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Abstract—Because actions can be small video objects, it is a
challenging problem to search for similar actions in the crowded
and dynamic scenes when a single query example is provided.
We propose a fast action search method that can efficiently locate
similar actions spatio-temporally. Both the query action and
the video datasets are characterized by spatio-temporal interest
points. Instead of using a unified visual vocabulary to index
all interest points in the database, we propose the randomized
visual vocabularies to enable fast and robust interest point
matching. To accelerate action localization, we develop a coarse-
to-fine video subvolume search scheme, which is several orders of
magnitude faster than the existing spatio-temporal branch and
bound search. Our experiments on cross-dataset action search
show promising results when compared with the state of the
arts. Additional experiments on a 5-hour versatile video dataset
validate the efficiency of our method, where an action search can
be finished in just 37.6s on a regular desktop machine.

Index Terms—Video Pattern Search, Action Search, Ran-
domized Visual Vocabularies, Fast Branch and Bound Search,
Random Indexing Trees.

I. INTRODUCTION

Although text-based search techniques (for example, Google
and Bing search) are powerful, they can only be applied to
searching documents and text-annotated records with appre-
ciable success and satisfaction achieved. For analyzing and
searching video data, however, such a keyword-based video
search is far from satisfactory, and oftentimes, could yield
not-so-useful results. For example, since high-level semantic
meaning is fairly difficult to be described by a limited set
of keywords, keyword based video search is not suitable for
detecting a specific human action or video event, e.g., detecting
a pick-up action or a vehicle committing a hit-and-run crime.

This work addresses the human action search problem
in natural videos: given an action example as a query,
e.g., hand waving or picking up, the goal is to detect and
accurately locate similar actions in the video dataset. Al-
though a lot of previous works have been done on action
recognition [51] [2] [5] [9] [12] [25] and action detec-
tion [14] [10] [7] [42], it still remains a difficult problem
to query a large-scale video database using a single action
example.

First of all, for action search, usually only a single query
example is provided. In such a case, the amount of training
data is extremely limited and only available at the time
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of query, whereas in action classification [2] [21] [41] and
detection [14] [10] [52], a lot of positive and negative training
examples can be leveraged. Therefore it is much more difficult
to identify and locate a specific action example in videos.
Furthermore, possible action variations such as scale changes,
style changes and partial occlusions only worsen the problem,
let alone cluttered and dynamic backgrounds.

Second, a video search engine must have a fast response
time because otherwise the user experience would suffer.
Unlike video event recognition [34], where the goal is to
classify or rank pre-segmented video shots, action search is
more difficult as we need to not only recognize the target
action, but also locate it accurately, i.e., identify the spatio-
temporal extent of the action in the video space. The accurate
localization is of great importance especially for the crowded
scenes where there are multiple people or moving objects.
However, because actions can be small video objects, it is
time consuming to locate them in the large video space. In
general, for a dataset consisting of tens of hours of videos,
such an action search process is expected to finish in just a
few seconds.

Finally, a retrieval process typically prefers to enable user
interactions, which allows the user to clarify and update their
preferences. Thus, a practical action search system must have
the flexibility to refine the retrieval results by leveraging
the labels resulting from subsequent user feedback. Although
relevance feedback is popular in image search, there is much
less work that supports interactive action search.

To address the above challenges, we develop an action
search system that addresses two key challenges in con-
tent based video search: (1) video indexing and (2) action
searching. Each video is characterized by a collection of
spatio-temporal interest points (STIPs) [1]. To enable fast
matching of STIPs between the query action and the video
dataset, effective Indexing is required. Bag-of-words (BoW) is
a popular solution to index these interest points by clustering
them hierarchically [21]. However, as there is only a single
vocabulary, it provides one fixed way to quantize the feature s-
pace, and inevitably introduces quantization errors. Regardless
of how the quantization is done, it typically results in loss of
information. Instead of trying to find the best vocabulary as in
some previous work [3] [21], we propose to use an ensemble
of vocabularies to index the database. Multiple vocabularies
provide multiple representations to the data. Thus, the variance
of estimation can be reduced as we increase the number of
vocabularies.

The second component of our search system is the action
search part, i.e., spatially and temporally localize the retrieved
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Fig. 1. Overview of our algorithm.

actions from the database. Our action search method is based
on our previous work of spatio-temporal branch-and-bound
search [7] [15] but we further significantly improve the local-
ization speed by introducing a coarse-to-fine search scheme,
which is several orders faster than [7].

An overview of our action search system is depicted in
Fig. 1. The spatial-temporal interest points in videos are first
extracted and then labeled according to the exemplar action in
the query phase by our random indexing trees. The database
can be considered as one large volume, with different values
at the positions of the STIP points. The spatio-temporal video
subvolumes of highest matching scores, i.e., the summation
of scores from all of its interest points, are cropped out
as detections. The subvolume is the retrieved result by our
algorithm. We summarize the three contributions of our work
below.
• We propose to index video interest point features using

randomized visual vocabularies to compensate for infor-
mation loss when using a single visual vocabulary. To
implement the randomized visual vocabularies, we use
random indexing trees, which provide fast indexing and
leads to superior search results.

• For action localization, our proposed coarse-to-fine sub-
volume search strategy significantly improves the effi-
ciency of the state-of-the-art action detection method-
s [7] [15], with comparable detection accuracy. With a
single desktop computer, our method can search 5-hour
long video within only 37.6 seconds.

• Our method does not rely on human detection, tracking,
and background subtraction, and can handle action vari-
ations due to small scale and speed variations. It also
supports interactive search by incrementally adding user
labeled actions to the query set.

Experiments on cross-dataset search validate the effectiveness
and efficiency of our proposed method.

