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Abstract With the popularization of mobile devices, recent
years have witnessed an emerging potential for mobile land-
mark search. In this scenario, the user experience heavily de-
pends on the efficiency of query transmission over a wireless
link. As sending a query photo is time consuming, recent
works have proposed to extract compact visual descriptors
directly on the mobile end towards low bit rate transmission.
Typically, these descriptors are extracted based solely on the
visual content of a query, and the location cues from the mo-
bile end are rarely exploited. In this paper, we present a Lo-
cation Discriminative Vocabulary Coding (LDVC) scheme,
which achieves extremely low bit rate query transmission,
discriminative landmark description, as well as scalable de-
scriptor delivery in a unified framework. Our first contribu-
tion is a compact and location discriminative visual land-
mark descriptor, which is offline learnt in two-step: First,
we adopt spectral clustering to segment a city map into dis-
tinct geographical regions, where both visual and geograph-
ical similarities are fused to optimize the partition of city-
scale geo-tagged photos. Second, we propose to learn LDVC
in each region with two schemes: (1) a Ranking Sensitive
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PCA and (2) a Ranking Sensitive Vocabulary Boosting. Both
schemes embed location cues to learn a compact descrip-
tor, which minimizes the retrieval ranking loss by replacing
the original high-dimensional signatures. Our second con-
tribution is a location aware online vocabulary adaption: We
store a single vocabulary in the mobile end, which is effi-
ciently adapted for a region specific LDVC coding once a
mobile device enters a given region. The learnt LDVC land-
mark descriptor is extremely compact (typically 10–50 bits
with arithmetical coding) and performs superior over state-
of-the-art descriptors. We implemented the framework in a
real-world mobile landmark search prototype, which is vali-
dated in a million-scale landmark database covering typical
areas e.g. Beijing, New York City, Lhasa, Singapore, and
Florence.

Keywords Mobile landmark search · Compact visual
descriptor · Vocabulary compression · Two-way coding ·
Descriptor adaption · System applications

1 Introduction

With the popularization of camera embedded mobile de-
vices, mobile landmark and location search have received
a wide range of attentions from both academia and in-
dustry. For instance, mobile location recognition (Zhang
and Kosecka 2006; Lee et al. 2008; Shao et al. 2003;
Philbin et al. 2007; Crandall et al. 2009; Irschara et al. 2009),
mobile landmark identification, online photographing rec-
ommendation (Kennedy et al. 2007; Hays and Efros 2008;
Ji et al. 2009b; Zheng et al. 2009; Li et al. 2008), and content
based advertising (Liu et al. 2009).

To this end, most existing mobile landmark search sys-
tems follow a client-server architecture. The remote server
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maintains a landmark photo database, where each photo
is bound with a location label e.g. GPS. A scalable near-
duplicate visual search system is typically deployed based
on a Bag-of-Words (BoW) model with inverted indexing
structure (Nister and Stewenius 2006; Schindler and Brown
2007; Ji et al. 2008, 2009a; Irschara et al. 2009). In on-
line search, the mobile user takes a query photo, which is
transmitted to the remote server to identify its correspond-
ing landmark through visual matching.1 Subsequently, the
server returns the search results including the geographical
location, photograph viewpoints, tourism recommendation,
or other value added information.

In many scenarios, the query photo is delivered over a
bandwidth constrained wireless link. The user experience
heavily depends on how much data to transmit. It is easy
to imagine that sending the entire photo is time consuming
and is not necessary indeed. The transmission overload turns
out to be a bottleneck in most existing mobile visual search
applications, especially for video rate reality augmentation.

1.1 State-of-The-Art Mobile Landmark Search Framework

The ever growing computational power motivates the re-
search efforts to extract visual descriptors directly on a mo-
bile device (Chen et al. 2009, 2010; Chandrasekhar et al.
2009a, 2009b; Makar et al. 2009). Instead of sending an en-
tire photo, sending such descriptors are compact enough to
enable the low bit rate search. Comparing with the previous
works in low dimensional local descriptors such as PCA-
SIFT (Ke and Sukthankar 2004), GLOH (Mikolajczyk and
Schmid 2005), SURF (Bay et al. 2006), and MSR descrip-
tors (Hua et al. 2007), works in (Chen et al. 2009, 2010;
Chandrasekhar et al. 2009a, 2009b; Makar et al. 2009) tar-
get at intensive compactness as well as efficient extraction
in a standard mobile end. They are expected to work well in
mobile visual search scenarios.

