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Abstract—Given a collection of images or a short video sequence,
we define a thematic object as the key object that frequently ap-
pears and is the representative of the visual contents. Successful
discovery of the thematic object is helpful for object search and
tagging, video summarization and understanding, etc. However,
this task is challenging because 1) there lacks a priori knowledge
of the thematic objects, such as their shapes, scales, locations, and
times of re-occurrences, and 2) the thematic object of interest can
be under severe variations in appearances due to viewpoint and
lighting condition changes, scale variations, etc. Instead of using a
top–down generative model to discover thematic visual patterns,
we propose a novel bottom–up approach to gradually prune un-
common local visual primitives and recover the thematic objects.
Amultilayer candidate pruning procedure is designed to accelerate
the image data mining process. Our solution can efficiently locate
thematic objects of various sizes and can tolerate large appearance
variations of the same thematic object. Experiments on challenging
image and video data sets and comparisons with existing methods
validate the effectiveness of our method.

Index Terms—Image data mining, thematic object discovery.

I. INTRODUCTION

G IVEN a collection of images or a video sequence, can we
discover the thematic objects that are representative of

the visual contents? As two examples shown in Fig. 1, from a
collection of web images sharing the same tag of “Oxford Mu-
seum,” it is of great interest to locate the thematic object, i.e., the
Oxford Museum; another example is the discovery of thematic
object in a commercial video. Solving this emerging image data
mining problem will benefit a number of applications such as

Manuscript received August 05, 2010; revised February 06, 2011, July 18,
2011 and December 03, 2011; accepted December 03, 2011. Date of publication
December 26, 2011; date of current versionMarch 21, 2012. This work was sup-
ported in part by the Nanyang Assistant Professorship (SUG M5804001) to Dr.
J. Yuan. Dr. Y. Fu was supported in part by Futurewei (Huawei) Technologies
Inc. and the Intelligence Community Postdoctoral Research Fellowship under
Award 2011-11071400006. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Xuelong Li.
J. Yuan and G. Zhao are with the School of Electrical and Electronics

Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
jsyuan@ntu.edu.sg; gqzhao@ntu.edu.sg).
Y. Fu is with the Department of Computer Science and Engineering, Univer-

sity at Buffalo–State University of New York, Buffalo, NY 14260-2500 USA
(e-mail: yunfu@buffalo.edu).
Z. Li is with the Media Networking Laboratory, Core Networks Research,

Futurewei (Huawei) Technologies, Bridgewater, NJ 08807 USA (e-mail: zhu.
li@ieee.org).
A. K. Katsaggelos and Y. Wu are with the Department of Electrical Engi-

neering and Computer Science, Northwestern University, Evanston, IL 60208
USA (e-mail: aggk@eecs.northwestern.edu; yingwu@ece.northwestern.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIP.2011.2181952

Fig. 1. Examples of thematic objects. (Top) Finding the “Oxford Museum” in
several web images that are labeled with this tag. (Bottom) Finding the product
object in a commercial video.

video summarization [1], [2], visual object search and detection
[3], [4], and image cosegmentation [5]–[7].
The thematic object must be the common object that is

frequently highlighted in the visual scene. To automatically
discover thematic objects, however, there are two major chal-
lenges. First of all, there lacks a priori knowledge of the
thematic visual pattern, thus not known in advance 1) the
shapes and appearances of the thematic objects; 2) the loca-
tions and scales of thematic objects; and 3) the total number
of thematic objects. Moreover, the same thematic object can
look quite different when presented from different viewpoints,
scales, or under different lighting conditions, not to mention
partial occlusions. It is not trivial to handle its variations and
accurately locate its occurrences. Although invariant local
features greatly improve image matching, accurate localization
of thematic objects remains a challenging problem.
Motivated by the previous success in mining text data, one

popular solution to image data mining is to transfer an image
into a “visual document” by clustering the local visual features
into “visual words.” Then, traditional text mining methods can
be directly applied to image data. Despite moderate successes
of this approach, as images significantly differ from texts, such
a solution has several limitations. First of all, unlike text data
that are composed of a finite vocabulary, images are usually
characterized by high-dimensional features, thus having a con-
siderably higher uncertainty than text. The visual vocabulary
inevitably introduces quantization errors in characterizing the
local features, thus affecting the matching accuracy. Moreover,
image patterns have spatial descriptions, whereas text data do
not. Thus, unlike text analysis, the spatial configuration among
visual primitives should not be ignored. Finally, although the
bag-of-words scheme has been successfully applied to discover
object categories from images [8]–[12], it is less suitable to
discover thematic objects in a very limited number of images,
for example, several or tens of images. In such a case, the vi-
sual document representation is less effective due to the small
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Fig. 2. Data mining steps of discovering the thematic object. (1) First row:
Each ellipse represents an extracted local feature. (2) Second row: Red “ ”
represents the local region with a positive detection score, whereas green “o”
represents the local region with a negative detection score. (3) Third row: Find a
bounding box to crop the thematic object (shown in both second and third rows)
of maximum score. The images are from a public data set in [13].