II. RELATED WORK

Action analysis, e.g., action recognition and action search,
has a lot of practical uses in our daily lives. A lot of great

works [34][30][11][37][43][35][33] have been done on this
topic. Action classification attempts to determine the action
category of the given video clips. In [10], a 3D Haar feature
based optical flow is proposed to represent 3D volumes. [9]
presents a maximum average correlation height filter, with
which the intra-class variability is well captured. A visual
spacetime oriented energy structure representation is proposed
in [16], which is robust to scene clutter and rapid dynamics.
In addition to these global template based action represen-
tations, local feature description [1] based representations
have also been widely used. [2] employs the bag-of-words
(BoW) models based on local feature points [1] and SVM
as the classifier. Similar bag of words representations are
also discussed in [3] [21]. Apart from BOW representations,
Gaussian Mixture Models (GMM) [14] and nearest neighbor
(NN) search [7] are alternative solutions to action classifica-
tion. Different to sequence based action classification, [53][54]
proposed to use “snippets”, which is a very short sub-sequence
(usually 1-7 frames). In [53], dense form and motion features
are employed to describe the snippets and remarkable results
have been achieved for action classification. [54] proposed an
incremental learning framework based on “snippets” and well
handled the challenging UCF sports dataset [9]. Our work
differs from the “snippets” [53][54] in three aspects. First,
we are doing different applications, action search (retrieval)
versus action classification. Second, at the training stage,
[53][54] tried to train a classifier which utilized all the label
information from the training data while our work is doing
an index job without any label information. Third, our work
can spatial-temporally locate the actions without any other
auxiliary tools. Other interesting action classification works
include [25][32][36][39].

Different from action classification, action detection re-
quires to locate when and where the desired action happened
in the given video clips. This is more challenging due to the
extremely large search space. One solution to this problem is
sliding window. [10] presented a 3D spatiotemporal volumetric
features and a cascade filters for efficient event detection.
In [38], a video-to-video volume similarity with canonical
correlation analysis is proposed and speeded up with the
help of dynamic learning of the subspaces. [50] employed 3-
dimension space-time volumes as similarity measure to locate
the similar behaviors. The problem with sliding window is
its high computational cost which can be relieved by branch
and bound search [26]. Its extension version is introduced
in [7]. In [7], videos are represented with a set of STIP points
and, by LSH matching with the training dataset, each STIP
point is weighted with a mutual information based model.
Then branch and bound search is performed to search over the
weighted video space. [14] proposed a MAP estimation frame-
work which combines model adaptation and action detection.
Because it explores the spatial-temporal coherence of actions
and utilizes the prior information, it is effective to handle the
problem of cross-dataset action detection. Several speeding
up tricks for branch and bound search have been proposed
in [15], including spatial-downsampling, Top-K search and λ
search. In this paper, our system is built based on the branch
and bound search but with even faster strategy compared
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with [15]. Besides from sliding all possible windows, Hough
voting is an efficient alternative to locating the actions, as
shown in [29] [20]. Since the actions we want to detect are
usually periodic which makes it hard to determine the temporal
centers, Hough voting is currently difficult to well solve this
problem.

Despite great successes in action recognition and detection,
action retrieval, on the other hand, is less exploited. We can
roughly categorize most of the existing action retrieval algo-
rithms into two classes based on the number of query samples.
Algorithms in the first category [16] [28] perform the sliding
window search on the database with a single query sample.
The idea for both [16] and [28] is to represent query and
database videos with some features and to compare the similar-
ity based on query-to-subvolume measurements. In [16], visual
space-time oriented energy measurements are used while a
five-layer hierarchical space-time model is employed in [28].
One limitation of these techniques is that with a single query
sample, it is challenging to model action variations. Besides,
an action retrieval system usually involves user interactions but
their approaches do not have the capability to incrementally
refine their models based on the user feedback. The other
category of action retrieval algorithms, for example [19], is
based on a set of query samples, usually including both
positive and negative samples. Despite the fact that they work
well in uncontrolled videos, the computational cost is high
and they would fail if insufficient number of query samples
are provided. Apart from the above work, there exist some
other algorithms in the literature. For example, [13] [22] [23]
rely on auxiliary tools like storyboard sketches, semantic
words and movie transcripts for action retrieval, while [11]
is specifically focused on quasi-periodic events. [24] performs
action retrieval based on static images. [48] retrieves the
similar human action patterns with spatiotemporal vocabulary.

III. VIDEO REPRESENTATION AND RANDOMIZED VISUAL
VOCABULARIES

We characterize a video by a set of spatial-temporal interest
points (STIP) [1], denoted as V = {di ∈ Rn}. Following [1],
each STIP point d is described by two kinds of features: HOG
(Histogram of Gradient) and HOF (Histogram of Flow) and
the feature dimension n is 162. For action retrieval, we are
given a database with N video clips. Denote the video clips
as Vi, i = 1, · · · , N . Denote D = {V1 ∪ V2 ∪ · · · ∪ VN}.
These video clips contain various types of actions such as
handwaving, boxing, and walking and last for several hours
long.

In order to search for human actions in a large database,
indexing becomes one of the most crucial parts. Traditionally,
bag-of-words models [3] [21] with hierarchical K-means is
widely used for interest points indexing. However, there is usu-
ally only a single vocabulary for BoW. The vocabulary quan-
tizes the data in one fixed way. Quantization error would be
introduced regardless of how we quantize the data. Intuitively,
one vocabulary can be considered as one way of “viewing”
the data. Instead of trying to find the best vocabulary as in the
pervious work, we propose to use an ensemble of vocabularies.

Multiple vocabularies can provide different viewpoints to the
data. This can help to increase our performance as we increase
the number of vocabularies.

To implement the vocabularies in an efficient manner, we
try to employ the tree structures. Although there have been
a lot of works on the tree structures for computer vision
applications, little work has been done for efficient index
with tree structures. KD-tree allows exact NN search but it
is inefficient in high dimension cases and only slightly better
than the linear search. Hierarchical K-means usually leads to
unbalance trees and training is a time consuming process.
To overcome the above problems, we propose the random
indexing trees, which can explore the data distribution in the
high dimension cases and index the database in an efficient
and effective way.

Assume we have ND STIP points in the dataset, denoted as
{xi = (x1i , x

2
i ), i = 1, 2, · · · , ND}; x1i ∈ R72 and x2i ∈ R90

are the HOG feature and HOF feature, respectively. In order to
build a tree and split the dataset, a random number τ ∈ {1, 2}
is first generated to indicate which kind of feature to use
for splitting (xτ=1

i refers to HOG feature and xτ=2
i means

HOF feature.) Then two more random numbers e1 and e2 will
be generated which are the dimension indices of the feature
descriptor (either HOG feature or HOF feature depending on
the value of τ .) After that, a “feature difference” can be
evaluated with Di = xτi (e1) − xτi (e2), i = 1, 2, · · · , ND.
Based on all the Di, we can estimate the mean and variance
of the feature difference.

