficiently discover the op- Figure 1. By inferring binary visual attrlbut(_es_from raw_lgaafea-
timal co-occurrence pattern with minimum empirical error, twres, such as wheels, furrg][[ 4], we can .d'St'ngu'Sh bikes f.rom
despite the noisy training dataset. This mining procedure people by a co-occurrence of certain attributes, for exarafike

. . . hasmetalandwheels but does not havhead Given two classes
of AND and OR patterns is readily integrated to boosting, of objects, described by (possibly quite noisy) attribytzs we

which improves the generalization ability over the conven- eficiently discover the co-occurrence of attributes that best
tional boosting decision trees and boosting decision S&IMp  giscriminate them ?

Our versatile experiments on object, scene, and action cat-
egorization validate the advantages of the discovered dis-
criminative co-occurrence patterns.

criminate the two classes. In spite of many previ-

ous works in mining and integrating co-occurrence pat-
terns P2 [20] [3] [29 [39 [1€] [24] [9] [27], none of

. these methods is targeted at finding the most discrimina-
1. Introduction tive co-occurrence pattern with the smallest classificatio

Due to the compositional property of visual objects, error. GivenN binary features, because the co-occurrence
scenes, and actions, the discovery of discriminative co-pattern can contain an arbitrary number of features (up to
occurrence pattern is of fundamental importance in rec- ), the total number of candidates of co-occurrence pat-
ognizing them. Although the extracted features, such asterns is exponentially Iarg@(g,?,N if considering the neg-
color, texture, shape, or motion features, can be quiteative value or2" if only considering the positive value.)
weak individually, an appropriate combination of them will As a result, it is computationally intractable to perform
bring a strong feature which is much more discrimina- an exhaustive search. Even worse, unlike conventional
tive [31] [29 [3] [16] [2] [9]. There has been a recent feature selection task, the monotonic property of feature
trend in mining co-occurrence patterns for visual recogni- subset does not hold in searching co-occurrence patterns.
tion. For example, every real-world object is associated Namely, a(K + 1)-order binary feature is not necessarily
with numerous visual attributes in terms of its material, petterthan g -order one. Therefore, the branch-and-bound
structure, shape, etcl{] [4] [10], although it is difficult  search cannot be applied directiyg]. Existing approaches
to differentiate them using a single visual attribute, thay  for co-occurrence pattern search, such as sequential for-
be well distinguished by the co-occurrence of specific at- ward selection 16] [24], or recent data mining-driven ap-
tributes, as illustrated in Fig. proaches{7 [20] [3] [29] [33], do not guarantee the op-

In a binary classification problem, given a collection timality of the selected co-occurrence patterns. In gdnera
of N binary features, the problem of co-occurrence pat- when the training data is noisy, it is still an open problem to
tern mining is to select a subset from thesé fea- find the co-occurrence pattern of the best performaace,
tures, such that the co-occurrence of them can best disminimum classification errori[/].
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Besides the computational issue, it is difficult to com- candidate-elimination algorithm, normally require neise
bine co-occurrence patterns appropriately. When thetargefree training data for efficient rule induction{]. When
class exhibits a multi-mode distribution in the featurecgpa  a perfect rulei(e. a co-occurrence pattern) with zero train-
i.e. the intra-class variation is large, a single co-occurrenceing error does not exist, these approaches cannot work well.
pattern is not enough to cover the positive training sam- It remains an open problem to efficiently find the discrimi-
ples. Thus multiple co-occurrence patterns must be consid-native co-occurrence pattern from noisy training da.[
ered. Most previous works integrate co-occurrence pattern
through a boosting procedure: boosting high-order feature 3. Discriminative Co-occurrence Patterns
rather than individual one§] [13] [33]. However, all of 3.1. Basic definitions and formulation
these works only consider one type of co-occurrence pat-  \yg consider -class problem for discriminative analy-
tern, namely the conjunction form (AND), while the dis-  js The training dataset contaiNssamples of two classes:
qu_]ctlon form (OR) is neglected. As these two types of clas- Dy = {x¢, e}, wherex, € RP denotes the feature vec-
sifiers are complementary to each othigf{[the OR pattern 51 ande, e {0, 1} is the label ofx,. We define amttribute
should also be considered. as a Boolean-valued functiofy-) : x — {0,1}.