Towards compact local visual descriptors, Chandrasekhar
et al. proposed a Compressed Histogram of Gradient (CHoG)
(Chandrasekhar et al. 2009a), which are further compressed
by both Huffman Tree and Gagie Tree to reduce the size
of each descriptor to approximate 50 bits. Works in Chan-
drasekhar et al. (2009b) employ Karhunen-Loeve transform
to compress the SIFT descriptor, producing approximate

1Vision based localization is a more generic choice comparing with
solely GPS based localization: First, GPS signal is missing or noisy
in many important locations, such as indoors, occluded skies, and the
areas of dense buildings, which can only be identified by visual match-
ing; Second, the pose and direction cannot be exactly identified by us-
ing GPS only. Third, the object of user interest cannot be located by
GPS. Clearly, GPS only is not suitable for pervasive mobile search ap-
plications like reality argumentation or shopping recommendation. In
addition, instead of relying on GPS signal, we may combine other types
of location related cues (i.e. base station ID) with the visual query to
perform context aware landmark search.

2 bits per SIFT dimension (128 dimensions in total). Tsai
et al. (2010) proposed to transmit the spatial layouts of
interest points to improve the precision of feature match-
ing. Comparing with sending an entire query photo, sending
above compact descriptors are much more efficient (Chan-
drasekhar et al. 2010). For instance, CHoG typically outputs
only 50 bits per local feature. When 1,000 interest points are
extracted per query (following the popular detector setting
(Mikolajczyk et al. 2006)), the data amount to transmit is
only 8 KB, much less than the entire query photo (typically
over 20 KB with JPEG compression).

Chen et al. (2009) stepped forward to send the bag-of-
features histogram (Chen et al. 2009, 2010) instead, which
encodes the position difference of non-zero bins to yield ap-
proximate 2 KB per query photo using a one million vocab-
ulary. It largely outperforms directly sending the compact
local descriptors (more than 5 KB in reported works). Their
successive work in Chen et al. (2010) further compressed the
inverted indexing structure of visual vocabulary (Nister and
Stewenius 2006) with arithmetic coding to reduce the mem-
ory and storage cost to maintain the scalable visual search
system in server(s).

1.2 The Challenges

To the best of our knowledge, sending compressed bag-
of-features still needs 2–4 KB descriptors per query in the
state-of-the-arts (Chen et al. 2009, 2010). In real world 3G
wireless environment, the unstable or limited upstream link
would often delay the subsequent similarity ranking with
the state-of-the-art compactness. The user experience is then
degenerated. However, maintaining sufficient discriminabil-
ity as well as desirable descriptor compactness is a sort of
trade off, demanding elegant descriptor design to optimize
both factors. Below we summarize four key challenges in
the state-of-the-arts.

Location Insensitive Compression The existing compact
descriptors are designed based on the visual statistics solely,
the rich and cheaply available location cues (such as GPS
or geographical tags) are left unexploited. More impor-
tantly, such location contexts have been widely available
from either mobile devices or many landmark photo col-
lections (Zheng et al. 2009; Schindler and Brown 2007;
Irschara et al. 2009; Crandall et al. 2009; Ji et al. 2008,
2009a). We are inspired to develop more compact visual
landmark descriptors that are location sensitive. That is, the
landmark descriptor extraction should be “location sensi-
tive”, taking into account where the query happens.

Unscalable Landmark Description We argue that the com-
pact descriptor could be scalable in length with respect to
different regions, each of which maintains its own sufficient
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Fig. 1 The proposed Location
Discriminative Vocabulary
Coding (LDVC) framework for
efficient and effective mobile
landmark search in a bandwidth
constrained wireless network
environment

discriminability. The scalability depends on the visual com-
plexity of landmark images at a given location. For instance,
the descriptors in a location containing multiple landmarks
with diverse appearances can be less compact.