number of visual primitives for training the visual vocabulary.
Thus, alternative methods should be considered.
To address the above problems, we present a novel bottom–up

approach for thematic object discovery. Our emphasis is on the
accurate localization of the objects despite the background clut-
ters. Fig. 2 illustrates the major steps of our method. First, each
image is characterized by a collection of local features, which
we referred to as visual primitives. We match visual primitives
and gradually expand them spatially to recover the whole the-
matic object. In the initialization phase, “uncommon” visual
primitives that are of limited matches in other images are dis-
carded because they will not belong to any common pattern,
i.e., the thematic object. For each remained visual primitive,
we consider its local spatial neighborhood as a larger visual
group and check the commonness score of this spatial pattern.
Following multilayer commonness checking of different spa-
tial scales, each local feature is finally assigned a commonness
score, which indicates its likelihood of belonging to a thematic
object. The commonness score of any subimage is the summa-
tion of the scores of its local features. By searching the subimage
of highest commonness score in each image, we can locate and
crop the thematic object. Unlike top–down generative models
that rely on a visual vocabulary for topic discovery, our method
only requires matching of visual primitives. It can automati-
cally discover and locate several thematic objects without re-
quiring knowledge of the total number of such objects in ad-
vance. The scales and locations of thematic objects are also
automatically determined. Moreover, with the help of local in-
variant features, it can handle object variations such as scale and
slight point-of-view changes, color and lighting condition vari-
ations, and it is insensitive to partial occlusion. Finally, it does
not require a large number of images for data mining, and it
works well to detect thematic object in a very limited number
of images.

The remainder of this paper is organized as follows. We dis-
cuss related work in Section II and then explain our proposed
method in Section III, followed by the description of the further
acceleration of each pruning step in Section IV. Experimental
results are presented in Section V, and we conclude this paper
in Section VI.

II. RELATED WORK

To discover common visual patterns in images, some pre-
vious works characterize an image as a graph composed of vi-
sual primitives, such as corners, interest points, and image seg-
ments [14]–[18], and perform graph-based matching for object
discovery.
Tan and Ngo [14] use a color histogram to describe image

segments. A common object is discovered by finding the
maximum flows between two images. In order to consider
the spatial relations among these visual primitives, Hong and
Huang [15] apply an attribute relational graph model, where
each visual primitive denotes a vertex of the graph, and spatial
relations among visual primitives are represented as edges
of the graph. Common object discovery is formulated as the
common subgraph discovery problem, where each graph spec-
ifies an image. However, the proposed EM algorithm to solve
the graph matching problem relies on its initialization and does
not guarantee a globally optimal solution [14], [15].
Todorovic and Ahuja [16] represent an image as a tree of

multiscale image segments, where each segment corresponds
to a tree node. Common patterns are discovered by finding the
maximally matching subtrees among the image set. By fusing
the discovered subtrees into a tree union, a canonical category
model can be obtained to detect and segment the object from
a new image. Liu and Yan [18] employ spatially coherent con-
straints for graph matching. However, the proposed solution is
specifically designed for a pair of images, and not for a collec-
tion of images. In general, for the graph-based representation
of images, matching and mining subgraphs are computationally
demanding.
To accelerate the data mining process, Yuan et al. [19] and