To put it briefly, a hypothesis (with variables τ, e1 and e2)
can be generated with the following three steps:
• Generate τ ∈ {1, 2} to indicate the type of feature to use
• Generate the dimension indexes e1 and e2 and com-

pute the feature difference Di = xτi (e1) − xτi (e2), i =
1, 2, · · · , ND

• Split the dataset into two parts based on the mean of
feature differences and obtain a variance

We generate γ hypotheses and find the one with the largest
variance on feature difference. Since the performance is not
sensitive to the number of hypotheses, we fix γ = 50 for
all our experiments. Usually, a larger variance means that the
data distribution spreads out more and the feature difference
is more significant. Therefore the corresponding mean is used
as the threshold to split the dataset. After this, one node will
be built and the dataset will be partitioned into two parts. For
each part, a new node will be further constructed in the same
way. This process is repeated until the predefined maximum
depth is reached.

Compared with the local sensitive hashing (LSH) based
indexing used in previous work [7], the benefits of random
indexing trees are numerous. In this paper, we point out four
properties that are essential for us. First, each tree in the
model is almost independent from others. Second, our random
indexing trees are fast to evaluate during the query stage.
The computation time only depends on the number of trees
and the depth of each tree. Hence, it is usually faster than
LSH based nearest neighbor search [7]. In the experiments,
we will show that our random-indexing-trees based weighting
approach is over 300 times faster than LSH based approaches.
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This is of great importance if we want to perform real-time
action analysis. Another advantage of random indexing trees
compared with LSH is that, during the construction of each
tree, data distribution of the STIPs is integrated, which means
the tree construction is guided by the data density. This is
one reason why random indexing trees has great speed gain
but little performance loss. Finally, by adding more trees, we
can alleviate the effect of lacking query samples and well
model the intra-class variations. As shown in Fig. 2, for each
vocabulary, only a small portion of nearest neighbors can be
found. The benefit of multiple visual vocabularies is to quickly
find enough nearest neighbors to boost the confidences of
multiple matches.

IV. ACTION MATCHING USING RANDOMIZED VISUAL
VOCABULARIES

We can consider action search as a template matching
process. That is, matching the spatio-temporal template (query
STIP points) with all the video sub-volumes in the database.
More specifically, our objective is, given one or more query
videos, referred to as Q, to extract all the sub-volumes which
are similar to the query. Formally, that is to find:

V ∗ = max
V⊂D

s(Q, V ), (1)

where s(Q, V ) is a similarity function between a set of query
video clips Q and a subvolume V in the database.

Unlike previous single template action detection and re-
trieval [16], which can only take one positive sample for
query, our approach can integrate multiple query samples and
even negative ones. By introducing negative samples during
the query phase, our algorithm is more discriminative. In
addition, this approach enables interactive search by leveraging
the labels obtained from user feedbacks.

Following our previous work in [7], we use the mutual
information as the similarity function for s(Q, V ) . So we
have:

V ∗ = max
V⊂D

MI(C = cQ, V )

= max
V⊂D

log P (V |C=cQ)
P (V )

= max
V⊂D

log
∏

di∈V
P (di|C=cQ)∏

di∈V
P (di)

= max
V⊂D

∑
di∈V

log P (di|C=cQ)
P (di)

,

(2)

where C = cQ refers that we want to find the sub-volumes
similar to the query clip cQ.

We refer to scQ(di) = log P (di|C=cQ)
P (di)

as the mutual infor-
mation between STIP di and query set Q. In [7], scQ(di)
is computed based on one positive nearest neighbor point
and one negative nearest neighbor point from di. However,
nearest neighbor search in high dimensional space is very
time consuming even with the advanced local sensitive hashing
(LSH) technique [7]. Second, this approach is sensitive to
noise, since only two points are used to compute its score.

In order to address these problems, we formulate scQ(di) as:

scQ(di) = log P (di|C=cQ)
P (di)

= log P (di|C=cQ)P (C=cQ)
P (di)P (C=cQ)

= log P (C=cQ|di)
P (C=cQ) .

(3)

In Eq. 3, P (C = cQ) is the prior probability that can be
computed as the ratio of the number of positive query STIPs
to the total number of query STIPs.

In order to estimate P (C = cQ|di) efficiently and robustly,
random indexing trees are used. We consider each tree as
one partition of the data space. In the following section, we
discuss how to estimate P (C = cQ|di) given multiple random
indexing trees.

Suppose NT random indexing trees have been built offline
from the database. At the query stage, all the STIP points
in the query set Q = QP ∪ QN (where QP and QN refer
to positive query and negative query, respectively) are first
extracted and distributed into the trees. Fig. 2 gives a two-
dimension example where blue and black dot points represent
the positive and negative STIPs, respectively. Each STIP point
di ∈ D (red square in Fig. 2) falls into one of the leaves of
a tree. Each leaf node contains several STIP points dq ∈ Q.
In order to compute the posterior P (C = cQ|di), we integrate
the information from all the leaves which contain di. Suppose
di falls into a leaf with N+

k positive query STIP points and
N−k negative points for tree Tk, then P (C = cQ|di) can be
computed as:

P (C = cQ|di) =
1

NT

NT∑
k=1

N+
k

N+
k +N−k

. (4)

As can be seen from Eq. 4, our voting strategy can integrate
negative query samples, which makes our algorithm more
discriminative.

Eq. 3 can hence be rewritten as:

scQ(di) = logP (C = cQ|di)− logP (C = cQ)

= log 1
NT

NT∑
k=1

N+
k

N+
k +N−k

− logP (C = cQ).
(5)

However, in the case where there are no negative query
samples available (QN = ∅), we slightly modify Eq. 4 to:

P (C = cQ|di) =
1

NT

NT∑
k=1

N+
k

M
, (6)

where M is a normalization parameter. And Eq. 5 can be
written as

scQ(di) = log 1
NT

NT∑
k=1

N+
k

M − logP (C = cQ)

= log 1
NT

NT∑
k=1

N+
k − logM − logP (C = cQ).