Symmetric Vocabulary Maintaining The existing land-
mark search systems maintain a symmetric vocabulary be-
tween the remote server and the mobile end. This is un-
necessary. As the visual statistics of different geographical
locations are distinct, we may adaptively compress the vo-
cabulary in the mobile end, with gains in both storage and
computing. On the other hand, as maintaining a single vo-
cabulary to search worldwide landmarks is unrealistic, ex-
isting works had to pre-load a vocabulary per city (Schindler
and Brown 2007; Ji et al. 2008, 2009a), which is extremely
time consuming in real world applications.

Coding Transmission Module The existing landmark
search systems work in a straightforward pipeline, which di-
rectly extracts compact descriptors for upstream2 query de-
livery. However, it is never constrained that only upstream
transmission is allowed before the servers receive the vi-
sual query and perform ranking followed by resulting re-
trieval results. For instance, by leveraging the location of
a mobile user, the remote sever may pre-deliver a compact
downstream supervision to “teach” the mobile how to ex-
tract compact and discriminative descriptors.

2In this paper, “upstream” denotes data delivery from a mobile to a re-
mote server; “downstream” denotes data delivery from a remote server
to a mobile end. Similarly, “upload” denotes a mobile end sends data
to a remote server; “download” denotes a mobile end loads data from
a remote server.

In summary, we have two main concerns towards location
aware mobile landmark search:

• An effective visual descriptor compression scheme: We
aim to learn a location discriminative vocabulary cod-
ing that is discriminative in distinguishing visual content
of different landmarks, extremely compact for wireless
transmission, and scalable for representing and delivering
queries subject to different visual complexity.

• A novel vocabulary maintaining and search framework:
We aim to maintain a single vocabulary on a mobile end
to search worldwide landmarks, which can be efficiently
adapted with respect to different locations.

1.3 Our Contributions

In this paper, we present a location discriminative vocabu-
lary coding framework as shown in Fig. 1, which enables
efficient mobile landmark search even in a bandwidth con-
strained wireless link with two major contributions:

Our first contribution is an adaptive, asymmetric, and ge-
ographical aware vocabulary compression scheme, which
works in the mobile end for location aware low bit rate
landmark description. First, we present a visual aware spec-
tral clustering to segment each city map into discrete ge-
ographical regions (locations) based on a large collection
of geo-tagged photos in that city. Visual similarity is em-
bedded to compensate the distortions in geographical tag
(e.g. GPS) acquisition. Concretely, in each region, we in-
troduce a geographical term weighting to evaluate location
aware codeword discriminability. Then, we learn a Location
Discriminative Vocabulary Coding (LDVC) based on two
proposed schemes: (1) a Ranking Sensitive PCA (rsPCA)
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and (2) a Ranking Sensitive Vocabulary Boosting. The lat-
ter is a simplification to the former and both merit in the
following aspects:

1. Specialized for each geographical region, which is down-
stream adapted to the mobile device to “teach” it how to
extract the desirable descriptor within each region.

2. Extremely compact for both upstream and downstream
wireless transmission, say only tens of bits per query.
Such compactness is suitable for low latency search, es-
pecially in unstable or bandwidth-constraint 3G connec-
tions.

3. Sufficiently discriminative power to maintain the re-
trieval ranking precision comparable to that using high-
dimensional vocabulary.

4. Scalable in its coding length, depending on the vi-
sual complexity in a region: For example, the region
with many landmarks is supposed to yield less compact
LDVC descriptor, and vice versa.

Our second contribution is a novel location aware land-
mark search framework. We break through the traditional
upstream query pipeline: In online search, we first down-
stream deliver the LDVC set to adapt the vocabulary in
the mobile device once a mobile user enters a given re-
gion. Then, once a landmark query occurs, the mobile de-
vice transforms the original Bag-of-Words (BoW) histogram
into a compact LDVC descriptor, which is then upstream
transmitted to the server with arithmetical coding. This
scheme has achieved superior effectiveness (with the high-
est Mean Average Precision) and the lowest transmission
cost (approximate 10–50 bits per query) comparing with the
state-of-the-arts in Chen et al. (2009), Chandrasekhar et al.
(2009a), Jegou et al. (2009, 2010a) to search landmarks in a
million-scale landmark photo collection.

