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Abstract—The recently developed depth sensors, e.g., the Kinect
sensor, have provided new opportunities for human-computer
interaction (HCI). Although great progress has been made by
leveraging the Kinect sensor, e.g., in human body tracking, face
recognition and human action recognition, robust hand gesture
recognition remains an open problem. Compared to the entire
human body, the hand is a smaller object with more complex
articulations and more easily affected by segmentation errors. It
is thus a very challenging problem to recognize hand gestures.
This paper focuses on building a robust part-based hand gesture
recognition system using Kinect sensor. To handle the noisy hand
shapes obtained from the Kinect sensor, we propose a novel dis-
tance metric, Finger-Earth Mover’s Distance (FEMD), to measure
the dissimilarity between hand shapes. As it only matches the
finger parts while not the whole hand, it can better distinguish
the hand gestures of slight differences. The extensive experiments
demonstrate that our hand gesture recognition system is accurate
(a 93.2% mean accuracy on a challenging 10-gesture dataset), ef-
ficient (average 0.0750 s per frame), robust to hand articulations,
distortions and orientation or scale changes, and can work in
uncontrolled environments (cluttered backgrounds and lighting
conditions). The superiority of our system is further demonstrated
in two real-life HCI applications.

Index Terms—Finger-Earth Mover’s Distance, hand gesture
recognition, human-computer interaction, Kinect system.

I. INTRODUCTION

H AND gesture recognition is of great importance for
human-computer interaction (HCI), because of its exten-

sive applications in virtual reality, sign language recognition,
and computer games [4]. Despite lots of previous work, tradi-
tional vision-based hand gesture recognition methods [5]–[7]
are still far from satisfactory for real-life applications. Because
of the nature of optical sensing, the quality of the captured
images is sensitive to lighting conditions and cluttered back-
grounds, thus optical sensor based methods are usually unable
to detect and track the hands robustly, which largely affects the
performance of hand gesture recognition.
To enable a more robust hand gesture recognition, one ef-

fective way is to use other sensors to capture the hand gesture
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Fig. 1. The first two columns illustrate three challenging cases for hand ges-
ture recognition using Kinect sensor, where the first two hands have the same
gesture while the third one confuses the recognition. Using the skeleton repre-
sentation shown in red in the third column [2], the last two hand gestures lead
to very similar skeletons, thus skeleton-based matching algorithm [3] classifies
them as the same gesture. In the last column, the part-based representations are
illustrated. Using the proposed distance metric, Finger-EarthMover’s Distance,
we can classify the first two hands as the same gesture and handle the noisy hand
shapes obtained by Kinect sensor.

and motion, e.g., through the data glove [8]. Unlike optical sen-
sors, such sensors are usually more reliable and are not affected
by lighting conditions or cluttered backgrounds. However, as it
requires the user to wear a data glove and sometimes requires
calibration, it is inconvenient to use and may hinder the natural
articulation of hand gesture. Also, such data gloves are usually
more expensive than optical sensors, e.g., cameras. As a result,
it is not a very popular way for hand gesture recognition.
Thanks to the recent development of inexpensive depth cam-

eras, e.g., the Kinect sensor [9], new opportunities for hand ges-
ture recognition emerge. Instead of wearing a data glove, using
the Kinect sensor can also detect and segment the hands ro-
bustly, thus it provides a valid base for gesture recognition. In
spite of many recent successes in applying the Kinect sensor to
articulated face recognition [10], human body tracking [11] and
human action recognition [12], it is still an open problem to use
Kinect for hand gesture recognition. Due to the low-resolution
of the Kinect depth map, typically, of only 640 480, although
it works well to track a large object, e.g., the human body, it
is difficult to detect and segment a small object from an image
with this resolution, e.g., a human hand which occupies a very
small portion of the image with more complex articulations. In
such a case, the segmentation of the hand is usually inaccurate,
thus may significantly affect the recognition step.
To illustrate the above problem, the first column of Fig. 1

shows three examples. It can be seen that the contours (in the
second column) have significant local distortions in addition to
pose variations. Due to the low resolution and inaccuracy of the
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Fig. 2. The framework of our part-based hand gesture recognition system.