To address the above issues, we propose an efficient data gych a binary feature of can be semantic if defined as
mining-based approach to discovering discriminative co- the visual properties of objects. For example, some recent
occurrence patterns and integrating them to a boosting clasworks introduced such attributes as color, texture, shape t
sifier. Our contributions are two-fold: (1) in terms of migin  gescribe visual objects [] [4] [6] and faces [ 0], wherex
co-occurrence patterns, the necessary conditions ofiiscr  represents an object afidx) € {0,1} indicates whether
inative patterns are obtained and timalco-occurrence  thej,, attribute is active or nok.g, the object is furry or
pattern of minimum empirical error can be discovered effi- not. Different object categories can share the same vocabu-
ciently from the noisy training data; (2) in terms of boogtin  |ary of the pre-defined attributes.
co-occurrence patterns, we expand the pool of weak learn-  |n addition, a binary featur can also be non-semantic

ers by considering both AND and OR patterns and incor- jf it js induced fromx by a simple classifier. Taking the
porate them through a multi-class Adaboost. It improves decision stumgior example:

conventional boosting decision stumps and boosting deci- 1 if x(j) > 0,
sion trees. The versatile experiments on the PASCAL VOC f;(x) = { 0 if x(j) < 0 1)
2008 dataset, 15-scene dataset, and KTH action dataset val- !

idate the effectiveness and efficiency of our method. wherex(j) is thejy, elementink andd; € R is the thresh-
old to determine the responsefofThe induced features do
2. Related Work not necessarily have semantic meanings, yet they are still

Because co-occurrence patterns are more discrimina—'mcormat.'ve t_o describe.
Considering a set of Boolean-valued featutds =

tive than individual features, they have been extensively Al

applied in classification tasks, such as the feature co-1fi(¥)},=1,aco-occurrence patteroorresponds to a subset
occurrence 6], multi-local feature ], compositional fea- B < /A of features: S

ture [29 [3(], high-order feature 3], and visual grou- F(x) = { Nies fi(x)  conjunction ' @)

plet [27]. In [24] [2] [16], co-occurrence local features are Viep fi(x) disjunction

applied for object categorization and detection. Becatfise 0 o the co-occurrence pattef(-) : x — {0,1} serves as
the complexity in searching co-occurrence features, only 5 ¢|assifier to distinguish the two classes. It can contain an
the second-order feature is considered iG][ To han- arbitrary number (up tQA|) of featurest (or f).

dle the huge search space, frequent itemset mining is ap- g4, simplicity, in Eq. @), we call the conjunction as the

plied [31] [37] [29] [27] [39] for mining co-occurrence pat-  Anp pattern, denoted h§ 4, and the disjunction as th@R

terns. Despite many previous work, however, few of them yavern denoted hy,,. Our target co-occurrence pattern is
carefully studied the optimality of the co-occurrence pat- i one with the minimum empirical error:

terns from a theoretical perspective, but ad-hoc methods
were usually applied to find co-occurrence patterns to avoid

the exponential co;t of.mining. Thqs, these methods cannotyhere F is either an AND or OR pattern, ang- is the
guarantee the optimality of the mined co-occurrence pat'empirical error to measure the discriminative ability Bf
terns. on the 2-class problem:

As each co-occurrence pattern serves as a classification er = P(F(x) # ¢(x)|Dw)
rule, co-occurrence pattern mining is also related to mHe i ’
duction in machine learning and data mining. Some conven-where F(x) is the binary prediction ok andc(x) is the
tional methods, such as the version space approach and thground truth; andy; is the training dataset.

