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Abstract

We propose a novel algorithm for video event detection
and localization as the optimal path discovery problem in
spatio-temporal video space. By finding the optimal spatio-
temporal path, our method not only detects the starting and
ending points of the event, but also accurately locates it in
each video frame. Moreover, our method is robust to the
scale and intra-class variations of the event, as well as false
and missed local detections, therefore improves the overall
detection and localization accuracy. The proposed search
algorithm obtains the global optimal solution with proven
lowest computational complexity. Experiments on realistic
video datasets demonstrate that our proposed method can
be applied to different types of event detection tasks, such
as abnormal event detection and walking pedestrian detec-
tion.

1. Introduction

Sliding window-based approaches have been quite suc-
cessful in searching objects in images, such as face and
pedestrian detections [12, 19]. However, its extension to
searching for spatio-temporal sliding windows in videos
remains a challenging problem. Although several meth-
ods have been proposed recently [11, 22] to search spatio-
temporal video patterns with applications like video event
and human action detection, they are confronted with two
unsolved problems.

First, most of the current spatio-temporal sliding win-
dow search methods only support sliding windows of con-
strained structure, i.e., the 3-dimensional (3D) bounding
box. Unfortunately, unlike object detection where a bound-
ing box works reasonably well in many applications, the
3D bounding box is quite limiting for video pattern detec-
tion. To illustrate this, Figure la shows a cycling event.
The cyclist starts at the left side of the screen and rides to
the right side of the screen. To detect this event, because of
the bounding box constraint, one can only locate the whole
event using a large video subvolume, which covers not only
the cycling event, but also a significantly large portion of the
backgrounds (Figure 1a). In such a case, the detection score
of the video event is negatively affected by the cluttered and
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a) b)
Figure 1. Detection of the cycling event a) Event localization by
3-dimensional bounding box. b) More accurate spatio-temporal
localization of the event.

dynamic backgrounds. Instead of providing a global bound-
ing box that covers the whole event, more often than not, it
is preferable to provide an accurate spatial location of the
video event and track it in each frame. As a result, a more
accurate spatio-temporal localization is desirable to detect
the video event, as shown in Figure 1b.

Moreover, as the video space is much larger than the im-
age space, it becomes very time consuming to search 3D
sliding windows. For example, given a video sequence of
size w X h X n, where w X h is the spatial size and n
is its length, the total number of 3D bounding boxes is of
O(w?h?n?), which is much larger compared with the im-
age space of only O(w?h?) 2D boxes. Although some re-
cent methods have been proposed to handle the large video
space [22], the worst case complexity is still of O(w?h?n).
In general, it is challenging to search videos of high spa-
tial resolutions. Even worse, if we relax the bounding box
constraint of the sliding windows, the number of candidates
will further increase. Thus a more efficient search method
is required.

To address the above problems, we propose a novel
spatio-temporal localization method which relaxes the 3D
bounding box constraint and formulates the video event de-
tection as a spatio-temporal path discovery problem. Sup-
pose a discriminative classifier can assign a local detec-
tion score to every 2D sliding window in each frame. To
fuse these local evidences and connect them to establish
a spatio-temporal path, we build a spatio-temporal trellis
which presents all of smooth spatio-temporal paths, where
a target event will correspond to one of them. By finding the
optimal path in the trellis with the highest detection score,



our formulation is a generalization of the 3D bounding box
search in [22]: we do not reinforce the fixed spatial location
of the video event, but track the event as it moves across
multiple frames. Because the discovered path precisely con-
tains the video event, it minimizes the affection of the clut-
tered and dynamic backgrounds.