Zhao and Yuan [20] propose a bottom–up candidate pruning
method for common object discovery. Yuan and Wu [21]
propose a randomized algorithm to discover common objects.
Using multiple spatial random partitions, it can discover and
locate multiple common objects in a collection of images.
Another randomized algorithm is proposed in the work of
Chum and Matas [22] to cluster spatially overlapping images.
It proposes to apply the min-Hash algorithm for fast detec-
tion of pairs of images with spatial overlap, and then find
the clusters of images that have partial overlaps. However,
as the goal is to find image clusters, it does not require to
locate the common object. Heath et al. [23] build the image
web by mining common regions between any pair of images
using affine cosegmentation. It also focuses on mining the
connectivity of large-scale image collections. Bagon et al. [24]
propose a method that can detect the common object in a very
few number of images, where the discovered common object is
depicted by a binary sketch. Because the common object can
significantly vary, fully unsupervised object discovery under
realistic circumstances remains a challenging problem.
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In addition tomining common objects, the discovery of object
categories is also of great interest in the literature of Tuytelaars
et al. [12]. In some early work, Fergus et al. [25] and Weber et
al. [26] learn a part-based model for object categories. However,
these methods need to specify the structure of the model, for
example, the number of parts and their spatial relations; thus,
they are not fully unsupervised. By representing an image as
a “bag-of-word,” Sivic et al. [8] and Russell et al. [9] apply
top–down text mining methods to the image data, such as prob-
abilistic latent semantic analysis [27] and latent Dirichlet al-
location [28]. In some recent works [10], [29] [30], frequent
item set mining is applied to the discovery of visual patterns
in visual documents. However, one common limitation of the
bag-of-words approaches is that the data mining results rely on
the quality of the visual vocabulary. Due to the visual variations
and uncertainties of local features, it is however difficult to ob-
tain a good universal visual vocabulary. To alleviate the quan-
tization effects of the induced visual vocabulary, Grauman and
Darrell [31] propose an unsupervised learningmethod that relies
on visual primitive matching to discover object categories in un-
labeled images. The pairwise affinities between the images are
measured by their partial-match feature correspondences. Then,
images sharing common objects are grouped via spectral clus-
tering. In the work of Wu et al. [32], a generative model, called
active basis model, is proposed to learn a deformable template
to sketch the common object from images. The active basis con-
sists of a small number of Gabor wavelet elements at selected
locations and orientations. Overall, the aforementionedmethods
focus on discovering object categories instead of thematic ob-
jects. They often assume that every image contains one object,
which dominates the whole image; thus, localization of the ob-
ject is not required.
In addition to mining common patterns in images, there is re-

cent work on discovering common objects in video sequences
and image pairs as well [1]–[3], [7], [18], [33]. The work of
Sivic and Zisserman [3] discovers interesting visual objects that
frequently occur in a movie. Liu and Chen [1] propose a prob-
abilistic framework for discovering common objects in video,
where small objects in low-resolution videos can be automat-
ically discovered and tracked. Drouin et al. [33] can track a
moving deformable object through discovering its rigid parts.
In the work of Liu et al. [2], common objects are discovered for
video summarization. However, this method needs user labeling
to initialize the search; thus, it is not fully unsupervised. Both Li
and Ngan [7] and Liu and Yan [18] focus on the common object
discovery from a pair of images.

III. PROPOSED METHOD

A. Overview

Given a collection of images , we characterize
every image by a number of visual primi-
tives, i.e., local invariant features [34], [35]. Each visual prim-
itive corresponds to a local image patch;
denotes its spatial location; and is the descriptor of the
visual primitive. A visual object is called a -frequent ob-
ject if it appears in more than images, where is the
user-specified parameter to quantify how frequent is.

Instead of finding directly, we propose to gradually dis-
card uncommon primitives to recover . In the initial-
ization step, we discard uncommon primitives that find few
matches among the rest of images in . We denote the remained
set of primitives as . Each has the potential to
act as a compositional element of a common object but needs
a further check. Although each appears often, the evi-
dence that it belongs to a common object is only local. To fur-
ther validate each , we expand it spatially and form a
larger pattern. For each , its spatial neighbors form a vi-
sual group , where is one of the
nearest neighbors of in the image. The larger the spatial size
of and the more re-occurrences it can find, the stronger the
evidence implied by a common pattern. Therefore, we can grad-
ually increase the size of for a multilayer checking. After
that, a commonness score will be assigned to each visual
primitive , which reflects the likelihood that belongs to the
common object. The formal definition of will be discussed
in Section III-B. Intuitively, a primitive has a positive com-
monness score if its visual group frequently appears among
the data set , and vice versa, whereas it has a negative com-
monness score if it rarely repeats. Once the commonness score

of each is obtained, the thematic object can be located
as the subimage region that contains the most common
primitives. Localization of the thematic object will be discussed
in Section III-C.