Fr= argmf}ne;, )
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Because each co-occurrence pattérns uniquely deter-  Lemma 1 the mild-frequency requirement for a dis-
mined by the selected subgetC A, all of the candidate8 criminative F
form a powerset of sizel“! or 314/, depending on whether  For any F of small errore+ < ¢ where0 < ¢ < r*, and
the negative values are considered. For example, if the neg+™ = P(c = 1), it must satisfy the following mild frequency
ative valuef; is considered in Eq. 2), then each attribute  requirement:

f; € A has3 possible status iF: f;, f; and null. Thus rt—e< P(F)<rt +é
the total number of candidatesd&*l. As a result, it is in- B B
tractable to search faF* exhaustively if|.A] is large. Proof: supposeP(F) > r+ + ¢, then becaus®(F —

Befo_reT dis_,cussing hovy to find t_he optimﬂf‘ through l,e = 1) < P(c = 1) = r*+, we haveP(F = 0,c
data mining in Sec4, we first explain the duality between )= P(F)—P(F=1,c=1) > rt +¢— 1t =
the AND and OR patterns in the next subsection. Therefore the error is at leaft(F # ¢) = P(F = 0,c

3.2. Duality between AND and OR patterns )+ P(F =1c=0)=PF =0,c=1)>¢ Onthe

R, .
If the negative responses are considered, the total num-other hand, 'fp( ) < _ O;,;h?n itis easy to show that
=1l,c= €.

ber of OR combinations is als®!l. According to the De P(F #¢) 2 P(F
Morgan’s law, we have the duality between the AND and | emma 2 the recall requirement for a discriminative =

™

OR: o For any co-occurrence patterft of small errorez < é,
Fo = Viep fi(x) = Niep fi(x) = Fa. (4)  where0 < ¢ <rt,andrt = P(c = 1), it must satisfy the

Therefore, an OR patter¥,, can be transformed to an following recall requirement: :

AND pattern, Fo, by inversing its prediction and the at- P(Fle=1) > 1- —

tribute values. This duality leads to a uniformed way to find "

the discriminative co-occurrence patterns. Proof: supposeP(F = 1llc = 1) < 1 — -5, then

, P(F = 0lc = 1) > £ andP(F = 0,c = 1) =
Remark 1 Duality between AND and OR Patterns P(F = 0Olc = 1)P(c = 1) > ¢ Thus we have

An OR pattern that predicts for the positive class is equiva- P(F#¢)>P(F=0,c=1) >
lent to the AND pattern that predicts for the negative class. - ’

.- . Combining Lemmal and Lemma?, if the optimal F*
4. Efficient Mining of Co-occurrence Patterns satisfiesc - < ¢ in the training dateDy, where0 < ¢é <

4.1. Necessary conditions of optimaf* rT, thenF* must meet both requirements and be included
Due to the duality between AND and OR patterns, we in the following candidate set:
only discuss how to find an optimal ANIB”;. The search F* e {F:rt—e<PF)<rt+é} m
of F¢, follows the same strategy. To explain how to perform .
an efficient search, we first discuss the requirements for dis {(F:P(Fle=1)>1- é},
criminative patterns. We denote tfrequencyof a pattern r
F by: As aresult, we have the following theorem.
P(F) = fra(F)  Ht: F(x¢) =1} (5) Theorem 1 a necessary condition of optimafF*
N N ’ For a co-occurrence patterst to predict the positive class,

) ) suppose its empirical error satisfies < ¢, where) < ¢ <
whereN is the total number of samples?(c = 1|F) is 7+ andrt = Ple = 1). Let®, = {F: P(F) >+ +¢}

the precision rate anf?(F|c = 1) is the recall rate. For a Wy = {F:P(F) >t —¢&}, 0y = {F:P(Fle=1) >
perfect patter?”, we haveP(c = 1|7) = P(Fle = 1) = 1 — %}, then the optimalF* must reside in the candidate
1, thus the empirical errar= = 0. set: "