Kinect sensor, the two fingers of the second hand are indistin-
guishable as they are close to each other. Unfortunately, classic
shape recognition methods, such as correspondence-based
shape matching algorithms [13], [14] and skeleton matching
methods [3], [15], cannot robustly recognize shape contour
with severe distortions. For example, as shown in the third
column of Fig. 1, the red skeletons of the last two hands are
very similar. Hence skeleton matching algorithms classify them
as the same gesture [3].
Clearly, recognizing such noisy hand contours is challenging,

especially if there are many hand gestures to recognize. In order
to address this problem, we propose a novel shape distance
metric called Finger-Earth Mover’s Distance (FEMD). FEMD
is specifically designed for hand shapes. As it only matches the
fingers while not the whole hand, it can better handle the noisy
hand shapes obtained by Kinect sensor.
Fig. 2 shows the framework of our hand gesture recognition

system.We use Kinect sensor as the input device which captures
both the color image and its corresponding depth map. With
the help of depth cue, we can detect the user’s hand robustly
to the cluttered backgrounds and lighting conditions. Then, we
represent the hand shape by its finger parts, which is detected
by shape decomposition. Finally, the dissimilarity between the
obtained hand shape and each gesture template is measured by
the proposed distance metric, FEMD, for gesture recognition.
To evaluate our method, we build a new challenging dataset

(containing 1000 cases collected in uncontrolled environments).
Tests on this dataset shows that our hand gesture recognition
system not only operates accurately and efficiently (a mean ac-
curacy of 93.2% in 0.0750 s per frame), but also is robust to
uncontrolled environments and hand gesture variations in ori-
entation, scale, articulation, and shape distortions. We compare
our algorithm with shape contexts [13], and skeleton path sim-
ilarity [3] in Section IV-B4 and show our superiority in hand
gesture recognition. Furthermore, on top of our gesture recog-
nition algorithm, we build two real-life HCI demos to illustrate
the effectiveness of our method in Section V.
The main contributions of this paper are as follows:
• We propose a part-based hand gesture recognition system,
based on a novel distance metric Finger Earth Mover Dis-
tance (FEMD). It is robust to orientation, scale, articula-
tion changes as well as local distortions of hand shapes. To
our best knowledge, this is the first part-based hand gesture
recognition system using Kinect sensor.

• We demonstrate our hand gesture recognition algorithm
in two HCI applications. The proposed system operates
accurately and efficiently in uncontrolled environments. It
is applicable to other HCI applications.

II. RELATED WORK

Many vision-based hand gesture recognition approaches
have been proposed in the literature [16]–[18], see [5]–[7] for
more complete reviews. Vision-based hand gesture recognition
methods can be classified into two categories. The first cate-
gory is Statistics Learning based approaches: For a dynamic
gesture, by treating it as the output of a stochastic process, the
hand gesture recognition can be addressed based on statistical
modeling, such as PCA, HMMs [16], [17], and more advanced
particle filtering [19] and condensation algorithms [20]. The
second category is Rule based approaches: Rule based ap-
proaches propose a set of pre-encoded rules between input
features, which are applicable for both dynamic gestures and
static gestures. When testing an hand gesture, a set of features
are extracted and compared with the encoded rules, the gesture
with the rule that best matches the test input is outputted as the
recognized gesture [18].
Unfortunately, all existing hand gesture recognition methods

have constraints on the user or the environment, which greatly
hinders its widespread use in real-life applications. On one hand,
to infer the pose of the palm and angles of the joints, many
methods use colored markers to extract high-level features, such
as the fingertip, joint locations or some anchor points on the
palm [21]–[24]. On the other hand, some methods proposed to
represent the hand region by edges or an ellipse [25]–[27] using
skin color model. However, a common problem of the methods
in these two categories is the inaccurate hand segmentation:
none of these methods operates well in cluttered environments
due to the sensitivity of colored markers and skin color model
to the background. Besides, a few studies try to first fully re-
construct the 3D hand surfaces [8], [28]–[31]. Even though the
3D data provides valuable information that can handle problems
like self-occlusion, an accurate, real time and robust 3D recon-
struction is still very difficult. Furthermore, the high computa-
tional cost forbids its widespread adoption.
Fortunately, recent development of depth sensors (e.g.,