B. Multilayer Candidate Pruning

To gradually prune primitive candidates, it is important to as-
sign an appropriate commonness score to each primitive
. Intuitively, the commonness score indicates the like-
lihood that belongs to a common object and should depend
on the frequency of ’s occurrence. Namely, the more the in-
stances of in the image data set , the higher its common-
ness score . However, due to the visual pattern variations,
a direct count of ’s occurrence would not be reliable. In addi-
tion, a texture region may generate a high frequency of textons
, but they may not belong to any common object. Compared
with the re-occurrences of an individual , the re-occurrence of
a group of primitives that keep their spatial relation is more re-
liable. Therefore, instead of estimating the commonness of in-
dividual primitives, we also evaluate the commonness of by
considering its -spatial nearest neighbors ( -SNNs). As neigh-
borhood size increases, we gradually enlarge the spatial sup-
port of and perform multilayer commonness checking for .
Such a multilayer procedure has two advantages. First of all, it
avoids an exhaustive search of all groups by considering the re-
dundancy among the nodes in the tree. Thus, it accelerates the
data mining process. Second, by finding the appropriate groups,
it also helps to determine the spatial size of the common object.
In the following, we briefly explain the multilayer pruning

procedure. For each , its -SNNs in the image form a visual
group . Given a database of primitives , we gradu-
ally prune visual primitives and decrease the size of the can-
didate set . In the first step, uncommon primitives with few
matches are discarded from . After rejecting uncommon prim-
itives, is a smaller set. For each remaining primitive

, we need to check the commonness of its generated
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group . It is now important to define the similarity mea-
sure (or matching) between two groups rather than two indi-
vidual visual primitives. Suppose that the number of SNN is
for groups in , the similarity between two sets and ,

, can be defined as a matching problem [36]

(1)

where denotes a matching between two point sets and ,
specifying which primitive matches to , and
is the complete set of all possible matching. Given a group
, its supportive set consists of the groups in the rest of images

that match , i.e.,

(2)

where is the matching threshold. For each , it will
be discarded if its group does not have enough supportive
groups, i.e., , where is the parameter of minimum
frequency and is the total number of images.
After discarding uncommon groups, we obtain an even

smaller candidate set . In the next layer, we only check the
remained candidates in , but using a larger spatial neighbor-
hood. Suppose that there are in total layers and denote by
the final set, we obtain a filtration and the
corresponding spatial neighborhood size .
Compared with , a visual primitive
corresponds to a larger spatial neighborhood and is more likely
to be a part of a common object.
Based on multilayer checking, each visual primitive is as-

signed a commonness score. For each , its
commonness score is a positive value. The more layers can
pass, the higher the commonness score it has. For the primitives
in , its commonness score is
a negative value because these primitives are nonrepetitive by
themselves. Finally, we assign the commonness score to each
as

if
if

(3)

where is the predefined negative vote value. We will specify
these parameters in the experiments. Overall, they are not sen-
sitive to different image data sets. Our multilayer pruning algo-
rithm is summarized in Algorithm 1.

C. Detecting Thematic Object

After obtaining the commonness score , we can locate
the thematic object in each image using a bounding box. More
formally, for each image , we search for the bounding box
with the maximum commonness score

(4)

where is the objective function and
denotes the candidate set of all valid subimages in .
To speed up this localization process, we apply the branch-

and-bound search proposed in [37]. The target bounding box

is determined by four parameters, i.e., top, bottom, left, and
right positions in the image.

Algorithm 1: Discovery of Thematic Objects.

Input: unlabeled images with extracted local primitives
, and threshold

Output: thematic objects in each image

/ Multilayer Candidate Pruning

1 foreach do

2 if then

3 add to

4 for do

5 for , do

6

7 if then

8 add to

9 for do

10 if then

11

12 if then

13

/ Thematic Object Localization

14 foreach do

obtain

15

16 add to a set

D. Differentiation of Multiple Thematic Objects

Although the branch-and-bound search can detect all the-
matic objects, we need to further differentiate them if there are
multiple thematic objects in the same image set. We thus per-
form object clustering to differentiate thematic objects. As each
detected object is characterized by a subimage region , we es-
timate the affinity relationship between two subimages and

as follows. First, for each subimage, we count the number
of primitives whose -SNN is supported by other subimages.
For layer , this number is calculated as

, where denotes ’s spatial location.
Furthermore, for subimage , we count the number of primi-
tives whose -SNN is supported by the other and denote this
number as . After counting these numbers for all layers, the
pairwise similarity is defined as
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If no visual primitive is matched between and , their
affinity value is set to be a negative value, i.e., 1. Once affinity
matrix is obtained, we start to group one common object by
finding a dense subgraph as

(5)

where

We employ a fixed-point iteration procedure in [38] to solve
(5) and to extract the densest subgraphs one by one. For ex-
ample, after finding the densest subgraph, we can remove all
of its nodes and continue to find the second densest one, until
no qualified subgraph can be found, i.e., the obtained subgraph
only contains a single node.