In the case_of noisy trglmng d:_:lta, a perfect pattern may F* e (\ ) N s, (6)
not exist. To find the optimaF* with the smallest -, we
establish the necessary conditions of a discriminafive =~ WhereWo\W, = {7: F e Wy, F ¢ W, }.
Lemmal states the mild-frequency requirement. A pat- According to Theoren, since¥,, ¥, are two sets of fre-
tern of high frequency is likely to appear in both positive quent patterns for the entire training samples, wHilgis
and negative samples, thus leads to a low precision rate. Orthe set of frequent patterns for positive training sam#s,
the other hand, a pattern of low frequency cannot cover theof them have a small size and can be efficiently obtained
whole positive class and thus leads to a low recall rate. Boththrough frequent pattern mining. As a result, although the
of them are not discriminative. To complement Lemina  full search space of* is exponentially large, the above
Lemmaz2 states the recall requirement. Clearly, a classifier candidate set ofF* is much smaller and can be exhaustively
of a low recall cannot be discriminative. checked.
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Algorithm 1 : Mining Optimal AND pattern of co-occurrence patterng.g. a decision list) to cover
all of the training samples. Moreover, AND and OR pat-

terns are complementary to each other: AND patterns gen-
erally bring high precisions but with low recall rates, vehil
OR patterns bring high recalls by scarifying the precision.
Therefore, incorporating both of them in learning a classi-
fier is expected to result in a balanced precision and recall.

input : Training dataseD = {D*, D~ }, minimum erroré
output : 7 = argminrecr, €x

Mining frequent patterns from D:
W, ={F:P(F)>r"+¢},

W, = {F: P(F)>r" —¢é}.
Mining frequent patterns from D™ :
Us ={F:P(Fle=1)>1- 5} Algorithm 2 : Mining AND/OR patterns for boosting
letw, = (‘Pz\‘I’l) NWws
returnF; = argmingew , €r

input : training dataseD = {D*, D™}, a pool of weak
learners(? = {f;}, # of iterationsM
output : a binary classifierg(-) : x — {0, 1}

-

Init: set the training sample weights = 1/N,

4.2. Algorithm implementation i1 N

Our algorithm is designed based on Eg). We present  , 51 ,, — 1,2 ... M do
the search of discriminative AND patterns for a positive 5 | 7m — argmingea 32 | will(e; # £(xi)),
class in Alg.1. First of all, frequent patterns are discov- 4 if training error decreases slowlyien
ered from the whole training dataseb{ and ¥5). Then 5 mining AND and OR candidates:
frequent patterns of the positive class are discoveleq.( 6 ¥ =¥, U Py (using Alg.1 and its variant)
Finally, we perform an exhaustive check of the candidate 7 F™ = argmingew Yoo, will(e; # F™(x;))
set(¥,\Wy) N Py to find F*. It is worth noting that for 8 Compute weighted training error:

multi-class problems, different classes can share the same o YN w (e £F™ (%))

¥, and ¥, as they are discovered from the whole dataset. 9 e = Syw

Therefore, we only need to search for the frequent patternio Compute:a™ = log =2 —.

W, for each individual class. 11 | Update weightw; < w; - exp[a™I(c; # F™ (x:))].

To avoid the exhaustive search of all possible combi- 12 | Re-normalizev;.

natorial patterns, classic frequent pattern mining meshod 13 Returng(x) = argmaxx >0 o™ - 1(F™(x) = k)
apply a branch-and-bound search. By using the bounds,
they either apply a breath first search (Apriori algorithm) ~ Both AND and OR patterns can be naturally integrated
or a depth first search (FP-growth algorithm) to over- through the boosting procedure. The new algorithm is pre-
come the exponential complexity in the searéh [ Al- sented in Alg2, where we follow the standard Adaboost al-
though the worst case complexity can still be exponential, gorithm for binary classification. The threshold of a single
its average complexity is mild if it is properly designed. decision stump is determined by the conventional boosting
In order to obtain®,;, ¥, and ¥5, we apply the FP-  procedurei.e, given the training samples and their weights
growth algorithm in [] for closedfrequent itemset mining. ~ at current step, we search the optimal threshold for a de-
Closed frequent itemsets are compact representations-of fr Cision stump to minimize the weighted training error. The
quent patterns. They have been recently applied in com-only difference is when a single decision stump cannot ef-
puter vision literature for visual pattern and feature min- fectively decrease the training error. In such a case, it im-
ing [29 [201[27 [33. plies that a decision stump is too weak to distinguish the
For searching the OR pattern in tpesitiveclass, ac-  hard samples and over-fitting may occur. Thus, we apply
cording to the duality between AND and OR, we can target the proposed data mining method to discover more discrim-
on the AND pattern in theegativeclass instead. Due to inative high-order AND or OR patterns to help. By applying
the space limit, we omit the mining procedure of the best such a strategy, we can achieve the demanded performance
OR pattern, which follows the same procedure as mining faster with fewer weak learners. Moreover, as less complex