(7)
We denote A = − logM − logP (C = cQ). A is a parameter
which is set empirically.

Each tree is a partition of the feature space as shown in
Fig. 2. Hopefully, STIP points in the same leaf node are similar
to each other. The score evaluation (Eq. 5) on the trees can
be explained intuitively by a dyeing process. We can think of
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Fig. 2. A schematic illustration of randomized-visual-vocabulary indexing and action search.

each positive query STIP point as having a blue color and a
negative point as having a black color. For each query point,
we pass it down each tree. The leaf that the point falls in is
dyed in the same color as the query point. Each leaf keeps a
count of the number of times it is dyed by blue and a count of
the number of times it is dyed by black after we pass all the
positive and negative query points down the trees. If a leaf’s
blue count is larger than the black count, it is more likely to
belong to the positive region, and vice versa. Similarly, if the
blue count is the same as the black count, it is more likely not
to vote any side, i.e., vote zero. Given a point di (red square
point in Fig. 2) in the dataset, to compute its score with respect
to the positive queries, we pass it down each tree. From each
tree, we find the leaf that di falls in. The blue counts and
black counts of all the leafs in all the trees that di falls in are
combined to estimate its posterior P (C = cQ|di), as given
in Eq. 5. In some sense, the random indexing trees are like a
special kernel, as shown by the yellow regions in Fig. 2. The
idea of dyeing process is not only limited to trees but also
applicable to any vocabulary structure.

Even though our random indexing trees share some similar
properties with random forest, e.g. [4][20], there are important
differences between our technique and random forests. First,
our random indexing trees are constructed in an unsupervised
manner for class-independent video database indexing, while
traditional random forests are constructed in a supervised man-
ner. Second, our random indexing trees generate both positive
and negative voting scores, thus it is more discriminative
compared to [4][20], which generates only positive votes based
on the frequency. Third, we use random indexing trees for
density estimation, which has not been exploited before.

V. EFFICIENT ACTION SEARCH

A. Coarse-to-fine Hierarchical Subvolume Search Scheme

After computing the scores for all the STIP points in the
database, we follow the 3D branch and bound approach in [7]
to search for subvolumes in each video in the database. The
idea of branch and bound search is to branch the search
space and give an upper bound to each candidate subset. The
candidate subsets can be dropped if the upper bound is lower
than the current optimal value. In [7], 3D branch and bound
search was proposed and to decompose the search space into
the spatial temporal domain, respectively. However, as stated
in [15], there are two limitations in the subvolume search
method proposed by [7]. First, we need to run multiple rounds
of branch and bound search if we want to detect more than

one instance. In addition, the computational cost is extremely
high when the video resolution is high.

In [15], three speeding up techniques have been proposed
to reduce the computational cost of branch-and-bound search.
They are spatial-downsampling, λ search and Top-K search.
Although significant computational advantages have been
achieved, it stills takes 26 minutes to search one hour video
database. This is unacceptable for action retrieval application.

To further reduce the computational cost, a coarse-to-fine
hierarchical search is proposed here. The basic idea is to first
search the coarse resolution score volumes to quickly find a
number of candidate subvolumes, and then refine the candidate
subvolumes using the finer resolution score volumes. Note that
this technique is different from [15] in that we introduce a
refinement mechanism so that the results obtained at a coarser
resolution are refined in a higher resolution score volume.

According to [15], the computational complexity of the
top-K search is O(m2n2t) + O(Kmnt), where m,n, t are
the width, height and duration of the database video and
K refers to the top K results. Obviously, the most effective
way to reduce the computational cost is to reduce the spatial
resolution of the score volume. Thus, spatial-downsampling is
performed to compress the search space. The following error
bound for score volume downsampling is proposed in [15].

fs(Ṽ ∗) ≥ (1− s ∗ h+ s ∗ w + s2

wh
)f(V ∗), (8)

where Ṽ ∗ = argmaxV ∈Dsfs(V ) denotes the optimal sub-
volume in the downsampled search space Ds, f(V ) =
MI(Q, V ), and V ∗ refers to the optimal subvolume in the
original search space with width w and height h. With the
help of this error bound, we can relax the top searched list
to include more results for a further round of re-ranking. The
benefit of using this error bound is to reduce the precision
loss in the coarse round of search. Suppose we want to
eventually retrieve the top K results from the database, we
first downsample the score volumes with a factor of 2a and
retrieve the top K̂ subvolumes by employing the top-K search
algorithm [15]. We choose K̂ = 2K in our experiments.

After that, we can estimate a threshold, denoted as θ, based
on the Kth largest subvolume score (denoted as fs(Ṽ (K)).)
For example, if we set downsampling factor s = 8 and assume
w = h = 64, then our approximation has an average error:

s ∗ h+ s ∗ w + s2

wh
= 56.3%. (9)

So we choose θ = 0.437fs(Ṽ (K)) to filter the first round
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results. Then, for each remaining subvolume Ṽ (k) from the
first round, we first extend the spatial size with 30 pixels in
each direction and another round of branch-and-bound search
is performed. Different from previous round, which is running
over the entire video space, this round of search is performed
over the filtered 3D-subvolumes (extended with 30 pixels in
each spatial direction). λ search [15] with λ = fs(Ṽ (K)) and
downsampling factor a is used in this round of search.

Despite that only two rounds of search are used, our
algorithm can be extended to more rounds of search. This is
especially useful to handle high-resolution videos. As shown
in Table V, our efficient two-round branch-and-bound search
only costs 24.1 seconds to search a database of one hour
long 320 × 240 videos. This is over 60 times faster than the
approach in [15] and 2900 times faster than [7]. Even for a
5-hour large database, it only costs 37.6 seconds to respond
to the users. Besides the speed advantages, we will see from
the experiments that the search accuracy is not compromised.

Finally, we differentiate our work from [15] here. In [15],
only one round of search is employed. The search is performed
in the entire three-dimensional video space. However, in our
work, with the help of the coarse round search, our fine round
search only need to focus on the potential regions, which can
save significant computational cost. Besides, to reduce the
computational loss from the coarse round search, the error
bound is used to determine the number of candidate sub-
volumes for re-ranking.