IV. APPROXIMATE SIMILARITY MATCHING FOR FAST PRUNING

Based on the description of our multilayer pruning algorithm
in Section III, it is important to measure the commonness, or
repetitiveness, of both individual visual primitives and a group
of primitives. Given a primitive or a group , we
need to count the total number of its re-occurrences in the rest
of images in . Such a commonness checking should be com-
putationally efficient. In the following, we first discuss how to
speed up the individual primitive matching in Section IV-A,
then propose a method to match visual groups efficiently in
Section IV-B.

A. Pruning Visual Primitives

To measure the commonness of a visual primitive
, we define its matching set as its -nearest neighbors ( -NN)

in the feature space

(6)

where denotes all matches of in , except those appearing
in the same image as ; is a matching threshold; and

denotes the Euclidean distance. , , we define their
similarity measure based on their matching sets as

if
otherwise

(7)

where . is a symmetric measure as
. After performing -NN query for each , we can

build a matching graph to describe the matching
relations among visual primitives. Here, denotes the vertex
set and denotes the edge set. For each , we denote it
as a node and the edge is defined on each pair of nodes

, , . The weight of an edge
reflects the similarity between two primitives.
To search for the -NN and obtain the matching set , an

exhaustive search of the whole data set is of linear complexity
. This is computationally demanding as we need to check

all of the primitives , which results in a quadratic com-
plexity . In order to speed up the -NN query, we apply
the locality-sensitive hashing (LSH) for similarity search in a
high-dimensional feature space [39]. LSH provides a random-
ized solution to the -NN query. The query process is accel-
erated by compromising the results: Instead of performing the
exact -NN query, LSH performs an approximate -NN query.
Performing such an approximate NN-query for each has
two benefits. First, it can prune those uncommon visual primi-
tives. Moreover, for the remaining visual primitives, their best
matches in are found, and this can be further used to help
pruning uncommon visual groups , which will be discussed in
Section IV-B.

B. Fast Pruning of Visual Groups Using Approximate
Similarity Matching

Tomatch two spatial groups, it is computationally demanding
to solve (1). Suppose , and specifies a
matching between and

where , , . Since is the permutation of in-
dices, the number of all possible such matching is .
Given two groups with primitives, the exhaustive search of
is of complexity , and the Hungarian algorithm computes
the optimal matching with complexity [36]. In checking
uncommon groups, we need to evaluate all pairs of and ,
, . Thus, the overall complexity for pruning all un-

common groups is of complexity if using exhaus-
tive search for matching, or if using the Hungarian
algorithm for matching.
To speed up pruning of uncommon groups, we present an ap-

proximate set-to-set matching by taking advantage of the pre-
viously built matching graph . Instead of solving the optimal
matching in (1), we use the approximate similarity score, which
can be efficiently calculated. For a visual group , we can ob-
tain its matching group as

(8)

which is the union of all matching sets of its primitives. Given
two groups and , the approximate similarity score is de-
fined as the size of the intersection between two sets and

, i.e.,

(9)

It is worth noting that, compared with the optimal matching,
the approximate similarity score is generally nonsymmetric, i.e.,

. In comparison, the original
matching problem in (1) can be formulated as a maximum flow
problem in a bipartite graph; thus, the similarity score is sym-
metric, i.e., .
To justify the approximate similarity score, we show in The-

orem 1 that it is an upper bound of the optimal matching score.
Theorem 1: Approximate Similarity Matching: Given

two primitives and and their corresponding groups
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Fig. 3. Matching two groups and
through approximate similarity matching. Each letter

denotes an individual primitive. Each primitive in has a matching set
denoted as a string of blocks under that primitive. For example, primi-
tive has a matching set , whereas cannot
find any matches, with . The approximate similarity score
between and is the size of set intersection of and ,

.

and , let , and

, then we
have

The proof of Theorem 1 is in the Appendix. Fig. 3 illustrates
an example of matching two groups and using the ap-
proximate similarity score. The matching can be formulated as a
maximum flow problem between two sets, which is bounded by
the total number of edges connecting them. Based on Theorem
1, we can safely prune uncommon groups with the approximate
matching score. If , it
implies that group is not a valid re-occurrence of be-
cause as well. Therefore, if cannot find
enough valid re-occurrences even with the exaggerated approx-
imate similarity score, it must be an uncommon group.
To calculate the intersection of two sets and , it is of

linear complexity by using two binary vectors
to index the elements in and . Suppose
, the average size of , , can be estimated as

(10)

where is the average size of .
In general, is a small constant controlled by in an -NN
query. The worst case is when , . By using the
approximate similarity matching, we largely reduce the com-
plexity of matching two sets from to . Because ,

, we need to measure the approximate similarity score;
the overall complexity for pruning uncommon groups is now of

.