Although the search space of our new formulation is
much larger than searching 3D bounding boxes, we propose
an efficient search method that can obtain the global opti-
mal solution with proven lowest search complexity, which
is only linear to the video volume size, i.e. O(whn). Ex-
periments on abnormal video event detection and walking
pedestrian detection validate the following advantages of
our new formulation of video event detection:

1. By discovering the optimal spatio-temporal path, our
method determines the start and the end of the video
event automatically, and can precisely localize the
event in each video frame. It is robust to the false
and missed local detections, thus can effectively han-
dle heavy occlusions;

As both positive and negative training examples are
utilized for a discriminative training, our method is ro-
bust to intra-class variations of the video events and the
cluttered and dynamic backgrounds;

Our proposed method can be easily extended to han-
dle spatial scale variations of the event, and can detect
multiple events simultaneously.

1.1. Previous Work

Video event detection is an important topic in computer
vision, with extensive applications in video surveillance,
content-based video search, multimedia retrieval, etc. The
later two have seen increasing demands due to the explod-
ing number of internet videos (e.g. YouTube). At the same
time, the problem becomes more challenging when dealing
with realistic videos because of intra-class variations, com-
plex background motions, scale changes, and occlusions,
not to mention the high dimensional search space inherent
to videos.

One traditional approach for event detection is to track
the actors, stabilize these figures, and then recognize them
[7]. Such methods highly rely on the quality of the tracking
results, hence suffer from unreliable trackers. This limi-
tation motivates methods that handle detection and recog-
nition simultaneously, normally accomplished by spatio-
temporal video volume matching, including action-MACH
[16], volumetric features [11], segment-based features [10],
spacetime orientation [5], etc. To localize events, these
methods have to apply the sliding subvolume scheme which
is ineffective and time-consuming. Rather than sliding
subvolume, Boiman and Irani [1] proposed ensembles of
patches to detect irregularities in images and videos. Hu
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et al used multiple-instance learning to localize the best
video subvolume [8]. Recently, with the success of branch-
and-bound subwindow search [12], Yuan et al extended this
method to subvolume search [22] with some speed improve-
ments. However, these approaches are still constrained by
the 3D subvolume. Finally, Zhang et al [24] relaxed the
subwindow rectangle constraint to free-shape subwindow
search based on contour refinement. This approach works
well for object localization but is still difficult to extend to
video search due to its complexity.

Our approach also shares some properties with tracking-
by-detection methods [2, 14, 18]. These methods had
shown their effectiveness compared to traditional tracking
methods thanks to the success of object detectors. Similarly,
our approach considers joining detection outputs to max-
imize the discriminative scores while keeping the smooth-
ness of the movement trajectories. In contrary, our proposed
method is not limited to object detectors, but can be also
applied to more general discriminative confidence maps of
event, action, motion, or keypoint detectors. This flexibil-
ity makes it more general, and thus applicable to a broader
range of video event detection problems. To our best knowl-
edge, our Maximum Path algorithm is novel to video event
detection and proven to be globally optimal with the lowest
computational complexity. Interestingly, this problem has
not been discussed in discrete algorithm literature although
the Maximum Subarray problem had been raised and solved
long time ago [9].

2. Problem Formulation

We denote a video sequence as S = {I1, Is,..., I},
where I}, is a w X h image frame. Treating the video as a
spatio-temporal data volume, for each spatio-temporal lo-
cation v = (x,y,t), we denote by W (v) the local window
or subvolume centered at v. Without loss of generality, we
suppose all of the windows are of a fixed scale, we further
denote by M (W (v)), or M (v) for short, the discriminative
score of the local window centered at v. A high positive
score of M (v) implies a high likelihood that the event oc-
curs at the local position v, while a negative score indicates
a low likelihood of the occurrence. There are many ways
to obtain the score M (v) using different types of features.
For example, one can use the 2D window [3, 20] to slide
over the video sequence and get the local scores of each
window. Alternatively, individual spatio-temporal interest
points [6, 13] can vote for the video event [22], then the
score of a local window is the summation of the interest
point scores.