B. Refinement with Hough Voting

Although our search algorithm can successfully locate the
retrieved actions, the localization step may not be accurate
enough, as can be seen from the first row of Fig. 4. This
motivates us to add a refinement step. The idea is to back-
project the initial sub-volume into the query video. Based on
the matches of STIPs, we can vote the action center (only
in the spatial domain). Fig. 3 is an illustration of the Hough
refinement step.

Random 
Trees
Matching

Hough 
Voting

Initial Results

Query Video

Refined Results

Fig. 3. Illustration for Hough refinement.

Suppose we already have the initial results from the down-
sampled branch and bound search (the blue region in the left
image of Fig. 3), for all the STIP points within the detected

subvolume, we match them with the STIPs in the query video
clip, either by trees or Nearest Neighbor search. Then the
shift from the matched STIPs in the query will vote for the
center of the retrieved action. To simplify the problem, we
only consider one fixed scale and smooth the votes with a
Gaussian kernel. After considering all the votes, the center of
the retrieved action is the position with the largest vote (the
red cross in the third image of Fig. 3). To recover the spatial
extent, we set the spatial scale of the action to be the smallest
sub-volume which includes the initial retrieved region and the
temporal scale is fixed to the initial retrieved result.

After the refinement, the blue region in the right image of
Fig. 3 gives an illustration of the revised result compared with
original round of result, i.e. the left image. Both quantitative
results, as shown in Fig. 7, and empirical results in Fig. 4 show
that the refinement step can successfully improve our retrieved
results. The major steps of our algorithm are described at
Algorithm 1.

C. Interactive Search

The performance of our action retrieval system is con-
strained by the limited number of queries. To show that our
retrieval system can achieve better results when more queries
are provided, we add an interaction step to facilitate human
interaction. There are two major advantages of the interaction
step. The first is to allow the user to express what kind of
action he/she wants to retrieve. Another advantage is that our
system can benefit from more query samples after each round
of interaction.

To implement the system, we first perform one round of
action retrieval based on a few query samples. After that, the
user would label D (D=3 in our experiments) detections with
the highest scores. Then the D newly labeled subvolumes will
be added into the query set for the next round of retrieval.
Detailed results will be discussed in the experiment section.

Algorithm 1 The proposed algorithm for action search
Input:

• Database with the random indexing trees: {Tk}
• Query video: Q

Output:
The top K retrieved sub-volumes {V1, V2, · · · , VK}

1: Voting: Based on Eq. 7, vote the database STIP points by
the random indexing trees (Section IV).

2: Coarse-round search: Retrieve the top K̂ subvolumes by
employing the top-K search algorithm for each video in
the database. The downsampling factor is set to 2a. Then
keep those detected sub-volumes with scores above the
threshold θ (discussed after Eq. 9) only.

3: Fine-round search: Rerank the remaining sub-volumes
from the first round of results with branch and bound
search (downsampling factor a).

4: Refinement: [optional] Hough refinement discussed in
Section V-B.
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Fig. 4. Comparison of retrieval results without and with Hough refinement. For each row, the first image indicates the query sample and the following 7
images refer to the highest ranked retrieved results. All the experiments are done with only one query sample without user feedback. The upper and lower
rows are the experiments on handclapping without and with Hough refinement, respectively. The query clip (first column) is from KTH while the database is
from MSR II.

D. Computational Complexity
For our action retrieval system, there are two major runtime

costs: voting and searching. The computation complexity is
O(NsTdNT ) for the voting step where Ns refers to the number
STIPs in a query clip, Td refers to tree depth, and NT refers
to the number trees in a forest. As shown in the Table V,
the voting time is negligible compared to the search time. For
action search, the worst time complexity is

T = O((m/2a)2(n/2a)2t) +O(K̂(m/2a)(n/2a)t)
+O((m̂/a)2(n̂/a)2t̂) +O(K(m̂/a)(n̂/a)t̂)

(10)
where m, n and t are width, height and duration of the clips
in database. a is the downsampling factor and K̂ (this value
depends on the retrieval scores) is a little larger than K (K = 7
refers to the number of retrieved results in our experiment).
After a filtering step (the first two complexity), m̂, n̂, t̂ are used
to represent the spatial width, spatial height and temporal du-
ration for remaining sequences (usually t̂ << t), respectively.
The quantitative analysis of the computational cost will be
discussed in the experimental part.

VI. EXPERIMENTAL RESULTS

To validate our proposed algorithm, seven experiments on
six datasets have been discussed in this section. KTH [3]
and MSR II [7] are used to evaluate our algorithm for action
classification and action detection, respectively. Table III lists
the five datasets for the validation of our search algorithms.
Sample frames from the five datasets can be found in Fig. 5.
Since our algorithm is trying to handle the action search
problem, we focus on the action search experiments in this
section. In order to provide a quantitative comparison with
other work, we give an action retrieval experiment on bench-
mark dataset MSRII first. After that, illustrative experiments
for action search on CMU dataset [6], Youtube videos, and
UCF dataset [9] are discussed. To show the ability to handle
real action retrieval by our system, we build a 5-hour dataset
with videos downloaded from datasets MSRII [7], CMU [6],
VIRAT [46], Hollywood [47] and some videos downloaded
from Youtube.

A. Action Classification on KTH
We first give an experiment to show that our algorithm is

able to handle the traditional action classification problem. We

use the benchmarked KTH dataset [3] and test our algorithm
with the same setting as in [3][15]: 8+8 sequences for train-
ing/validation and 9 sequences for testing. Table I lists the
confusion matrix for our algorithm and a comparison with
other works are listed in Tabel II. Although our work aims to
handle the action search problem, i.e., the label information
from the training data is not utilized until the testing stage,
we still achieves comparable results.

walk clap wave box run jog
walk 142 0 0 0 0 2
clap 0 136 1 7 0 0
wave 0 11 133 0 0 0
box 4 0 0 140 0 0
run 1 0 0 0 114 29
jog 2 0 0 0 26 116

TABLE I
CONFUSION MATRIX FOR KTH ACTION DATASET. THE TOTAL ACCURACY

IS 90.4%.