We review related work of landmark search and compact
descriptors in Sect. 2. Our location discriminative vocabu-
lary coding is introduced in Sect. 3. Then, Sect. 4 presents
our online vocabulary adaption and systematic implemen-
tation in typical areas i.e. Beijing, New York City, Lhasa,
Singapore, and Florence. We give quantitative experiments
in Sect. 5, with comparisons to the state-of-the-art works in
mobile visual search (Chen et al. 2009, 2009a) and compact
image signatures (Jegou et al. 2010a, 2009).

2 Related Work

2.1 Landmark Search and Recognition

Near-Duplicate Landmark Matching Recently, scalable
near-duplicate image retrieval (Nister and Stewenius 2006;
Philbin et al. 2007) has been largely addressed by promis-
ing visual vocabulary models with inverted indexing e.g.

K Means clustering (Sivic and Zisserman 2003), Vocabu-
lary Tree (Nister and Stewenius 2006), and Approximate
K-Means (Philbin et al. 2007) et al.

City-Scale Landmark/Location Search Towards city-scale
landmark search and recognition, Schindler and Brown
(2007) presented a location recognition system through geo-
tagged video streams with multiple path search in the vocab-
ulary tree. Eade and Drummond (2008) also adopted a vo-
cabulary tree for real-time loop closing based on SIFT-like
descriptors. Our previous works in Ji et al. (2009b) proposed
a density-based metric learning to optimize the hierarchical
structure of vocabulary tree (Nister and Stewenius 2006)
for street view location recognition. Yeh et al. (2007) fur-
ther adopted a hybrid color histogram to compensate the
feature based ranking in mobile based location recognition
applications. Cristani et al. (2008) learnt a global-to-local
image matching for location recognition. And their con-
secutive work in Crandall et al. (2009) identified landmark
buildings based on image data, metadata, and other photos
taken within a consecutive 15-minute window. In addition,
Irschara et al. (2009) further leverage structure-from-motion
(SFM) to build 3D scene models for street views, combined
with vocabulary tree for simultaneously scene modeling and
location recognition. Xiao et al. (2008) proposed to combine
bag-of-features with simultaneous localization and mapping
(SLAM) to further improve the recognition precision. In-
crementally vocabulary indexing is also explored in Ji et al.
(2008) to maintain a landmark search system in a time vary-
ing database.

Worldwide Landmark Search Towards worldwide land-
mark search and recognition, the IM2GPS system (Hays
and Efros 2008) inferred possible location distributions of a
given query by visual matching in a worldwide, geo-tagged
landmark dataset. As a consecutive work, Kalogerakis et al.
(2009) further demonstrated how to combine single image
matching with sequential data to improve matching accu-
racy. Zheng et al. (2009) developed a worldwide landmark
recognition system, which used a predefined landmark list
to query online image search engines to selected candidate
images, followed by re-clustering and pruning to locate the
final landmark location.

2.2 Mobile Visual Search with Compact Visual Descriptors

Even with the increasing wireless bandwidth, compact vi-
sual descriptors are desirable:

Firstly, it remains a long way to provide a stable and
high-speed (3G) wireless coverage everywhere, especially
for those touristic landmarks that are often far away from
urban areas or in developing countries, e.g., Lhasa, Tibet in
our experiments. So it is unrealistic to guarantee the band-
width is good enough to reliably and fast send a query
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photo. In particular, the recently established MPEG Ad Hoc
Group CDVS (reference number: N11688) is bringing to-
gether the academia and industry practitioners to explore
the next MPEG standard of Compact Descriptor for Visual
Search.

Secondly, from the server perspective, the network capa-
bility of receiving a batch of entire photo queries is by no
doubt limited for a more powerful cloud platform that may
handle intensive search at the server end. From the industry
practice, a clear fact is that receiving multiple query photos
is much more challenging than receiving texts in the state-
of-the-art search engines. More importantly, with compact
upstream queries, more bandwidth can be saved up to down-
stream return the actually valuable searched information (in
rich forms of text, images and video). That is one of the rea-
sons why many Internet service providers often set a smaller
uplink bandwidth to save bandwidth for fast browsing.

Finally, sending large amount of data via 3G wireless def-
initely causes serious battery energy consumption. Empiri-
cal evidence shows that compressing the query photo into
a compact signature and sending the signature through the
mobile is much more power saving.