Kinect sensor) provides a robust solution to hand segmentation.
However, due to the low resolution and inaccuracy of the depth
map, the obtained hand contour can be quite noisy. Classic
shape recognition methods are not robust to severe distortions
in hand shapes. For instance, contour-based recognition ap-
proaches, such as moments, are not robust when the contour
is polluted by local distortions. Skeleton-based recognition
methods [15] also suffer from contour distortions, because even
little noise or slight variations in the contour often severely
perturb the topology of its skeletal representation. Bai et al.
proposed a skeleton pruning method in [3], which makes
skeleton robust to contour noise. However, skeleton-based
methods still cannot deal with the ambiguity problem as shown
in Fig. 1, as the second and the third shape have more similar
skeletons than that of the first and the second shape. As for
the correspondence-based shape recognition methods such
as shape contexts [13] and inner-distance [14], they are not
effective in solving the ambiguity in Fig. 1 either, because the
correspondences of the second and the last hands have more
similar contexts than the first and the second one do.



1112 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 5, AUGUST 2013

Fig. 3. Hand detection. (a) The rough hand segmented by depth thresholding;
(b) A more accurate hand detected with black belt (the green line), the initial
point (the red point) and the center point (the cyan point); (c) Its time-series
curve representation.

III. PART-BASED HAND GESTURE RECOGNITION

Now we introduce our part-based hand gesture recognition
system. Fig. 2 illustrates the framework, which consists of two
major modules: hand detection and hand gesture recognition.

A. Hand Detection

As shown in Fig. 2, we use Kinect sensor as the input device,
which captures the color image and the depth map at 640 480
resolution. Generally the depth information derived fromKinect
sensor is usable but not very accurate in details.
In order to segment the hand shape, firstly we locate the hand

position using the Kinect windows SDK hand tracking func-
tion. Then, by thresholding from the hand position with a certain
depth interval, a rough hand region can be obtained, as shown
in Fig. 3(a). Second, we require the user to wear a black belt
on the gesturing hand’s wrist, in order to more accurately seg-
ment the hand shape. After detecting the black-color pixels, we
use RANSAC to fit a line to locate the black belt, as shown in
Fig. 3(b). The hand shape is generally of 100 100 pixel reso-
lution, with possibly severe distortions.
After detecting the hand shape, we represent it as a time-series

curve, as shown inFig. 3(c). Sucha shape representationhasbeen
successfully used for the classification and clustering of shapes
[32]. The time-series curve records the relative distance between
each contour vertex and a center point.We define the center point
as the point with the maximal distance after Distance Transform
on the shape (the cyan point), as shown inFig. 3(b); and the initial
point (the red point) is defined according to the RANSAC line
detected from the black belt (the green line).
In our time-series representation, the horizontal axis denotes

the angle between each contour vertex and the initial point rel-
ative to the center point, normalized by 360 . The vertical axis
denotes the Euclidean distance between the contour vertices and
the center point, normalized by the radius of the maximal in-
scribed circle. As shown in Fig. 3, the time-series curve captures
nice topological properties of the hand, such as the finger parts.

B. Hand Gesture Recognition

The hand gesture recognition module in Fig. 2 is the major
part of our part-based hand gesture recognition system. With
the hand shape and its time-series curve, we now present how
to robustly recognize the hand gesture.