the AND pattern. The only differences are thiag is a fre- decision stumps are used in the initial rounds of boosting,

quent pattern set from the negative class and we need tdractically it does not tend to over-fit the dataset. Com-

replacer™ with »— in Alg. 1. pared with previous method ] of boosting first-order and
second-order features, we do not constrain the order of the

5. |ntegration of AND and OR Patterns AND/OR. It relies on data mining method to find good co-
occurrences.

The singleF* discovered via data mining yields the min-
imum empirical error, nevertheless, it may not be a good )
classifier individually. For example, if the target classha 6. Experiments
a multi-mode distribution, rather than relying on a single  To demonstrate the advantages of discriminative co-
F* (e.g. a decision node), it is desirable to have a set occurrence patterns, we apply the proposed method to 3
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Table 1. Selected results of the pair-wise discriminativalysis. The top 5 examples are the pairs that are difficuligcriminate based on
the attributesi.e., with largest testing errors. The next 10 examples are thie fheat can be easily distinguished. '+’ denotes thattaite

appears; -’ denotes it does not. We highlight the testimgref it is not larger than training error.

objects train/ test err discriminative AND
bottle v.s. pottedplant 0.490 /0.473 -Occluded
catv.s. dog 0.418/0.467 -Occluded+Tail+Head +Ear+Foot/Shoe
dog v.s. cat 0.427/0.439 +Leg
chair v.s. pottedplant] 0.308/0.431 +Occluded
chair v.s. bottle 0.320/0.420 +Occluded
train v.s. person 0.000/0.003 -Occluded-Head-Ear -Eye-Torso-Leg -Foot/Shoe+Metal
bicycle v.s. person | 0.003/0.003 -Head-Ear-Eye-Torso -Leg-Foot/Shoe+Metal
horse v.s. person | 0.004 /0.004 +Furry
COW V.S. person 0.003/0.004 +Furry
aeroplane v.s. person 0.002 /0.005 -Head-Ear-Eye-Torso -Leg-Foot/Shoe+Metal
motorbike v.s. persor] 0.002/0.006 -Head-Ear-Eye-Torso-Leg-Foot/Shoe+Metal
cat v.s. person 0.002 /0.006 +Furry
dog v.s. person 0.005/0.007 +Furry
pottedplant v.s. sheep 0.029 /0.009 -Tail-Head-Ear -Snout-Eye-Torso -Leg-Foot/Shoe
pottedplant v.s. train| 0.000/0.013 | -3D Boxy-Window -Wheel-Door-Headlight -Taillight-Exhau-Metal-Shiny