Method Average accuracy
Our method 90.4%
[15] 91.8%
[5] 90.3%
[3] 91.8%
[14] 95.02%
[54] 94.4%
[25] 94.53%

TABLE II
COMPARISON OF DIFFERENT REPORTED RESULTS ON KTH DATASET.

B. Action Detection on MSR II

We then validate our random-indexing-trees strategy with
a challenging action detection experiment. Since handwaving
is an action that is quite common in real life, we choose to
detect handwaving actions in this experiment. We first train
the model with KTH dataset (with 16 persons in the training
part) and then perform experiments on a challenging dataset
(MSR II) of 54 video sequences, where each video consists
of several actions performed by different people in a crowded
environment. Each video is approximately one minute long.
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(i) 1P query without refinement, AP: 0.4301
(ii) 1P query with refinement, AP: 0.4923
(iii) Cross−dataset Detection [14], AP: 0.3671
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(i) 1P query without refinement, AP: 0.2397
(ii) 1P query with refinement, AP: 0.3155
(iii) Cross−dataset Detection [14], AP: 0.1316
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(i) 1P query without refinement, AP: 0.2638
(ii) 1P query with refinement, AP: 0.3072
(iii) Cross−data Set Detection [14], AP: 0.1748

Fig. 7. Precision-recall curves for action search on MSR II.

Dataset Total Length Query Action
MSR II 1 hour Waving, Clapping, Boxing
CMU 20 mins Waving, Bending
Youtube 4.5 mins Tennis Serve
UCF Sports ≈ 15 mins Diving, Weightlifting
Large Dataset 5 hours Waving, Clapping, Boxing, Ballet Spin

TABLE III
LIST OF DATASETS FOR EXPERIMENTS

Fig. 5. Sample frames from our testing datasets. The first to the third rows
show sample frames from MSR II, CMU and Youtube videos, respectively.
The fourth row shows some different frames from the 5-hour large dataset.

Fig. 6 compares the precision-recall curves for the following
methods (the resolution for the original videos is 320× 240):
(i) ASTBB (Accelerated Spatio-Temporal Branch-and-

Bound search) [8] in low resolution score volume (frame
size 40 × 30),

(ii) Multi-round branch-and-bound search [7] in low-
resolution score volume (frame size 40 × 30),

(iii) Top-K search in down-sampled score volume discussed
in [15] (size 40× 30, but for the indexing we do not use
the supervised trees in [15]),

(iv) ASTBB [8] in 320× 240 videos,
(v) Random-indexing-trees based voting followed by Top-K

search in down-sampled score volume (size 40× 30).
The first four methods ((i)-(iv)) employ the LSH based

voting strategy [7]. The measurement of precision and recall is
the same as those described in [7]. To compute the precision
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(i) LSH + 40*30 [8], AP: 0.3792
(ii) LSH + 40*30 [7], AP: 0.5922
(iii) LSH + 40*30 [15], AP: 0.6242
(iv) LSH + 320*240 [8], AP: 0.5717
(v) Random Index Trees + 40*30, AP: 0.7861

Fig. 6. Precision-recall curves for handwaving detection on MSR II. AP in
the legend means the average precision.

we consider a true detection if : Volume(V ∗∩G)
Volume(G) > 1

8 , where
G is the annotated ground truth subvolume, and V ∗ is the
detected subvolume. On the other hand, to compute the recall
we consider a hit if: Volume(V ∗∩G)

Volume(V ∗) > 1
8 . According to Fig. 6,

our random-indexing-trees based action detection outperforms
the other algorithms. Compared with LSH voting strategy ((i)-
(iv)), it shows that our random-indexing-trees based voting
is more discriminative and robust. The underlying reason is
that our random trees are data-aware, i.e. we model the data
distribution when constructing the trees. Besides, since LSH
only uses two nearest neighbors for voting, the results are
easily corrupted by noise. In [15], random forest is employed
to perform action detection. However, the difference is that
trees in [15] are constructed in a supervised manner, which
means that the label information is utilized when splitting the
nodes, while our random trees are unsupervised built with the
purpose of modeling the underlying data distribution.

C. Action Retrieval on MSR II

To give a quantitative result for our action retrieval system,
we use videos from MSR II as the database. The query
samples are drawn from KTH dataset. As there hasn’t been
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any reported action retrieval results on MSR II dataset, we
compare our retrieval results with several previously reported
action detection results on this dataset. The evaluation is the
same as that for action detection. For the implementations
of our random indexing trees, we set the number of trees
in a forest NT = 550 and the maximum tree depth to 18.
Fig. 7 compares the following three strategies on handwaving,
handclapping and boxing actions (for the boxing action, we
flip each frame in the query video so that we can retrieve the
boxing coming from both directions1), respectively.
(i) One positive query example without Hough refinement,

(ii) One positive query example with Hough refinement,
(iii) Cross-Dataset detection [14]2,

As shown in Fig. 7, with a single query, our results ((i) and
(ii)) are already comparable to (iii) for all three action types.
This is quite encouraging because (iii) used all the training
data while we only use a single query. Besides, our Hough
refinement scheme (ii) improves the results without Hough
refinement (i).

Fig. 8 shows the experimental results of interactive action
retrieval. The following six strategies (all of them are per-
formed without Hough refinement) are compared.
(i) One query example with random indexing trees (RIT)

based voting,
(ii) One query example with LSH based voting,

(iii) One positive and one negative query examples
(iv) Two positive and two negative query examples,
(v) One iteration of user interaction after (i),

(vi) Two iterations of user interaction after (i).
Performance for LSH based indexing scheme [7] is listed

with the similar framework as random indexing trees. The
parameters for LSH are set to make the comparison fair.
We can see that when there is only one query example, our
random-indexing-trees based voting strategy (i) is superior to
LSH based voting strategy (ii). When there are two query
examples (one positive and one negative,) the retrieval results
become worse than the one query case. The reason is that
negative action type is more difficult to describe and a single
negative example is sometimes not enough. Fig. 9 shows
that we can increase our average precision by increasing the
number of negative queries. The results would be stable if
we use around four negative queries along with one positive
query. Besides, the performance of our system increases as
more query samples are given by interaction. In particular,
after two interaction steps, our retrieval results are better than
the results obtained by other action detection systems ((i)-(iv)
in Fig. 6), which utilize all the training data (256 examples).