V. EXPERIMENTS

A. Experimental Setting

To evaluate our algorithm, we collect 10 image collections
and 30 commercial video clips for thematic object mining. The
number of images in these 40 data sets ranges from 4 to 89.

The same thematic object can be varied due to rotation, partial
occlusion, scale, viewpoint, and lighting condition changes. It
is possible that one image contains multiple thematic objects
and some images do not contain any thematic objects. For all
of our experiments, the multilayer candidate pruning has four
layers, and the corresponding sizes of the spatial neighborhood
are , , , and , respectively.
The other parameter in (3) is set to be 2. From each image,
we extract and compare two types of visual primitives, namely,
scale-invariant feature transformation (SIFT) [34] and maxi-
mally stable extremal regions (MSER) [35]. SIFT corresponds
to local square patches, whereas MSER corresponds to local
ellipse patches. Both types of local features are characterized
by the SIFT descriptor of 128 dimensions. Matching threshold

is fixed. If the data set contains more than 60 images,
we set to enable a more efficient matching via LSH.
Without otherwise mentioned, we specify frequency parameter

. During the branch-and-bound search, to prevent in-
cluding empty pixels into the thematic objects, we assign a small
negative commonness score to each empty pixel that does not
locate any visual primitive. In our experiments, we test four dif-
ferent negative values, i.e., 0.01, 0.02, 0.03, and 0.04,
and selected the best one as our cropping result. All of the ex-
periments are performed on a standard P4-3.19-GHz PC (2-GB
memory). The algorithm is implemented in C++.
To quantify the performance, we manually label the ground

truth bounding boxes of the thematic objects in each image. Let
and be the discovered subimages and the bounding

boxes of ground truth, respectively. The performance is mea-
sured by two criteria, i.e., precision and
recall . Both precision and recall measure
the accuracy of thematic object discovery. By combining preci-
sion and recall, we further use a single -measure as the metric
for performance evaluation [40]. -measure recall
precision recall precision is the weighted harmonic mean of
precision and recall.

B. Discovering Thematic Objects in Image Collections

We first test the mining algorithm on ten image collections.
Fig. 4 presents mining results on nine image collections.
The discovered thematic objects are highlighted by the red
bounding boxes. From top to bottom, we describe our data
set as Dataset Dataset . Dataset contains a collection
of logos, and two images contain two thematic objects.
Dataset Dataset are image collections of four Oxford build-
ings. Dataset Dataset are image collections of another five
thematic objects. In these data sets, the thematic objects are
under different variations such as rotation, scale, viewpoint,
and lighting condition changes. Two images in Dataset do not
contain the thematic object.
Table I summarizes the performance of our method. For each

data set, the number of images (ImageNo.) and the occurrence
number of thematic objects (ObjectNo.) are shown in the first
and second rows, respectively. The number of correctly detected
thematic objects (CorrectNo.) and its ratio to the total thematic
objects (CorrectRa.) are shown in the third and fourth rows,
respectively. Finally, the number of falsely detected thematic
objects (FalseNo.) and its ratio to the total thematic objects
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Fig. 4. Sample results of common object mining from image collections. Each row corresponds to an image collection (at least six images), and the common
object is discovered by the red bounding box. The common objects are under different variations such as rotation (row 5), partial occlusion (rows 2 and 8), scale,
viewpoint, and lighting condition changes (rows 3, 4, 5, and 9).

(FalseRa.) are given in the last two rows. These mining results
show that the proposed approach performs well for mining

identical thematic objects from image collections. Fig. 5 shows
the -measure of all ten testing data sets. We compare the
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TABLE I
EVALUATION OF OUR METHOD WITH TEN IMAGE COLLECTIONS

TABLE II
EVALUATION OF OUR METHOD WITH 30 VIDEO SEQUENCES

Fig. 5. Evaluation of our method using different thresholds on ten image
collections.

-measure under different thresholds . It can be seen that the
best performance is obtained when , whereas the worst
performance is obtained when . This is due to the large
variations among different occurrences of a thematic object.
Therefore, a smaller is preferred when pruning candidates.
Fig. 6 shows the evaluation of our method with different types
of visual primitives. It can be seen that MSER performs better
in data sets of buildings. This is because MSER is more robust
to view changes. On the other hand, SIFT performs well on
mining planar objects without large viewpoint changes (e.g., a
graffiti wall) [41].