different tasks. Specifically, we conduct discriminatiie 0 AND pattern that predicts for thi;, category (the positive
ject category analysis on the PASCAL VOC 2008 dataset, class). Similarlye(j, ) is the testing error of the AND for
scene recognition on the 15-scene dataset, and actionrrecodhe j,;, category. Due to the duality between AND and OR,
nition on the KTH dataset. All of these experiments vali- ¢(j, ) is also the testing error of the OR pattern predicting
date the effectiveness and efficiency of mining discrimina- for thei,, category. As a result, the pair-wise analysis is not
tive AND/OR patterns. symmetric since(i, j) # e(j,1).
S ) ) Among the 380 pair-wise analysis, only 5 pairs can find a
6.1. Discriminative analysis between object cate- perfect discriminative co-occurrence pattern with zeantr
gories ing error. It validates that the training data is noisy. This
To evaluate the discriminative ability of the discovered is not surprising because the learned attributes are net per
AND/OR classifier, we test our method on an attribute fect. The mean training error among the 380 paifsi814,
dataset provided ir/]. With the purpose to describe, com- while the mean testing error §51126. This result validates
pare, and categorize objects, this dataset provides 64 atthe good generalization ability of the AND/OR classifiers.
tribute labels for the PASCAL VOC 2008 trainval set of In Table1, we list the top 5 most difficult pairs, as well
roughly 12,000 images in 20 categories. Learned from theas the top 10 easiest pairs, ranked by their testing errces. W
raw image features, each image is described by 64 binarynhotice that unreliable attributes (based on the measuremen
visual attributes. Following its experimental settingtaa in [4]), such as ‘occluded’, appear more often in the difficult
tal of 6340 images are used for training and anotigs5  pairs. On the other hand, reliable attributes appear mere of
images are used for testing. ten in easy pairs, such as ‘metal’ and ‘furry’. Although we
Given two categories of objects, our task is to discover do not provide the classification results of the 20 categorie
discriminative co-occurrence attributes for classifizadi the pair-wise discriminative analysis provides a guidasfce
For each of the 20 categories, we compare it to the rest 19bjects that can be easily confused. For example, to better
categories for discriminative analysis. In total we havé 38 distinguish cat and dog, bottle and potted plant, more reli-
individual pairs of object categories. For each pair of ob- aple attributes should be introduced.
jects, we treat one object as the positive class and the other
as the negative class.The minimum error is set to 0.3. 6.2. Boosting co-occurrence patterns for scene
If the error of the optimal AND/OR is lower thai3, it recognition
ensures to find the optimal AND/OR combination. Given  We also evaluate the effectiveness of the AND and OR
a pair of objects, we discard the attributes that never ap-co-occurrence patterns for scene recognition on the 15-
pear in both classes and perform data mining on the restscene category dataset and improve the state-of-the-art re
of attributes. An optimal AND classifier from the training sults. The 15 scene category dataset was collected gradu-
samples is discovered for each pair, and the correspondinglly by several research groupsl[ 5, 17] and it consists
testing error is presented in Fig. Each element(i, j) of of a variety of indoor and outdoor scendmdroom livin-
the matrix in Fig.2 is the testing error, which evaluates the groom suburh industrial, kitchen coast forest highway
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Figure 2. Pair-wise discriminative analysis based on ieféwvisual attributes. Each element shows the testing @rroiassifying two
object categories:(7, j) ande(j, ¢) are the testing errors of the OR and AND patterns, respéygtiiee the j;, category.

inside city mountain open countrystreet tall building, of- than merely using the single features. As shown in Table
fice, andstore Each scene category includes 216 to 410 1, the boosting with co-occurrence AND/OR patterns from
images with resolution aroursd)0 x 250. LCC codes achieves comparable performance to the state-

We investigate two recent features for scene recognition:0f-the-art methods.
(1) a holistic feature—CENTRIST2f], and (2) a local de- We further explore the AND/OR patterns from both the
scriptor based feature—linear coordinate coding (LGE).[] =~ CENTRIST and LCC codes, and train the boosting clas-
For the CENTRIST feature, we follow the standard setting Sifiers using Alg. 2. Now an AND/OR feature can be a
in [25]. Each image is partitioned into 25 blocks (level 2), combination of both CENTRIST and LCC features, thus
5 blocks (level 1), and 1 block (level 0), respectively. Afte is likely to be more discriminative than individual fea-
using the principal component analysis to reduce the dimen-tures. The combination of these two complimentary fea-
sionality of CENTRIST to 40, each scene image results in atures shows excellent description power for the scene im-
1240-dimensional feature. For the LCC feature, we calcu- ages. As shown in Tabl® the boosting with co-occurrence
late the dense SIFTL[] features every 8 pixels with 4 patch  AND/OR patterns further improves the state-of-the-art re-
sizes,.e, 7 x 7,16 x 16, 25 x 25, and31 x 31, to learn a sults, from83.9% to 87.8%. Comparing to the boosting
4096-dimensional codebook using clustering, which is usedof individual features from the CENTRIST+LCC pool, we
in the linear coordinate coding to encode the textural char-also observe a 1.9% improvement when boositng AND/OR
acteristics of images. Following the idea of the spatiabpyr ~features, fron85.9% to 87.8%. This further validates the
mid matching (SPM)17], we partition animage to 10 cells, effectiveness of boosting higher order features. The confu
i.e, 1 x 1 and3 x 3, to delineate the spatial layout, where sion matrix of the proposed method is presented in Fig.
the LCC codes of each cell are concatenated. Thus, each The training time of our method is determined by the
scene image is represented by a 40960-dimensional featurenumber of training samples, the feature dimensionalitgt, an
Combining both CENTRIST and LCC features, each image the mining step of the AND and OR patterns. As the fea-
has in total 40960 + 1240 = 42200 features. ture dimensionality is 42200 and the number of training