We also provide some illustrative results in Fig. 4. For each
query, seven subvolumes with the highest scores are listed in
the figure. The retrieved subvolumes are marked by colored
rectangles. The rectangle with cyan background indicates a
“correct” retrieval. As shown in the first row of Fig. 4, some
of the cyan results are focused on a subregion of the action

1Only for the boxing action, we use the query video as well as the flipped
version. For other actions, only the query video is used.

2The STIP features in [14] are extracted in video resolution of 160× 120
but 320× 240 for other methods

region. But this can be relieved with Hough refinement as
indicated in the second row. In short, our action retrieval
system can get very good results among the top retrieved
subvolumes on various actions types.
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(i) RIT: 1 Positive query, AP: 0.4301
(ii) LSH: 1 Positive query, AP: 0.3427
(iii) 1 Positive and 1 Negative querys, AP: 0.2976
(iv) 2 Positive and 2 Negative querys, AP: 0.4153
(v) Interaction round 1, AP: 0.5406
(vi) Interaction round 2, AP: 0.6812

Fig. 8. Precision-recall curves for the interactive action retrieval on MSR II.
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Fig. 9. Comparison of average precision based on the input of one positive
query but different number of negative queries.

D. Action Retrieval on CMU Database

CMU database [6] is another widely used database for
action analysis. Since the annotation of the actions includes
the entire human rather than the action itself (as can be seen
from Fig. 10, our results only mark the region where the
action happens), we only give some illustrative examples on
this dataset. The CMU database includes 48 videos of total
duration around 20 minutes. The resolution for these videos
are 160× 120. Handwaving and bending actions are retrieved
from the database where the query video for handwaving is
from KTH and the query video for bending is from Weizmann
dataset [45].

Fig. 10 shows the search results. For each row, the first
image is a sample frame from the query video and the
following 7 images are from the top-7 retrieved segments, re-
spectively. The cyan region shows the positive detection while
the yellow region shows the negative detection. Compared with
handwaving, bending is a non-periodic action, which is more
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challenging due to simple motion pattern and small number of
query STIP points. From this experiment, we can see that our
algorithm can handle the two actions with a large intra-class
variations and clutter background, even in the low-resolution
and highly compressed videos.

E. Action Retrieval on Youtube Video

In this experiment, we validate our algorithm with a chal-
lenging tennis serve action search from a Youtube video3,
which is also a non-periodic action. More action searches from
Youtube videos will be available from our project website. The
length for the database video is around 280s, with several
tennis serving actions performed by different actors under
different views. The query video is a 2 second segment cut
from a different Youtube video4. The experiment is very
challenging due to the following aspects. First, there are
different scenes and players compared with the query clip.
Besides, the serving actions are recorded in several different
views. Second, it contains not only the serving action but also
a lot of other actions as well. We need to differentiate the
serving action from other actions. Third, in addition to the
large intra-class variations, the visual quality is poor due to
video compression. The regions marked blue (the reason to
use blue color is that it differentiates with the background
color) from 2rd to 6th rows of Fig. 11 are the top 5 retrieved
sub-volumes based on the query video from the first row. We
can see that our algorithm achieves promising results.

F. Action Retrieval on UCF Sports Database

We further validate our algorithm with UCF sports
dataset [9]. We choose to search diving and weightlifting
actions because there are no large camera motions. Since the
videos have already been segmented, no localization is needed.
Fig. 12 shows our experimental result. The two rows illustrate
diving and weightlifting actions, respectively. For each row,
the first column is a sample frame from the query video, and
the subsequent five columns are the top-5 retrieved results.
Although only a single query sample is used for search, we
still obtain quite promising results.

G. Action Retrieval on Large-scale Database

To verify that our algorithms can handle large scale dataset,
we build a large database with more than 200 videos. The
database includes videos from datasets MSRII [7], CMU [6],
VIRAT [46], Hollywood [47] and some videos downloaded
from Youtube. The total duration is around 5 hours.

Four different actions (handwaving, handclapping, boxing
and ballet spinning) are tested in this large dataset. Each
experiment is done with only one query video, without any
post-processing, e.g. Hough refinement. The query videos
for the first three actions (around 15s for each action) are
collected from KTH while the query video for ballet spinning
is downloaded from Youtube (around 5s). For handwaving,
handclapping, and boxing, we retrieve top-40 detections. For

3http://www.youtube.com/watch?v=inRRaudOf5g
4http://www.youtube.com/watch?v=NQcmYTIrqNI

ballet spin, we retrieve top-10 detections since there are not
as many ballet spin actions in the database. Fig. 13 shows
five samples of the retrieved results of handwaving. The
first row gives seven frames from the query video while the
second to fifth rows show the four positive results where the
retrieved subvolumes are marked with cyan color. The sixth
row shows one negative result where the retrieved subvolumes
are marked with yellow color. Similarly, Fig. 14, Fig. 15 and
Fig. 16 show the results of handclapping, boxing and ballet
spin, respectively. Besides, in Fig. 17, we give the retrieved
performance (precision versus the number of top samples
retrieved) for the large database. Based on the illustrative
results, we can see that our algorithm can well handle the
large scale changes, clutter background, partial occlusion and
low visual quality.

H. Implementation Issues

To implement such a system, there are several issues we
need to take care of in both the indexing stage and query
stage. For indexing part, we need to determine the number
of trees. We use an experiment to evaluate the relationship
between the number of trees and average precision. The test
environment is the same as that discussed in Section. VI-C.
According to Fig. 18, the number of trees become stable from
300 for the handwaving and boxing action and from 500 for
the handclapping action. Besides, if we use only one tree
(traditional BOW model), the system cannot find any positive
detections. The reason is that only a very limited number of
database STIP points are matched to the query STIP points
and these matched STIP points are isolated from each other.
Usually only the STIP point itself forms a detection. Hence,
we need to increase the number of trees to introduce more
matches. But as shown in the figure, the performance will be
stable when sufficient number of trees are used.

Based on Fig. 18, we fix the number of vocabularies (trees)
as 550 in our experiment setting. The depth for the trees is set
as 18 for most of our experiments (For Youtube video dataset,
we set it as 15 because the database is of small size). In the
query stage, the downsampling factor of the branch-and-bound
search (referring as a) is first set to 16 in the coarse round of
search and then refined as 8 for another round of search.