1) Template Matching: We use template matching for recog-
nition, i.e., the input hand is recognized as the class with which
it has the minimum dissimilarity distance:

where is the input hand; is the template of class ;
denotes the proposed Finger-Earth Mover’s

Distance between the input hand and each template. Now we
introduce the Finger-Earth Mover’s Distance.
2) Finger-Earth Mover’s Distance: In [33], Rubner et al.

presented a general and flexible metric, called Earth Mover’s
Distance (EMD), to measure the distance between signatures
or histograms. EMD is widely used in many problems such as
content-based image retrieval and pattern recognition [34], [35].
EMD is a measure of the distance between two probability

distributions. It is named after a physical analogy that is drawn
from the process of moving piles of earth spread around one
set of locations into another set of holes in the same space. The
location of earth pile and hole denotes the mean of each cluster
in the signatures, the size of each earth pile or hole is the weight
of cluster, and the ground distance between a pile and a hole is
the amount of work needed to move a unit of earth. To use this
transportation problem as a distance measure, i.e., a measure
of dissimilarity, one seeks the least costly transportation—the
movement of earth that requires the least amount of work.
References [36] and [37] applied EMD to shape matching and

contour retrieval, which represents the contour by a set of local
descriptive features and computes the set of correspondences
with minimum EMD costs between the local features. However,
the existing EMD-based contour matching algorithms have two
deficiencies when applied to hand gesture recognition:
• Two hand shapes differ mainly in global features while not
local features. As shown in Fig. 4(a) and (b), the fingers
(global features) are their major difference. Besides, the
large number of local features slows down the speed of
contour matching. Therefore, it is better to consider global
features in contour matching.

• EMD allows for partial matching, i.e., a signature and its
subset are considered to be the same in EMDmeasure: as in
Fig. 4(c) and (d), the EMD distance of these two signatures
is zero because the signature in Fig. 4(d) is a subset of
Fig. 4(c). However, in many situations partial matching is
illogical, such as in the case of Fig. 4(a) and (b), where the
finger in Fig. 4(b) is a partial set of the fingers in Fig. 4(a).
Clearly, they should be considered different.

OurFinger-EarthMover’sDistance (FEMD)canaddress these
two deficiencies of the contour matching methods using EMD.
Different from the EMD-based algorithm which considers each
local feature as a cluster [36], we represent the input hand by
global features (thefinger clusters).Andweaddpenaltyonempty
holes to alleviate partial matches on global features.
Formally, let be the

first hand signature with clusters, where is the
cluster representative and is the weight of the cluster;

is the second hand signature
with clusters. Now we show how to represent a time-series
curve as a signature. Fig. 4(e) and (f) show the time-series
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Fig. 4. (a) (b): two hand shapes whose time-series curves are shown in (e) (f). (c) (d): two signatures that partially match, whose EMD cost is 0. (e) (f): illustration
of the signature representations of time-series curves.

Fig. 5. The parts in color are the fingers detected by the proposed finger detection methods: (a) near-convex decomposition, (b) thresholding decomposition.

curves of the hands in Fig. 4(a) and (b) respectively, where
each finger corresponds to a segment of the curve. We define
each cluster of a signature as the finger segment of the time-se-
ries curve: the representative of each cluster is defined as
the angle interval between the endpoints of each segment,

, where ; and the weight of a
cluster, , is defined as the normalized area within
the finger segment.

is the ground distance matrix of signature and
, where is the ground distance from cluster to . is
defined as the minimum moving distance for interval
to totally overlap with , i.e.,:

totally overlap with ,
otherwise.

For two signatures, and , their FEMD distance is defined
as the least work needed to move the earth piles plus the penalty
on the empty hole that is not filled with earth:

where is the normalization factor, is the
flow from cluster to cluster , which constitutes the flow
matrix . Parameter modulates the importance between the
first and the second terms. We will investigate the effects of

in Section IV-C. As we can see, , are constants for
the two signatures; to compute the FEMD, we need to compute
the value of . is defined by minimizing the work needed to
move all the earth piles:

, ,

,

,

We follow the definition of the flow matrix in EMD, as
we also intend to find the minimum work needed to move the
earth piles. The first constraint restricts the moving flow to one
direction: from earth piles to the holes. The last constraint forces
the maximum amount of earth possible to be moved. We will
demonstrate the superiority of FEMD over EMD for contour
matching in Section IV-C.