In summary, the promising research efforts in compact
visual descriptors (as reviewed in Sect. 1.1) are bringing
great benefits in lightening the battery consumption, the cost
of bandwidth and memory, which undoubtedly contribute to
efficient and effective visual query delivery in mobile visual
search, especially in the scenarios of video rate reality aug-
mentation.

It is worth mentioning that, building a vocabulary for
each city is impractical for transmitting selected codewords
at low bit rate, which requires the maintenance of those vo-
cabularies in the mobile end. As proven, to ensure desir-
able search precision, the vocabulary size should be large
enough (e.g. at a million scale) (Nister and Stewenius 2006;
Philbin et al. 2007; Schindler and Brown 2007). But even
for a very small vocabulary (approximate 1,000 words), to
deliver all codewords through a bandwidth constrained wire-
less link is still burdensome. However, to maintain numerous
codebooks (each for a city) in the mobile is definitely unac-
ceptable, due to its limited storage and constrained memory.

2.3 Compact Image Signature

Beyond the context of mobile visual search, compact im-
age signatures are recently investigated in Yeo et al. (2008),
Weiss et al. (2009), Jegou et al. (2010a, 2010b). For instance,
Jegou et al. proposed a product quantization scheme (Je-
gou et al. 2010b) to learn a compact image descriptor that
approximates the square distance of original Bag-of-Words
histograms. The same authors also proposed a miniBOF fea-
ture (Jegou et al. 2009) by packing the bag-of-features. Their
recent work in Jegou et al. (2010a) further aggregated local

descriptors with PCA and locality sensitive hashing to pro-
duce a compact descriptor of approximate 32 bits in length.
Weiss et al. (2009) used spectral hashing to compress GIST
descriptor (Torralba et al. 2008) into tens of bits. Wang
et al. (2010) proposed a locality-constrained linear coding
(LLC) scheme over the Bag-of-Words histogram to improve
the spatial pyramid matching. Finally, in multi-view coding,
Yeo et al. (2008) proposed a rate-efficient correspondence
learning scheme to randomly project descriptors to build a
minHashing code.

2.4 Image Compression

Image compression aims to minimize the visual distortion
between the original image pixels and the recovered ones
from the compressed signals. Many methods such as Run-
Length Coding, Predictive Coding, Entropy Encoding, DCT
Coding, and Dictionary Learning are well explored in the
literature. In contrast, our vocabulary coding aims to obtain
a compact image signature for searching near-duplicate pho-
tos rather than lossy or lossless image recovery. In other
words, we focus on maximizing the descriptor discrim-
inability with minimal coding cost, rather than the percep-
tual consistence in recovering the original image content.
In the subsequent sections, whereas rate distortion in image
compression is employed to evaluate the coding gains, we
emphasize the distortion of search precision with reduced
rates. In our experiments (Sect. 5), the term rate distortion
(“distortion” is in terms of ranking precision) is applied
to study the trade off between descriptor compactness and
ranking precision.

3 Location Discriminative Vocabulary Coding

3.1 Scalable Vocabulary Tree Search

Towards scalable near-duplicate visual search, the Scal-
able Vocabulary Tree (SVT) model (Nister and Stewenius
2006) is well exploited in the state-of-the-art works (Chen
et al. 2009, 2010; Schindler and Brown 2007; Irschara et al.
2009). SVT uses hierarchical k means to quantize local de-
scriptors into discrete codewords. An H -depth B-branch
SVT produces M = BH codewords. And most scalable
search systems typically have H = 6 and B = 10 (Nister
and Stewenius 2006). Given a query photo Iq with J lo-
cal descriptors Sq = [Sq

1 , . . . , S
q
J ], each descriptor is tra-

versed in the SVT hierarchy to find the nearest codeword,
which quantizes Sq into a Bag-of-Words (BoW) histogram
Vq = [V q

1 , . . . , V
q
M ].