By treating each window W (v) as a node, we obtain a 3-
dimensional trellis to represent all W (v) in the video. Given
a 3D trellis Gy; with a size of w X h X n, p = {vi};}’;il is
a path in Gy if it satisfies (1) the path connectivity con-
straints: ©; — 1 <z <z + 1Ly — 1 <y <y +1,



ti+1 = t;+1 and (2) the boundary constraints: 1 < x; < w,
1 <y; <h,and1 < ¢;; <t;, <n. The first constraint
set shows that each node v = (z,y, ¢) has 9 incoming and
9 outgoing neighbors as showed in Figure 2a. The second
constraint set indicates that the path can start and end at any
position in the 3D array as long as the ending point occurs
later than the starting point. Let p = {v;};*,; be a path in
G, to evaluate its likelihood, we compute the accumulated
score of the path p in Eq. 1.

6]

As each video event is characterized by a smooth spatio-
temporal path in the 3D trellis, to detect the video event,
the problem becomes to find the optimal path p* with the
highest accumulated score:

argmax M (p)
pEpath(G)

Pt = 2)

Solving the Maximum Path problem is difficult (Fig-
ure 2b) because of the large search space: we do not
know the start location (xs,ys,ts) or the end location
(Ze, Ye, te) of the event, as well as all of the intermediate
states. The search space of all possible paths is exponen-
tial: O(whnk™), where whn is the size of the video vol-
ume, k is the number of incoming edges per node. Thus
exhaustive search is infeasible. Although the maximum
path problem can be addressed by the traditional shortest
path search algorithm, e.g., the Floyd-Warshall algorithm
to find the shortest paths between all pairs of vertices, the
search complexity is still quite high. The complexity of the
Floyd-Warshall algorithm is to the cube of the number of
vertices O(|V|?). Thus, it becomes O(w3h3n?) to solve
Eq. 2, which is very time consuming for a large video vol-
ume. Other related work includes the Maximum Subarray
problem which was posed by Ulf Grenander in 1977 and the
1D case was solved by Jay Kadane in 1984 [9]. Although
it works perfect for the 1D trellis [23], the problem is more
complicated with higher dimension, e.g., for our 3D trellis.
Although the branch-and-bound search has proven to be ef-
ficient in searching 2D and 3D bounding boxes [12, 22],
they cannot be applied to more flexible structures. To pro-
pose an efficient search that can find the global solution in
Eq. 2, we firstly present an approach based on dynamic pro-
gramming, followed by our proposed search method with
proven lowest complexity.

3. Optimal Path Discovery

3.1. Efficient Max-Path Search via Dynamic Pro-
gramming

Before addressing the Max-Path discovery problem, we
first study a simplified version of the problem. We assume
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Figure 2. Maximum Path problem a) 9 incoming and 9 outgo-
ing neighbors for a node in Gys. b) The visualization of one path.
Searching for the maximum path in spatio-temporal space is diffi-
cult due to an exponential number of possible paths with arbitrary
lengths.

that the best path starts somewhere in the first frame and
ends at the last frame. The following dynamic programming
algorithm will find the best path.

Let S; ; ¢ be the maximum accumulated score of the best
path starting somewhere from the first frame and leading to
(i, ,t). For short, we denote u = (i, ) and v = (z,y) are
2D indices (e.g. S;j,+ = Su,). We note that these notions
are slightly different from the previous section where v is
a 3D index. And N (u) is the set of neighbors of u in the
previous frame. Eq. 3 gives a solution for the Max-Path
search problem.

g . { My, t=1

ut = maXveN(u){S«U,t_l + Mu,t}7 t>1.

This dynamic programming can be completed in
O(whn) to compute S, another O(n) to trace backward to
identify the best path, and uses O(whn) memory space.

However, to automatically determine the starting and
ending locations of the paths, we need to try different
combinations and perform the dynamic programming many
times. To improve this, let S,, ; s be the accumulated scores

of the best path starting from the s-th frame to the end loca-
tion (u,t). S can be computed by Eq. 4.

3)

—00, s>t
Su7t,s = My, s=1
maXveN(u){Sv,t—l,s + Mu,t}7 s <t.