C. Finger Detection

In order to measure the FEMD distance between hand shapes,
we need to represent the hand shape as a signature with each
finger as a cluster, namely, to detect the finger parts from the
hand shape. In Fig. 5, we propose two finger detection methods
to obtain the finger parts from the hand shapes. Now we intro-
duce these two algorithms:
1) Near-Convex Decomposition: We note that the fingers

have a common geometric property: they are near-convex parts
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of the hand shape. Therefore, we adjust the Minimum Near-
Convex Decomposition (MNCD) proposed in [38], [39] to a
finger detection method, which is illustrated in Fig. 5(a):

The goal of the first term in the objective function is to reduce
the redundant parts that are not fingers, and the second term is to
improve the visual naturalness of the decomposition. Parameter
balances the influence between the first and the second term.

We will investigate the effects of in Section IV-C.
2) Thresholding Decomposition: Although near-convex de-

composition algorithm can detect the finger parts accurately, it
is generally complexly formulated and cannot be solved in real
time. Thus we propose an alternative finger detection methods
that are more efficient, named thresholding decomposition, as
shown in Fig. 5(b).
As mentioned before, the time-series curve reveals a hand’s

topological information well. As shown in Fig. 5, each finger
corresponds to a peak in the curve. Therefore, we can apply
the height information in time-series curve to decompose the
fingers. Specifically, we define a finger as a segment in the time-
series curve, whose height is greater than a threshold . In this
way, we can detect the fingers fast. However, choosing a good
height threshold is essential. We will investigate the effects
of in Section IV-C.

IV. EVALUATIONS

A. Dataset

We collect a new hand gesture dataset using Kinect sensor
(http: //eeeweba.ntu.edu.sg/computervision/people /home/ren
zhou/HandGesture.htm). Our dataset is collected from
10 subjects, and it contains 10 gestures for number 1
to 10. Each subject performs 10 different poses for the
same gesture. Thus in total our dataset has

, each of
which consists of a color image and the corresponding depth
map. Our dataset is a very challenging real-life dataset, which
is collected in cluttered backgrounds. Besides, for each gesture,
the subject poses with variations in hand orientation, scale,
articulation, etc.

B. Performance Evaluation

All experiments were done on a Intel Core™ 2 Quad 2.66
GHz CPU with 3 GB of RAM. Now we evaluate the perfor-
mance of our system from the following aspects:
1) Robustness to Cluttered Backgrounds: Our hand gesture

recognition system is robust to cluttered backgrounds, because
the hand shape is detected using the depth information thus
the backgrounds can be easily removed. Fig. 6(a) illustrates an
example when the hand is cluttered by the background, which
is hard for other hand gesture recognition methods that use
colored markers to detect the hand. In Fig. 6(b), it shows a
difficult case for the skin color-based hand gesture recognition
approaches, where the hand is cluttered by the user’s face.

Fig. 6. Our system is robust to cluttered backgrounds. (a) The hand that is clut-
tered by background can be detected accurately; (b) The hand that is cluttered
by face can be detected accurately.

Fig. 7. Our method is robust to orientation and scale changes. (a) The hands
with orientation changes, and their time-series curves; (b) The hands with scale
changes, and their time-series curves.

However, our hand segmentation is very accurate using Kinect
sensor, as shown in the right column of Fig. 6.
2) Robustness to Distortions and Hand Variations in Ori-

entation, Scale, Articulation: In real-life environment, a hand
can have variations on orientation, scale and articulation. Be-
sides, because of the limited resolution of the depth map, the
hand shapes are always distorted, or ambiguous. However, we
can demonstrate that the proposed dissimilarity distance metric,
Finger-Earth Mover’s Distance (FEMD), is not only robust to
the orientation and scale changes of the hand, but also insensi-
tive to distortions and articulations.
Fig. 7(a) shows 3 hands with different orientations. As we

can see, the initial point (the red point on the figure) and the
center point (the blue point) are relatively fixed in these shapes.
Thus the time-series curves of these hands (the second row in
Fig. 7(a)) are similar, and their distances are very small. In
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Fig. 8. Our system is insensitive to the distortions and articulation.