In the first experiment, we discover the AND/OR fea- Samples is 1500, it costs around 4-5 seconds to mine one
tures only from the LCC codes to train the boosting classi- CO-occurrence pattern, on a laptop with a CPU Core 2 Duo
fiers (Alg. 2), and compare it with the linear SVM classi- 2:6GHz. Considering both AND and OR patterns, it takes
fiers and the boosting classifiers with single features. Fol-about 9-10 seconds to select one composite feature. How-

lowing the same test protocol i, 25, we use 100 im-  €Vver, the classification is very efficient just like the camve

ages in each category for training and the rest of the im-tional boosting classifiers.

ages for testing. The proposed algorithm achieves the aver-

age recognition accuracy 83.7%, which improves over the 6.3. Boosting co-occurrence patterns for action
boosting with single features by about 1.7%. The improve- recognition

ment boils down to the capacity of the compositional pat- We apply the proposed boosting algorithm with co-
terns to delineate more sophisticated decision boundarieoccurrence patterns (Al@) to the action recognition task
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[Method |Avg. accuracy »

Boxing B ; Handclappingl )
SPM + SIFT with 400 clustersif] 81.4% o 00 T aposonaMaarfeatires |~ Compostonl Haar feaures
SPM + SIFT Wlth 400 Conceptiﬂ] 83.3% é Single Haar feature only § 05 Single Haar feature only
SP-pLSA + SIFT with 1200 topics] 83.7%
CENTRIST+ RBF SVM P 83.9% £ £ o
LCC+Linear SVM 80'7% 0 20 40 60 80 100 120 140 160 0'00 10 20 30 40 50 60 70
LCC+BOOSt|ng 82 0% # of weak classifiers # of weak classifiers
LCC+BOOSt|ng (AND/OR) 837% "0 Handwaving o Joggincg tional Haar feat
. _ iti —— Compositional Haar features
CENTRIST+LCC+Boosting 85.9% o 08 (AN Haar foatures g 08 (ANDIOR)
. s Single Haar feature only s —— Single Haar feature only
CENTRIST+LCC+Boosting (AND/OR) 87.8% g oo 2 os
Table 2. Comparison of the average recognition accuracyhen t 8 o4 S o4
15-scene category dataset. g o2 g o2
000 10 20 30 40 50 60 70 0'00 100 200 300 400 500 600
# of weak classifiers # of weak classifiers
bedroom 00 0o 050 0 o0 o0 05 05] 107 Running 197 Waking
livingroom 0O 0O 16 0 0 05 05 3.7 1.6- 08 ((::n‘gfgig‘)’"al Haar features og| — Compositional Haar features
suburb 00 0 0 0 0O 0 0 0 A - g (AND/OR)
industrial 0 0 050 0 10 28 0 100| 2 os Sigle Haar feature only § 06 Single Haar feature only
:gx:;ten g. 0o 0 o0 0 . 8o £
3 3
forest 0 0 0 O ﬁ 02 E'@ 02
highway 0 06 06 0
insidecily o 0 24 14 DD0 50 100 150 200 250 000 50 100 150 200
mountain [0 0 04 0 # of weak classifiers # of weak classifiers
opencountry0 0 07 0 . . . . .
street o o o 10 Figure 5. For the s1 scenario, false positive rates in mgirthe
aiodldng 19 %6 0 27 boosting classifiers using single Haar features arsyusing the
store lo, 05 0, 37 7. ‘ . ) compositional Haar features as well.
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00’&14\@0 6&\(\&9‘ & &7 & (_\é«\\(\é\éo 6\0\9000\» a\‘\\‘)%