“)

Different from the previous dynamic programming in
computing the matrix S, this new algorithm stores all possi-
ble solutions from all starting frames. When .S is computed,
the algorithm traces back for the best solution with all pos-
sible starting and ending points. This extension makes
the complexity of the extended-algorithm O(whn?) to con-
struct S and another O(n) to search the best path, and needs
O(whn?) memory. Taking the advantage of the trellis struc-
ture, the search complexity now is reduced to linear to the
volume size times the length of the video. Based on this
result, we will show how to further improve the search to
reach the lowest complexity in the next section.



Input: M (u,t): the local discriminative scores;
Output: S(u,t): the accumulated scores of the best
path leads to (u, t);
P(u,t): the best path record for tracing back;
S* : the accumulated score of the best path;
[* : the ending location of the best path;
begin
S(u,1) = M(u,1),Vu;
P(u,t) = null, V(u,t);
S* = —o0;
[* = null;
for i < 2tondo
foreach u € [1..w] x [1..h] do
Vo 4= Argmax, e y(y) S(v,i — 1);
if S(vg,i — 1) > 0 then
S(u,i) < S(vo, i — 1) + M(u,i);
P(u,i) + (v, — 1);
else
| S(u,i) < M(u,i);
end
if S(u,i) > S* then
S*  S(u,i);
I* + (u,1);

end

end
end

end

Algorithm 1: Message forwarding algorithm

3.2. Our Proposed Max-Path Discovery

We now propose a new algorithm with message passing
mechanism for the Max-Path discovery problem, with the
complexity of only O(whn). The algorithm consists of two
steps: message forwarding and path back-tracing. The Al-
gorithm 1 shows the message forwarding process. Follow-
ing the notations, let M (z,y,t) be the output predictions
of the video. The message passing starts at ¢ = 1, then
propagates the information from the current frame to the
next. Each node needs to store a message value S(z,y,t),
which is the maximum accumulated score of the best possi-
ble path up to (z,y,t). P(x,y,t) is the previous node that
leads to (x, y, t) in the best possible path. These values can
be computed by collecting information from each node’s
neighbors and its local value M (x,y,t). When the mes-
sage reaches a node, the algorithm looks for the best value
S of its neighbors from the previous frame. If this value is
positive, then the path continues to grow from existing best
path and stores the accumulated score and the previous po-
sition. Otherwise, the algorithm starts a new path from the
current position. Figure 3 illustrates a concrete example of
the algorithm.

3324

Figure 3. A message passing example: an example of Max-Path
algorithm applied to a 3 X 3 x 4 video. Each node is denoted
with a local discriminative score (upper number), and the best ac-
cumulated score (lower number). In the first frame, all the best
accumulated scores are initialized by their corresponding local
discriminative scores. In the second frame, B can grow further
from A which has the best accumulated score among B’s neigh-
bors (shaded nodes), while C needs to start a new path. The final
best path is A-B-D (red nodes), and C-E-F is the second best path
(green nodes).

Lemma 1. S(x,y,t) resulted from Algorithm 1 is the
accumulated sum of the best path that leads to (x,y, t).

Lemma 1 confirms the correctness of Algorithm 1. The
formal proof of Lemma 1 is provided in the appendix. Algo-
rithm 1 will result in the best path value S* and the ending
point of the best path [*. The localization of the best path
is straightforward by looking at the values stored in P and
tracing back until reaching a null node. Overall, it takes
O(whn) to compute S, O(n) to trace back the path, and
uses O(whn) memory to store S and P. The algorithm
gives exactly the same results as the dynamic programming
algorithm but reduces both computational and storage re-
quirement.

As the size of the trellis is w x h X n, and one cannot
find the maximum path sum without reading every element,
O(whn) is the lowest complexity we can expect. Together
with Lemma 1, we thus have the following theorem.

Theorem 1. Algorithm 1 results in the global optimal
solution with a complexity of O(whn), which is the lowest
complexity of the Max-Path problem.