For an N -photo database, an optimized ranking using Sq

is the one that minimizes the following ranking loss:

LossRank =
N∑

x=1

R(x)Ddescriptors(Ix, Iq) (1)
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where R(x) = exp(−rank(x)) is the ranking position weight
of Ix with respect to Iq , such that a higher rank corresponds
to a larger weight. R(x) puts a constraint that a photo more
similar to Iq should be ranked higher. Ddescriptors(Ix, Iq)

stands for the sum of L2 distances for pairwise descriptor
matching between Sq and Sx

3:

Ddescriptors(Ix, Iq)

=
J∑

j=1

(
‖Sx

i′, S
q
j ‖2 s.t. i′ = arg mini ‖Sx

i , S
q
j ‖2

)
(2)

Minimizing (1) with respect to (2) cannot scale up due
to its linear complexity to the image volume N . SVT (Nis-
ter and Stewenius 2006) addresses the scalability by inverted
indexing (Witten et al. 1999) each Ix to codeword Vi that in-
volves descriptor(s) from Sx . Subsequently, SVT only com-
pares those images indexed by each non-zero codeword V

q
i

for the given query Iq :

Ddescriptors(Ix, Iq) ≈
M∑

i=1

‖Count(V x
i ),Count(V q

i )‖2

s.t. Count(V x
i ) = |Sx

j |Q(Sx
j ) = Vi |

Count(V q
i ) = |Sq

j |Q(S
q
j ) = Vi | �= 0

(3)

where Q(Sj ) = Vi means the SVT quantizes descriptor Sj

into codeword Vi ; Count(V x
i ) denotes the number of local

descriptors falling into Vi of photo Ix . Equation (3) approx-
imates the optimal matching between Iq and Ix by counting
their concurrent codewords. Using L2 distance, the inverted
indexing based search is identical to the L2 similarity rank-
ing between two BoW histograms. Therefore, the ranking
loss can be approximated using the following form:

LossRank ≈
N∑

x=1

R(Ix)

M∑

i=1

‖Count(V x
i ),Count(V q

i )‖2 (4)

Many existing works (Nister and Stewenius 2006; Chen
et al. 2009, 2010; Schindler and Brown 2007; Irschara et al.
2009) also involve Term Frequency and Inverted Document
Frequency (TF-IDF) weighting Wx with Cosine distance
as:

LossRank =
N∑

x=1

R(Ix)Wx‖Vx,Vq‖Cosine (5)

3A typical matching allows only one descriptor in Sx to be matched
against one descriptor in Sq . But SVT model counts the quantization
concurrence between Sx and Sq . So one-to-many matching is allowed
in (2).

where TF-IDF weighting Wx is calculated similar to its
original form in Salton and Buckley (1988) as:

Wx =
[
nx

1

nx
log

(
N

NV1

)
, . . . ,

nx
i

nx
log

(
N

NVi

)
, . . . ,

nx
M

nx
log

(
N

NVM

)]
(6)

nx denotes the number of local descriptors in Ix ; nx
Vi

denotes
the number of local descriptors in Ix quantized into Vi ; N

denotes the total number of images in the database; NVi
de-

notes the number of images containing Vi ;
nx

i

nx is the Term
Frequency (TF) (Salton and Buckley 1988) of Vi in Ix ; and
log( N

NVi
) is the Inverted Document Frequency (IDF) (Salton

and Buckley 1988) of Vi in the entire dataset.

3.2 Compact Descriptor Learning Formulation

We aim to learn a coding matrix MM×K from the original
vocabulary V ∈ RM to a compact codebook C ∈ RK . This
matrix transforms an original BoW histogram Vx of Ix to a
much more compact descriptor Cx . In other words, MT is
the coder and M is the decoder as in Fig. 2:

Cx = f (Vx) = MT Vx (7)

We formulate the following cost to seek the trade-off be-
tween the descriptor compactness and the search precision:

CostCompression = |MT V| + αLossRank (8)

| · | denotes the size of MT V (equal to the new codebook C).
We aim to minimize CostCompression in terms of M, where
a low dimensional transform MT V is favored. The ranking
loss LossRank in (8) is formulated as:

LossRank =
N∑

x=1

R(Ix)Wx‖Vx,MCq‖Cosine (9)

where Cq is the compact descriptor extracted from the query
Iq . MCq is the decoded BoW histogram in the server. Seek-
ing an optimal C in a large scale landmark dataset is infea-
sible due to the extreme difficulty in modeling all ranking
constraints for every database photo into (9), for which we
resort to a region-specific sampling scheme latter.

Location Discriminative Compression To enable efficient
optimization in a million scale database, we learn M within
each geographical region as a local optimal compression
function. Subsequently, once the mobile end enters a given
region, its vocabulary is downstream adapted using a region
specific MRegion. (The geographical partition is introduced
in Sect. 4.1.)