Fig. 7(b), there are 3 hands of different size. Because the time-
series curve and the FEMD distance are normalized, they are
correctly recognized as the same gesture. Hence we can con-
clude that FEMD is robust to orientation and scale changes.
Furthermore, our hand gesture recognition method is robust

to the articulations and distortions brought by imperfect hand
segmentation. Since the proposed FEMD distance metric uses
global features (fingers) to measure the dissimilarity, local
distortions are tolerable. As for articulations, Fig. 8 shows an
example: the leftmost column shows 4 hand images of the
same gesture; the middle column shows the corresponding
hand shapes; and the rightmost column shows their time-series
curves. As we can see, the hand shapes in Fig. 8(c) and (d)
are heavily distorted. However, as illustrated in the rightmost
column of Fig. 8, by detecting the finger parts (the yellow re-
gions), we represent each shape as a signature whose clusters are
the finger parts. Particularly, the signatures of Fig. 8(a) and (b)
have 2 clusters: , and the signatures
of Fig. 8(c) and (d) only have 1 cluster: . From
Section III-B2, we can estimate that , and
the ground distance , . According to the definition,
we know that the FEMD distances among the .
Therefore, our FEMD metric is insensitive to distortions and
articulations.

TABLE I
THE MEAN ACCURACY AND THE MEAN RUNNING TIME OF SHAPE CONTEXTS,
SKELETON MATCHING, AND OUR METHODS. OUR PART-BASED HAND
GESTURE RECOGNITION SYSTEM USING FEMD OUTPERFORMS THE

TRADITIONAL SHAPE MATCHING ALGORITHMS

Fig. 9. Two pairs of confusing gestures in Experiment I. (a) Gesture 4 and 5.
(b) Gesture 1 and 8.

3) Accuracy and Efficiency: In order to evaluate the accuracy
and efficiency of our system, two experiments are conducted
on the new dataset. Experiment I uses thresholding decompo-
sition as discussed in Section III-C2 to detect the finger parts
for FEMD measurement, and experiment II uses near-convex
decomposition as illustrated in Section III-C1 for FEMD finger
detection.
Experiment I: Thresholding Decomposition FEMD: In ex-

periment I, we fix the height threshold and the FEMD
parameter .
Fig. 10 is the confusion matrix of experiment I. The mean

accuracy is 93.2%. As it shows, the two most confused gesture
categories are gesture 5 and 4, gesture 8 and 1. Fig. 9 shows two
confused cases of these categories.
Because the thumb is shorter and smaller, if decomposing the

hands only by a height thresholding, important finger regions
may be lost in some cases. As shown in Fig. 9, the thumbs are
not well decomposed. As a result, the FEMD distances of these
two cases are very small, which confuse the recognition.
However, thresholding decomposition is fast. Besides, due to

the few number of extracted global features, FEMD operates ef-
ficiently. Table I gives the mean running time of a hand recogni-
tion procedure in experiment I, 0.0750 s. It should be noted that
our FEMD algorithm is mainly rewritten and optimized in C++,
rather than just using Matlab as in our previous work [1], which
leads to the better results than [1]. As we see, thresholding de-
composition based FEMD runs in real time.
Experiment II: Near-Convex Decomposition FEMD: In

order to more accurately decompose the fingers from the hands,
we conduct another experiment which detects the fingers using
near-convex decomposition. Here we fixed the near-convex de-
composition parameter and the FEMD parameter
. Fig. 12 shows some finger detection results of our near-

convex decomposition algorithm. As we see, the finger parts
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Fig. 10. The confusion matrix of Experiment I.

Fig. 11. The confusion matrix of Experiment II.

Fig. 12. Finger Detection results of Experiment II using near-convex decom-
position algorithm.

detection results are more accurate than thresholding decompo-
sition.
Fig. 11 shows the confusion matrix of experiment II. There

are no seriously confused categories. In the fourth row of
Table I, the mean accuracy and the mean running time of
experiment II are given. The mean accuracy of experiment II
(93.9%) is higher than that of experiment I (93.2%) owing to
the more accurate finger decomposition. On the other hand,
the speed of experiment II (4.0012 s) is slower than that of
experiment I (0.0750 s), because of the more complex finger
detection algorithm.
4) Comparison With Other Methods: FEMD is a part-based

hand matching metric. We compare it with the traditional
correspondence-based matching algorithm, Shape Context [13]
and the skeleton-based matching algorithm, Path Similarity [3].
Their mean accuracies and mean running times are given in

Fig. 13. The confusion matrix of hand gesture recognition using Shape Context
[13]. (a) is the result of recognition computed without bending cost, and (b) is
the result computed with bending cost.