3.3. Further Extensions of the Algorithm

Handling Multiple Scales: when the events appear
across a wide range of scales, we can extend the sliding win-
dow scheme to multiple scales. Instead of sliding a fixed-
scale window, at the same location v, one can use windows
W (v) with different scales. As a result, since each node
is coupled with multiple windows with different scales, the
trellis Gs becomes a 4D array with a size of w x h X m xn
(m is the number of scales). The problem is now posed in
4D, but still can be solved by the same algorithm 1. One
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difference is that the trellis is changed because each node
now has neighbors not only from its same scale but also
from its two nearest scales. More specifically, if a node has
up to 9 neighbors for the single scale setting, it now may
have 27 neighbors including 9 from its same scale and two
other 9s from its two adjacent scales. In general, the algo-
rithm’s complexity and space cost will both be increased to
O(whmn).

Discovery of Multiple Paths: similar to non-maximum
suppression or branch-and-bound [12, 22], this algorithm
can also be applied repeatedly to locate multiple instances.
After obtaining p*, one can remove it from M and restart
the process to search for the next best max-path.

Moving Speed Adaptation: one can instead use a larger
neighborhood region to accommodate fast motions of the
event. Edges of neighbors can be weighted by a Gaussian
mask to control the smoothness of the spacial movement.

4. Application 1: Anomaly Event Detection

Datasets: we use UCSD abnormal event detection
dataset [15] for evaluation. The dataset consists of two sec-
tions of two different scenarios. We use section 2, which
consists of 16 training and 12 test sequences. Each se-
quence has about 180 frames. The training videos capture
only normal motions of walking crowd, while the testing
ones have abnormal motions such as bikers, skaters, and
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Figure 4. Abnormal event detection: demonstration of abnormal event detection. The odd rows are confidence maps, even rows are
localization results. The results of subvolume search [22] are visualized in green boxes; the results of Max-Path search are in red; and

groundtruth is in dashed-black. The subvolume search covers a large portion of the video. Max-Path locates events more accurately by
relaxing the constraint, and it can automatically discover the starting and ending points of events.

small carts. Only 8 of 12 testing sequences are provided
with pixel-level binary mask groundtruth. As our target is
to discover and to locate the events, only sequences with
pixel-level groundtruth are evaluated.

Training: we firstly extract features at locations with
notable motions in the training dataset, because abnormal
events cannot happen without movements. The features
we used are Histogram of Oriented Gradients (HOG) [3]
and Histogram of Oriented Flows (HOF) [4] with 16 x 16
patches. Feature quantization is then performed using k-
means clustering. These cluster centers are used as code-
words.

Testing: on testing, at any location with motions, we
compute features and the distance to its nearest codeword.
These distances are then used as prediction values for the lo-
cal pixels. A great distance implies a high likelihood of be-
ing abnormal. The pixels with no motion are assigned zero
distances. To introduce negative values, we subtract these
distances by a threshold. This distance map is now a 3D
array of positive and negative scores which can be passed
to the subvolume search [22] for event localization. For our
approach, we assume that the abnormal events will occur
across m different scales (e.g. di..d,,). We use integral
image [19] to compute the sum scores of different scales lo-
cal windows (e.g. squares with d;-long sides) at each frame.
This process results in a 4D discriminative score map which
is then inputted to our Max-Path algorithm to discover ab-



Subvolume[22] | Our Max-Path
23.98 60.20
Table 1. Abnormal event localization results. Our Max-Path al-

gorithm significantly improves the localization accuracy over sub-
volume search [22] thanks to the constraint relaxation.

Algorithm
Average Accuracy

normal events.