Int J Comput Vis

Fig. 2 The proposed vocabulary coding and wireless upstream query transmission pipeline

More formally, given a geographical region containing
images [I1, . . . , IN ], we try to learn the region specific
MRegion. This can be solved more efficiently and effectively
as:

CostRegion
Compression = |MT

RegionV| + αLossRegion
Rank (10)

LossRegion
Rank denotes the sum of ranking loss only in

[I1, . . . , IN ] instead of in the entire N -photo database
(N � n) as:

LossRegion
Rank =

n∑

x=1

R(Ix)Wx‖Vx,MRegionCq‖Cosine (11)

We propose two learning schemes to learn the optimal
C based on the renewed loss in (11): Our first scheme
is a Ranking Sensitive Principle Component Analysis in
Sect. 3.4 to learn MRegion that maximally preserves the re-
trieval ranking orders of the original V. Our second scheme
is a less precise but more effective solution: Instead of the
nonlinear transformation of MRegion, we propose to boost a
compact codeword subset, referred to as “Ranking Sensitive
Vocabulary Boosting” in Sect. 3.5, which is also discrimina-
tive to nicely maintain the ranking precision of V.

3.3 Building Training Set via Conjunctive Ranking

Given a geographical region containing n landmark pho-
tos [I1, . . . , In], the first step of both schemes is to sam-
ple a subset of photos [I ′

1, I
′
2, . . . , I

′
nsample

] to conduct nsample

times conjunctive query,4 which outputs the following rank-
ing lists:

Query(I ′
1) = [A1

1,A
1
2, . . . ,A

1
R]

...

Query(I ′
nsample) = [Ansample

1 ,A
nsample
2 , . . . ,A

nsample
R ]

(12)

where A
j
i is the ith returning of the jth query. [Aj

1,A
j

2, . . . ,

A
j
R] are R top ranked images based on the original BoW

histogram given the jth query (j ∈ [1, nsample]).

4The term “conjunctive” denotes that queries are randomly selected
from each region to simulate the possible queries posed by a mobile
user. The “conjunctive” query is used to train our LDVC descriptor
in each region, which is different from the queries for evaluation. One
advantage is that the conjunctive query does not need any user labeling.

Fig. 3 The probabilistic graph model of Ranking Sensitive PCA
(rsPCA) to learn LDVC descriptor. The LDVC learning is treated as
a generative and supervised Probabilistic PCA, which is guided by
K-dimensional latent variables z with M × K transformation MM×K

and mean μ. What are observable are the nSample conjunctive rankings
with the BoW histograms Vj , j ∈ [1, nSample], corresponding to a list

of R returning results {Aj
r }, r ∈ [1,R]

We aim to maximally preserve the ranking orders of
above conjunctive queries by compact descriptor C instead
of V. To this end, ranking lists of queries [I1, . . . , In] are
treated as training data to learn M in (9), (10), and (11).

3.4 Learning LDVC by Ranking Sensitive PCA

Our first solution comes from learning the principle compo-
nents from V to form the LDVC descriptor in each region.
Different from the original PCA, we resort to its probabilis-
tic version (Tipping and Bishop 1997). We propose a Rank-
ing Sensitive PCA (rsPCA) to embed the ranking discrim-
inability into the principle component extraction. Figure 3
shows the graphical representation of the proposed rsPCA.

Given a set of BoW histograms {Vi} ∈ RM where i ∈
[1, n], PCA learns an optimal linear projection set to map
{Vi} into {Ci} ∈ RK , where RK is a low-dimensional space
of principal components. The mapping minimizes the av-
erage projection cost defined by the mean square distances
between {Vi} and {Ci}. To this end, an M × M covariance
matrix S is first defined:

S = 1

n

n∑

i=1

(Vi − V)(Vi − V)T (13)

where V denotes the mean vector of {Vi}. Subsequently,
PCA extracts the top K eigenvectors c1, . . . , ck from S to
define a K-dimensional linear projection C, such that Sci =
λici , where the ith dimension corresponds to the ith largest
eigenvalue λi with eigenvector ci .
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We do not apply PCA directly in its original form due
to: (1) Computing the full eigenvector decomposition for an
M × M matrix S needs O(M3), which is extremely time
consuming for a large vocabulary. (2) It is hard to embed su-
pervised information (such as the ranking preservation capa-
bility) into the eigenvector decomposition. Instead, we learn
C by an iterative probabilistic optimization.

pPCA for Vocabulary Coding The probabilistic PCA
(pPCA) addresses the computational inefficiency of PCA
from the perspective of probabilistic latent Gaussian distri-
bution (Tipping and Bishop 1997), which adopts Expecta-
tion Maximization (EM) to learn an optimal MM×K with
time complexity O(M) rather than O(M3).