Fig. 14. The confusion matrix of hand gesture recognition using skeleton
matching [3].

Table I. We pre-segment the hand shape using the same method
as ours in Section III-A.
Fig. 13 illustrates the confusion matrixes of Shape Context

[13]. From both Fig. 13(a) and (b), we find that the most con-
fusing classes are gesture 3, 4, and 5. The reason is that the fin-
gers are more easily distorted in these classes, making them in-
distinguishable, which we have discussed before in Figs. 1 and
8. Fig. 15 shows some confusing cases for shape context where
shapes are locally distorted.
From the first two rows of Table I, we notice that considering

the bending cost of TPS transformation worsens the recognition
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Fig. 15. Some confusing cases for shape context [13], where shapes are locally
distorted.

Fig. 16. Some confusing cases for skeleton matching [3], where very different
shapes have similar skeletons.

performance compared to shape contexts computed without the
bending cost. The reason is that in order to be rotation invariant,
shape context needs to treat the tangent vector at each point
as the positive axis for the log-polar histogram frame. How-
ever, since our shape is binary, a small variation on the shape
could cause severe change of the tangent vectors at points on
the shape. Thus adding TPS bending cost worsens the perfor-
mance.
Fig. 14 shows the confusion matrix of skeleton matching. We

first prune the noisy skeleton using the method proposed in [2]
and match them using Path Similarity proposed in [3]. From the
figure, we notice that many gestures are severely confused, such
as between gesture 1 and 9, gesture 6 and 8. The reason is that in
those cases, their skeletons have very similar global structure.
As shown in Fig. 16, very different hand gestures in (a) (b) have
very similar skeletons. Thus skeleton matching algorithms are
unable to differentiate these classes.

C. Parameter Sensitivity

In this section, we evaluate 3 important parameters—the
height threshold in thresholding decomposition finger detec-
tion method (Section III-C2), the parameter in near-convex
decomposition (Section III-C1), and the parameter in FEMD
formulation (Section III-B2).
The results are shown in Fig. 17. In thresholding decompo-

sition, determines the radius of the decomposing circle (see
Fig. 5(b)). If is too small (i.e., ), the fingers cannot
be well decomposed; and if is too large (i.e., ), es-
sential finger regions will be lost. Fig. 17(a) shows that we can
obtain the best result if setting around 1.6. In finger detec-
tion using near-convex decomposition, balances the impact
of the visual naturalness and the number of parts. As shown in
Fig. 17(b), if we only minimize the visual naturalness term (i.e.,

), we will obtain noisy parts that affect the FEMD mea-
sure. Besides, the curve drops fast after because if mini-
mizing the parts number too much while ignoring the visual nat-
uralness, we may obtain parts that are not fingers. In the FEMD
measure, modulates importance between the earth-moving
work and the empty-hole penalty . Fig. 17(c)
shows that if either only considering (i.e., ) or only
considering (i.e., ), FEMD cannot measure cor-
rect dissimilarity between hand shapes. This curve also justifies

Fig. 17. Parameter sensitivity on , and . When , FEMD becomes
the EMD metric [33].

that FEMD is better than EMD (the special case when )
for dissimilarity measure between hand shapes.

V. APPLICATIONS

Lately there has been a great emphasis on Human-Computer
Interaction (HCI) research to create easy-to-use interfaces by
facilitating natural communication and manipulation skills of
humans. Among different human body parts, the hand is the
most effective interaction tool because of its dexterity. Adopting
hand gesture as an interface in HCI will not only allow the de-
ployment of a wide range of applications in sophisticated com-
puting environments such as virtual reality systems and inter-
active gaming platforms, but also benefit our daily life such as
providing aids for the hearing impaired, and maintaining abso-
lute sterility in health care environments using touchless inter-
faces via gestures [4].
Now we propose to use the hand gesture as an interface,

and introduce two real-life HCI applications on top of our
hand gesture recognition system: Arithmetic computation and
Rock-paper-scissors game. It should be noticed that, in the
demo system, we perform frame-based hand gesture recogni-
tion using the FEMD distance metric based on thresholding
decomposition finger detection method, taking both accuracy
and efficiency into consideration. As shown in Table I, it
runs in real time and achieves comparable accuracy as that
of FEMD metric based on finger detection using near-convex
decomposition.