boosting classifier using decision stumps of single Haar fea
tures (denoted bB-stump} and (2) a boosted 4-node de-
cision tree classifier based on Haar features (denotdg by
treeg. In our method, we treat the Haar features as weak
learners and discover the AND and OR patterns from bi-
nary Haar features. During the boosting procedure, when
the false positive rate decreases less thare— by adding
a single Haar feature, we switch to add AND/OR patterns.
We specify the desired detection rate to be 0.99 and false
on the benchmark KTH dataset. The KTH dataset was firstpositive rate 0.005 in training, which can derive the mini-
recorded for 3] and includes 6 types of actionisox, clap, mum errore in Alg. 1. The size of® in Alg. 2 is around
wave jog, run, andwalk. There are 25 subjects perform- several thousands. We observe that the false positive rates
ing these actions under 4 different scenes: outdoors (s1)drop faster when compositional features are employed, as
outdoor with scale variations (s2), outdoors with diffédren shown in Fig5. For an example, fgog if only using single
clothes (s3), and indoors (s4). In total, there are 2391 se-Haar features, the training requires a selection of 575 weak
quences with image resolutid0 x 120. Sample frames classifiers to reach a false positive rate of 0.005. In con-
are illustrated in Fig4. trast, when using the co-occurrence features, it only needs
We apply the same features ind] to recognize the ac- 82 Haar features. Even though there may be multiple Haar
tions. The candidate regions are first located by human defeatures in an ANR/OR pattern, the number of total Haar
tection and tracking. For each detected human, an enlargedeatures is actually fewer, as shown in TaBl& herefore, it
region around the tracked head is cropped in the so calledbrings less computation at the testing stage. In the boosted
motion edge history images (MEHIP{]. Then, a large  decision tree classifier, we enforce it to have the same total
number of 2D Haar features are extracted to train classi-number of Haar features as our method for fair compari-
fiers for each action category. We perform a 5-fold cross- son. To test the generalization ability, we perform a 5-fold
validation to evaluate the performance, where the seqgencecross validation for each scene and the results are listed in
of 20 persons are used in training and those of the other 5Table4. By incorporating the compositional AND and OR
persons for testing. features, the average testing accuracy is improved by about
Our approach is compared against two methods: (1) a3% over the method in76)].

Figure 4. Sample frames of 6 action categories in the KT Hsddta
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|# of Haar features box clap wave jog run walk

(6]
# of Haar (AND/OR) 71 46 24 113 105 7p ;
# of Haar (dec. stump) 152 67 61 575 243 214 7
Table 3. The comparison of the number of Haar features: bpst (8]
decision stumps + AND/OR v.s. boosting decision stumps.only 9]
(0]
|Scene B-stumps B-trees Outs

ST 73.9% 73.5%/7.03% (]

s2 71.0% 70.3%73.98%
s3  73.6% 73.1%77.48% (2

s4 78.9% 79.3%30.80%
Scene B-stumps B-trees Ouls [13]

sl 83.7% 85.3%87.83%
s2 84.4% 85.5%87.05% [14]
s3 82.6% 84.5%86.89% [15]

s4  92.4% 93.6%94.36%

Table 4. The average recognition accuracy of a 5-fold cross- [16]
validation on the KTH dataset: per-frame results (up); wdeo
segment results (bottom). [17
[18]

7. Conclusions [19]

We present a data mining approach to discovering dis-
criminative co-occurrence patterns for visual recognitio
The complementary AND and OR patterns are elaborated,
as well as the derivation of the necessary condition in [21]
identifying discriminative patterns (both AND and OR).
Based on the necessary condition, the proposed data mint?
ing based method is capable to efficiently find the optimal
co-occurrence pattern with the minimum empirical error,
despite the exponentially large search space and the noisy
training data. The versatile experiments on object, scene[24
and action recognition validate the advantages of the dis-
covered AND and OR patterns.

[23]
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