Results: for evaluations, we build the groundtruth by
drawing bounding boxes around the provided masks of ab-
normal events. We use PASCAL metric (e.g. the overlapped
area divided by the union of predicted and groundtruth
boxes) to evaluate the localization accuracy. At every
frame, if both prediction and groundtruth are positive, then
the PASCAL metric is applied to compute the localization
score. If both of them are negative, then the score is as-
signed 1, otherwise 0. Table 1 shows the average accuracy
of abnormal event detection and localization. Our Max-
Path algorithm significantly outperforms subvolume search
more than 35% as a result of relaxing the 3D bounding box
constraint. Figure 4 compares the results of our Max-Path
search and the subvolume search [22]. The first two rows
are from a relatively simple sequence while the last two
rows are from a more difficult one with noisy motions of the
walking crowd. In both cases, subvolume search predicts
large volumes covering most of the video. Even though
with a very noisy confidence map, our Max-Path search can
locate events accurately. This is true because the false pos-
itives appear randomly at inconsistent spacial locations. In
the long run, their accumulated scores cannot compete with
those of the true event paths. On the other hand, the short-
run missed or weak detections caused by occlusions can be
resolved and linked to the main path as long as the final
score can be further improved after the drops. Finally, ex-
perimental results showed that Max-Path search can auto-
matically discover the starting and ending points of events.

5. Application 2: Walking Person Localization

Datasets: we use two datasets, TUD-MotionPairs [21]
for training and our YouTube Walking for testing. TUD-
MotionPairs is a fully annotated dataset containing image
pairs of outdoor walking pedestrians for evaluating pedes-
trian detection algorithms that employ motion information.
These image pairs include 1092 positive pairs, 192 negative
pairs, and 26 additional negative pairs for further bootstrap-
ping training. Our Walking dataset contains 2 long video se-
quences (800-900 frames per sequence) and 25 short video
sequences (100-150 frames per sequence) downloaded from
YouTube making a total of 4083 annotated bounding boxes.
These videos are real-world sequences including outdoor
walking and indoor fashion shows of catwalk models. The
sequences are very challenging due to their low quality with
compression artifacts, appearing in crowded scenes, many
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Figure 5. Our walking dataset: 27 realistic video sequences
downloaded from YouTube. The two upper rows are snapshots
of outdoor sequences. The two lower rows are those from indoor
fashion shows. These realistic videos are at low quality, captured
in crowded scenes with occlusions and complex background mo-
tions.

= .

partly and fully occlusions, significant scale changes, differ-
ent lighting conditions, noisy background motions, camera
shaking motions (Figure 5).

Training a walker detector: we use a global repre-
sentation of pedestrian by HOG [3], HOF (more specifi-
cally IMHd2), and simple Self-Similarity [20]. These fea-
tures are then trained on a linear SVM with one more ad-
ditional bootstrapping round on hard negative set of TUD-
MotionPairs.

Walking localization algorithms: we slide the trained
detector over the test sequence at multiple scales. The slid-
ing process results in a 4D output prediction map, which
is then passed to a localization algorithm to process. This
map does often contain false positives and missed detec-
tions due to the imperfect base detector. For quantitative
evaluations, we implement two baseline algorithms to lo-
cate walking. The first one is to simply choose the maxi-
mum detection score at every frame over all scales. It is ac-
tually a variant of non-maximum suppression, and it is more
reasonable than non-maximum suppression provided that
there is one walking person in the sequence. We call this
algorithm greedy-suppression. Another baseline algorithm
is the spatiotemporal smoothing which is straightforwardly
averaging k-consecutive boxes, which are results from the
greedy-suppression algorithm. Besides baseline algorithms,
we also compare our framework to a tracking algorithm.
We use the Incremental Learning Tracking (IL-Tracking)
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Figure 6. Detection and localization results: the plots of localization scores from different algorithms on an outdoor walking sequence
with visualized snapshots. IL-Tracking [17] works only at the beginning, then loses the targets when occlusions occur. Greedy-suppression
and smoothed-version perform poorly due to false positives and missed detections. Max-Path significantly outperforms the other algorithms
with the globally optimized solution. The data points are dropped by ratio 1 : 7 for better representation (best viewed in color).

with the source code provided by Ross ef al[17]. The IL-
Tracking algorithm is initialized by the ground-truth bound-
ing box of the first frame. We note that the IL-Tracking is
not directly comparable to the baselines and our max-path
algorithm, because first it requires initialization and sec-
ond it does not use the prediction map. These algorithms
are then compared to our proposed Max-Path algorithm to
demonstrate the effectiveness and robustness of our algo-
rithm. In this experiment, we use the max-path algorithm
with the multiple-scale extension. The node’s neighbors are
its 9-connected neighbors.