A. Arithmetic Computation

Arithmetic computation is an interesting HCI application.
Instead of interacting with the computer by the keyboard or
mouse, we input arithmetic commands to the computer via hand
gestures. As shown in Fig. 19, 14 hand gestures are defined to
represent 14 commands, namely number 0–9 and operator ,
, , , respectively.
By recognizing each input gesture as a command, the com-

puter can perform arithmetic computations instructed by the
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Fig. 18. Arithmetic computation.

Fig. 19. The 14 gesture commands in our arithmetic computation system.

user. Two examples are shown in Fig. 18. The key frames are
shown as well.

B. Rock-Paper-Scissors Game

Rock-paper-scissors is a traditional game. The rule is rock
breaks scissors; scissors cut paper; and paper wraps rock. In
this demo, we build a Rock-paper-scissors game system played
between a human and a computer. The computer randomly
chooses a weapon, and the user’s gesture is recognized by our
system. According to the game rule, our system can decide who
is the winner. Fig. 20 shows two examples.
These two demos have been demonstrated in ACM Multi-

media 2011, etc. It runs accurately in real time. It is feasible to
build more interesting Kinect demos on top of our hand gesture
recognition system. The hand gesture dataset we collected with
Kinect sensor and the technical demo video [40] showing these
two HCI applications are available at http://eeeweba.ntu.edu.sg/
computervision/people/home/renzhou.

VI. CONCLUSION AND FUTURE WORK

Hand gesture recognition for real-life applications is very
challenging because of its requirements on the robustness,
accuracy and efficiency. In this paper, we presented a robust
part-based hand gesture recognition system using the Kinect
sensor. A novel distance metric, Finger-Earth Mover’s Distance
(FEMD), is used for dissimilarity measure, which represents
the hand shape as a signature with each finger part as a cluster
and penalizes the empty finger-holes. Extensive experiments
on a challenging 10-gesture dataset validate that our part-based
hand gesture recognition system is accurate and efficient. More
specifically, our FEMD based hand gesture recognition system
achieves 93.2% mean accuracy and runs in 0.0750 s per frame
when using the thresholding decomposition finger detection
method. And it achieves better accuracy of 93.9% when using

Fig. 20. Rock-paper-scissors game.

a more accurate finger detection method, however, at the cost
of efficiency. Taking both accuracy and efficiency into consid-
eration, we use thresholding decomposition for finger detection
in our real time demo system.
One major contribution of our paper is the distance metric

based on part-based representation. Traditional distance mea-
sures such as shape contexts distance and path similarity is not
robust to local distortions and shape variations, since their repre-
sentations, i.e., shape contexts and skeleton, are not consistent
in the case of hand variations or severe local distortions. The
proposed FEMD distance metric is based on a part-based repre-
sentation which represents a hand shape as a signature with each
finger part as a cluster. Such a representation enables the com-
putation on the global features, thus it is robust to local distor-
tions. And it is robust to articulation, orientation, scale changes,
as discussed in Section IV-B2.
Another contribution of this paper is the real-life HCI appli-

cations we built on top of our hand gesture recognition system.
It shows that with hand gesture recognition technique we can
mimic the communications between human, and involve hand
gesture as a natural and intuitive way to interact with machines.
Consequently we can benefit our daily life in many aspects such
as providing aids for the hearing impaired, and maintaining ab-
solute sterility in health care environments using touchless in-
terfaces via gestures.
Our future research will focus on exploring a more efficient

part-based representation, to handle the problem shown in
Fig. 9 and the efficiency drawback of near-convex decomposi-
tion based finger detection method. And we will further develop
interesting HCI applications of our hand gesture recognition
system.
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