C. Discovering Thematic Objects in Videos

To evaluate the proposed approach on mining videos, we
further test our method with 30 video clips downloaded from
YouTube.com. Most of the clips are commercial videos, and

Fig. 6. Evaluation of our method using different types of visual primitives on
ten image collections.

each video contains at least one thematic object, e.g., the Star-
bucks logo in a commercial video of Starbucks Coffee. As the
key object to be highlighted, such a thematic object frequently
appears, and the discovery of it is essential to understand and
summarize the video contents.
In each video, the occurrences of the thematic objects range

from 7 to 45 s. We sample key frames at 2 frames/s, and then
discover thematic objects from the extracted key frames. Fig. 7
shows some sample results of the discovered thematic ob-
jects.From top to bottom, the test video data sets are Dataset
Dataset . In the video scenes, the thematic objects are also
subject to different variations such as partial occlusions, scale,
viewpoint, and lighting condition changes. It is possible that
one video clip contains multiple thematic objects and some
frames do not contain any thematic objects. Dataset and
Dataset are also used in [2].
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Fig. 7. Sample results of common object mining in video key frames. Each video sequence may contain multiple common objects. Each row shows a video
sequence, and the discovered common object is highlighted by the red bounding box. The common objects are under different variations such as rotation (row 5),
partial occlusion (rows 1, 2, and 3), scale, viewpoint, and lighting condition changes (rows 4 and 5).

Fig. 8. Evaluation of our method using different thresholds on 30 video
sequences.

Table II summarizes the performance of our method on 30
video sequences. Fig. 8 shows the -measure of all 30 testing
data sets. We compare the -measure under different thresholds
. Fig. 9 shows the evaluation of ourmethodwith different types
of visual primitives. It can be seen that SIFT performs better in
most data sets, whereas MSER performs better only in several
specific data sets. This is because SIFT is appropriate to match
planar objects such as the commercial products or their logos.
Finally, Fig. 10 evaluates the influence of the image data set

size. In the testing data set, each image contains only one the-
matic object. It can be seen that the data mining performance

Fig. 9. Evaluation of our method using different types of visual primitives on
30 video sequences.

can be improved by increasing the number of images. Unsur-
prisingly, with more instances of the thematic object in the data
set, it can help to handle the object variations.

D. Computational Cost

To quantify the efficiency of our multilayer pruning, Table III
presents the results of mining the image data set, as shown
in Fig. 4. It contains 14 images, and the total number of vi-
sual primitives is . By setting for -NN
query, the average number of matches that each primitive finds
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Fig. 10. Evaluation of our method with different number of images.

TABLE III
MULTILAYER CANDIDATE PRUNING

TABLE IV
RUNTIME COST ANALYSIS (IN SECONDS)

is . We also notice that the initial pruning of visual prim-
itive is efficient using LSH. Once the index is built for the data-
base, the average query time for each is around only
1 ms and the total query time for is around 15 s.
After initial pruning, the number of candidate primitives is re-
duced to . For the other three layers of commonness
checking, the number of remained candidate visual primitives
is reduced to 483, 363, and 228, respectively, with checking
times of 3.21, 2.10, and 1.79 s, respectively. This shows that the
approximate group matching is computationally efficient when
using the data set with a limited number of images. Finally, the
object localization using branch-and-bound search is also effi-
cient. It costs only 3.19 s for all of 14 images. The total CPU cost
for mining the thematic object from the 14 images is 26.52 s.
Without considering the cost of SIFT/MSER feature extrac-

tion, the computational cost of ourminingmethod includes three
parts: 1) individual visual primitive matching using LSH; 2)
multilayer commonness checking; and 3) thematic object lo-
calization and clustering. Table IV presents the computational
cost when mining image data sets of different sizes. It can be
seen that, as the size of data set becomes larger, the multilayer
pruning algorithm requires much more time.

Fig. 11. Performance comparison of our approach (Proposed), topic discovery
approach (Topic) [9], subgraph mining approach (Subgraph) [38], and random
bounding box approach (Random) on ten image collections.

E. Comparison With Other Approaches

To compare our proposed method, we test three other
methods: 1) random bounding box; 2) topic discovery; and 3)
subgraph mining. For the first method, we randomly generate
a bounding box to guess the location and scale of the thematic
object. The top-left and bottom-right corners of the bounding
box are randomly selected with a uniform distribution. The
second method is proposed in [9], which finds common objects
via topic discovery. First, each image is segmented multiple
times, with different number of segments . Given multiple
segmentations, it is expected that one of the segments will
contain the common object. By clustering visual primitives
into a visual vocabulary, each segment is represented as a
bag-of-words. After obtaining a pool of segments (visual doc-
uments) from all of the images, common topics are discovered
using latent Dirichlet allocation [28]. Finally, for each discov-
ered topic, all image segments are sorted by how well they
are explained by that topic. The segment at the highest rank
is selected as the common object. In our implementation, we
segment each image into and segments,
respectively. We perform normalized cut [42] in both original
images and the downsampled images of half size of the original
image. This generates a total of 96 segments per image. To
obtain the bag-of-words presentation, SIFT descriptors are used
and quantized into 1000 visual words by -means clustering.
The third method is proposed in [38], which also employs
the bag-of-words presentation. By representing the pairwise
relations among all words as an affinity graph, this method
formulates the common pattern discovery problem as a cohe-
sive subgraph mining problem. After discovering a subgraph
of the spatially collocated word, the instances of the common
pattern are located by finding the bounding boxes that contain
the common words.
Fig. 11 presents the quantitative comparison of different