Results: we evaluate the localization accuracy in each
frame by PASCAL metric, and report the average accuracy
in Table 2. We also compare the behaviors of different al-
gorithms on a long outdoor walking sequence in Figure 6.
Our Max-Path algorithm improves 24-27% from the base-
line algorithms. The IL-Tracking algorithm works only for
a short time at the beginning, then loses the targets when
occlusions occur. It works better on some other higher
quality sequences but still loses the targets when partial oc-
clusions present. The greedy-suppression algorithm suffers
from false positives and missed detections. The spatiotem-
poral smoothing cannot make any difference from greedy-
suppression, if not making it worse, due to highly noisy
false detections. Finally, Max-Path algorithm provides sig-
nificant improvements, thanks to its global optimal solution
over all spatiotemporal and scale spaces.

Detecting of multiple walking pedestrians: we col-

Algorithm Average accuracy
[17] Incremental Learning Tracking* 30.30
[20]+Greedy-Suppression 50.11
[20]+Spatiotemporal-Smoothing 47.47
Our Max-Path 73.98

Table 2. Walking localization accuracy. Our Max-Path algo-
rithm improves 24-27% of accuracy compared to the baseline al-
gorithms. *The tracking algorithm is not directly comparable.

lect 2 sequences from YouTube consisting of 672 frames
for evaluating this extension. These realistic sequences are
the television news of the event in which President Barack
Obama was walking into the White House on his inaugu-
ration day. The news videos contain many walking people.
We apply the detector in section 5 with our proposed algo-
rithm repeatedly to find the top & = 5 paths. Results are
shown in Figure 7. It is worth noting that unlike multiple
object tracking, we do not identify different persons due to
the lack of appearance modeling. Instead, we only discover
the top 5 best paths in the video.

6. Conclusions

We have proposed a novel algorithm for event detection
and localization. Our proposed Max-Path discovery algo-
rithm is proven to be very efficient, robust, and has many
potential applications. The benefits of our method are three-
fold. First, its proven lowest complexity makes it possible
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Figure 7. Pedestrian detection in videos: the sequences are challenging due to complex camera and background motions.

to search for the best path over a large 4D search space. Sec-
ond, its global optimal solution guarantees the smoothness
of event throughout the video, hence eliminates the false
positives and alleviates missed or weak detections. Last
but not least, the relaxation from the spatio-temporal sub-
volumes to spatio-temporal paths is more flexible for vari-
ous applications. Our experiments on realistic videos have
demonstrated favorable results.

Appendix: we prove the Lemma 1 here. Let us define
Q(t) £ “S(x,y,t) as the maximum accumulated sum of
the best path leading to (x,y,t)”. We will prove that Q(t)
is true V¢ € [1..n] by induction. We initialize S(z,y,1) =
M(z,y,1),¥(x,y), hence Q(1) is true. Assume that Q(k—
1) is true, we now show Q(k) is also true. If a node u
at frame k has m directly connected neighbors, then there
are m + 1 possible paths leading to it. These paths include
m paths going through its neighbors with an accumulated
scores of S(v, k—1)+ M (u, k),v € N(u) and another one
starting by itself with a score of M (u, k). From Algorithm
1, we have:

vo = argmax S(v, k — 1) 5)
vEN (u)
= S(vg, k—1) > S(v, k—1),Yv € N(u) (6)

= S(vo,k— 1)+ M(u, k) > S(v,k — 1)+ M(u, k),
Yv € N(u)
(N

And also from the Algorithm 1, the If statement for assign-
ing values to .S indicates two cases that

Sty = { Sl )+ M)

S(Uo, k— 1) >0
otherwise.
®)
= S(u, k) = max{S(vo, k—1)+M(u, k), M(u,k)} (9)
From (7) and (9), we have shown that S(u, k) is always the
best accumulated sum compared to all m + 1 paths that can
lead to u. This confirms that Q(k) is true.
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