I. Computational Cost

In offline stage, we need to first extract the STIP features
from the database videos. The time cost depends on the
content of the videos, video resolution and video duration.
The code for STIP feature is downloaded from the author”s
website [1]. After that, it costs around 3 hours to build a
vocabulary with 550 trees on the STIP features for MSR
II dataset. We do not perform other pre-processing on the
dataset. For the online cost, there are two major runtime costs:
voting and searching. The total computational cost for our
system is listed in Table V. The testing environment is as
follows. We use one query video, which is approximately
20 seconds long. Two datasets are tested in our experiments.
The first database is MSR II, which consists of 54 sequences
with 320 × 240 resolution. The second dataset contains 5
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Fig. 10. Retrieval results for CMU dataset. For each row, the first image indicates the query sample and the following 7 images refer to the highest ranked
retrieved results. All the experiments are done with only one query sample without any user feedback. For the first row, the query clip with handwaving action
is from KTH while the database is from CMU [6]. For the second row, the query clip with bending action is from Weizmann Dataset while the database is
from CMU [6].

Fig. 11. An illustrative example to search tennis serve action. The query and database videos are downloaded from Youtube. The seven images in the first
row show different frames in the query video while the images from 2rd to 6th rows show the top-5 searched results.

hours of videos (discussed in Section. VI-G). To set the
parameter θ in Section V-A, we average the w and h among
the top K results and obtain an error bound based on the
estimated w and h. With this error bound, we can compute
θ similarly as in Eq. 9. We use a PC with 3GHz CPU and
3G memory. Table IV compares the voting cost: the random-
indexing-trees based vocabulary implementation is much more
efficient compared with LSH. According to Table IV, random-
indexing-trees method is over 300 times faster than LSH based
indexing but with even superior performance from Fig. 8. For
the searching cost, as shown in Table V, our coarse-to-fine
subvolume search scheme only costs 24.1s for all 54 video
clips in MSR II, while Top-K search in [15] takes 26mins.
This is even 2800 times faster than the branch and bound
search in [7]. For the 5-hour large dataset, it only costs 37.6s

to retrieve the top-7 results. From the statistics of Table V,
we can see that the increase of database size (from 1 hour to
5 hours) do not significantly increase the computational cost
(from 26.4s to 37.6s). The reason is that the search consists
of two rounds: coarse search and fine search. The fine search
time is almost the same for the two datasets since we only
consider the similar number of candidates received from the
coarse round search. On the other hand, due to the high down-
sampling factor in the coarse round search, the computational
burden for large dataset is not that intensive.

Note that the total computation time is independent of the
duration of the query videos. This means, when there are
more queries, the total computation time only grows linearly
with the feature extraction time, which is around 30s for a
20s sequence. For a very large database, like Youtube, it has
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Fig. 12. Search results of diving and weightlifting on UCF Sports dataset. The first column is from the query video and the following six columns refer
to the top-5 retrieved results. The fourth and fifth results for the diving action and the second result for weightlifting are false positives caused by similar
motion patterns.

Fig. 13. Illustrations for handwaving retrieval in large dataset. First row shows the seven frames from query video while the following rows give the five
retrieved examples (four positive examples marked by cyan color and one negative example marked by yellow color).

little impact to our voting cost since the voting cost mainly
depends on the number of trees and the depth of each tree. In
order to deal with the increasing search complexity, parallel
computing can be utilized in the first step of branch and bound
search since the search for different video clips are mutually
independent. As the number of candidates for search in the
second step of our branch and bound search only depends
on the number of retrieved results required by the user, the
database size has little impact on the runtime cost for the
second step.

VII. CONCLUSION

We developed a fast action search system that can ef-
ficiently locate similar action instances to a query action.
To index the video interest points for fast matching, we
proposed to build multiple randomized-visual-vocabularies by
using random indexing trees. Compared with using a single

Method Voting Time (ms) One sequence (s)
LSH [7] 173.48±423.71 173.48
random indexing trees 0.537±0.14 0.537

TABLE IV
CPU TIME CONSUMED BY STIP VOTING IN MSR II DATABASE THAT

CONSISTS OF 870,000 STIPS. THE SECOND COLUMN IS THE CPU TIME
FOR COMPUTING THE VOTES OF ALL STIPS IN THE DATABASE WITH

RESPECT TO A SINGLE STIP IN THE QUERY. THE THIRD COLUMN IS THE
CPU TIME FOR COMPUTING THE VOTES WITH RESPECT TO A 10-SECONDS

LONG QUERY VIDEO (APPROXIMATELY 1000 STIPS).

vocabulary tree, multiple vocabulary trees better compensate
for information loss due to quantization. By increasing the
number of vocabularies, we can improve the matching thus
lead to better search accuracy. To achieve faster response
time, we developed a coarse-to-fine subvolume search scheme
which results in a dramatic speedup over the existing video



13

Fig. 14. Illustrations for handclapping retrieval in large dataset. First row shows the seven frames from query video while the following rows give the five
retrieved examples (four positive examples marked by cyan color and one negative example marked by yellow color).

Dataset MSR II (1h) Large Dataset (5h)
Voting time (s) 0.6 0.6
Search time (s) 24.1 37
Refinement time (s) 2 0
Total Computation Time (s) 26.7 37.6

TABLE V
TOTAL COMPUTATION TIME OF OUR RETRIEVAL SYSTEM. SUPPOSE THE

QUERY VIDEO IS AROUND 15S AND WE TEST IT ON TWO DATABASE:
MSRII AND 5-HOUR LARGE DATASET. OUR ALGORITHM RETRIEVES THE

TOP 7 SUBVOLUMES FROM THE DATABASE AS SHOWN IN FIG. 4 AND
FIG. 10.
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Fig. 17. Retrieval results from large scale dataset.

branch-and-bound method. Various challenging cross-dataset
experiments demonstrate that our proposed method is not only
fast to search large-scale video dataset, but also robust to
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Fig. 18. Relation between number of trees and average precision.

action variations, partial occlusions, and cluttered and dynamic
backgrounds. Moreover, our technique has the unique property
that it is easy to leverage feedbacks from the user.
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