approaches for ten image collections. Overall, our proposed
approach outperforms all other methods in terms of the
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-measure, with an average score of 0.63 (Proposed) com-
pared with 0.15 (Random), 0.46 (Topic Discovery), and
0.24 (Subgraph). It clearly shows the advantages of com-
bining the multilayer candidate pruning strategy and the
branch-and-bound search algorithm. As expected, the random
guess of the bounding box has the lowest -measure in most
image collections. Its performance depends on the size of
common objects. When the common object occupies a large
area in the image, a randomized bounding box would well
capture the common object. Otherwise, it is very likely to
fail. For the topic discovery approach, it does not consider the
spatial relationship among the visual primitives and is affected
by the quantization error in building the visual vocabulary [13].
Moreover, the performance of topic discovery highly depends
on the performance of the image segmentation. Although each
image is segmented multiple times with different scales and
number of segments, it is often that the common object is
not well extracted (e.g., Dataset and Dataset ). Due to the
background clutters, obtaining reliable image segmentation
is not a trivial task. Thus, the topic discovery approach only
obtains a coarse recovery of the common object, which is far
from satisfactory. The subgraph mining approach does not
work well for this data set either. The performance also relies
on the quality of the visual vocabulary. Moreover, as it only
considers pairwise relationship between two words, high-order
relations among the visual primitives are not utilized.
In addition to testing on image collections, we also test our

method and compare it with the above three methods on 30
video sequences. Fig. 12 presents the quantitative comparison.
Overall, our proposed approach outperforms all other methods
in terms of the -measure, with an average score of 0.58 (Pro-
posed) compared with 0.15 (Random), 0.32 (Topic Discovery),
and 0.38 (Subgraph). It clearly shows that our proposed method
outperforms the other three methods again. Due to the diffi-
culty of obtaining the reliable video key frame segmentation, the
topic discovery approach only obtains a coarse recovery of the
common object, which is outperformed by the subgraph mining
approach.

VI. CONCLUSION

We have proposed a novel bottom–up images data mining ap-
proach for thematic object discovery in both images and videos.
Instead of modeling each image as a visual document and dis-
cover thematic patterns through conventional top–down gener-
ative models, we directly match visual primitives and gradu-
ally expand them to recover the thematic object of larger spa-
tial support. Our method does not rely on visual vocabulary and
considers the spatial structure of visual patterns. To overcome
the computational cost of searching the huge solution space, we
propose a multilayer candidate pruning method to efficiently
prune unqualified candidates of thematic patterns. With each
visual primitive obtaining a commonness score, these pieces
of local evidence of thematic patterns are accumulated through
searching the bounding box of the highest commonness score.
To further accelerate the visual pattern matching and mining,

Fig. 12. Performance comparison of our approach (Proposed), topic discovery
approach (Topic) [9], subgraph mining approach (Subgraph) [38], and random
bounding box approach (Random) on 30 video sequences.

we propose the approximate group matching for fast matching
of two sets of visual primitives.
Experiments on both image collections and video sequences

show that our method can automatically determine the scale, lo-
cation, and number of thematic objects. It is able to handle ob-
ject variations due to scale, viewpoint, color, and lighting con-
dition changes, even partial occlusion. Using the branch-and-
bound search, our localization is efficient and robust to the clut-
tered backgrounds. The proposed method is applicable to dif-
ferent types of local features. Our future work includes how to
further improve the feature matching and candidate pruning ef-
ficiency, such that it can handle web-scale image and video data
set.

APPENDIX A
PROOF OF THEOREM 1

Suppose that is the optimal matching, we have

(11)

(12)

(13)

(14)

(15)

(16)

where in (13) denotes the
total number of primitives involved in the optimal matching;

in (14) denotes the
number of valid nodes in , who has matches in . Equation
(13) is obtained because according to (7).
Similarly, we can also prove that

. Because ,
we finally have
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