Following the principle of Tipping and Bishop (1997),
we first give an explicit latent variable z corresponding to
the principal component subspace. Then, we define a zero-
mean unit-covariance Gaussian prior distribution p(z) and a
conditional Gaussian distribution p(V|z) over z as:

p(z) = N (z|0, I ) = 1

2π
exp

{
−zT z

2

}
(14)

p(V|z) = N (V|Mz + μ, σ 2I )

= 1

2πσ 2
exp

{
−‖V − Mz − μ‖2

2σ 2

}
(15)

Therefore, with an assumption of Vi being independent be-
tween each other, the original signature V is a generative
output of this linear projection with a M-dimensional zero-
mean Gaussian noise ε and covariance σ 2I :

V = Mz + μ + ε (16)

We aim to determine M, μ, and σ 2 using maximum likeli-
hood estimation. To this end, we give a marginal distribution
p(V) from z as follows:

p(V) =
∫

(V|z)p(z)dz (17)

which is again a Gaussian distribution with:

E[V] = E[Mz + μ + ε] = μ (18)

Cov[V] = E[(Mz + ε)(Mz + ε)T ]
= E[MzzT MT ] + E[εεT ] = MMT + σ 2I (19)

Therefore, each original histogram Vi corresponds to a la-
tent variable zi . And an EM algorithm can be adopted to find
the maximum likelihood of M, μ, and σ 2, with a discrete log
likelihood estimation of (17) as:

lnp(V, z|M,μ, σ 2) =
n∑

i=1

{p(Vi |zi ) + p(zi )} (20)

where μ is equal to V.
In the Expectation step, using (14) and (15), we calculate

the expectation of (20) by expanding the log likelihood into:

E[lnp(V, z|M,μ, σ 2)]

= −
n∑

i=1

{
M

2
ln(2πσ 2) + 1

2
Tr(E[zizi

T ])

+ 1

2σ 2
‖Vi − V‖2 − 1

σ 2
E[zi]T MT (Vi − V)

+ K

2
ln(2π) + 1

2σ 2
Tr(E[zizi

T ]MT M)

}
(21)

E[zizi
T ] = σ 2W + E[zi]E[zi]T , and W is learnt based on

W = MT M + σ 2I . We then only need to estimate E[zn] as:

E[zi] = W−1MT (Vi − V) (22)

In the Maximization step, we maximize the estimation in
(21) with respect to renewed both M and σ 2 as:

Mnew =
[

n∑

i=1

(Vi − V)E[zi]T
][

E[zizi
T ]

]−1
(23)

σ 2
new = 1

MK

n∑

i=1

{‖Vi − V‖2 − 2E[zi]T MT
new(Vi − V)

+ Tr(E[zizi
T ]MnewMT

new)
}

(24)

Using the above EM iteration, pPCA improves the PCA
computational complexity from O(M3) to O(n × M × K),
which is much more suitable for scalable learning.

Ranking Sensitive PCA (rsPCA) We propose a novel Rank-
ing Sensitive PCA (rsPCA) to incorporate the ranking
preservation supervision into PCA learning. rsPCA embeds
the conjunctive rankings into the estimation of p(z) as:

E[zi] = W−1MT (Vi − V) + Lossi
Rank (25)

where Lossi
Rank estimates whether the learnt zi can preserve

the ranking orders of its original BoW Vi :

Lossi
Rank =

R∑

r=1

R(Ai
r )‖MT zi ,VAi

r
‖2 (26)

R(Ai
r ) is the current ranking position of the original rth re-

turning result for the ith conjunctive query Vi (see (27)).5

By embedding the ranking loss in (26), we replace (22) with
(25) in the EM estimation.

5To unify the learning labels, we set Lossi
Rank = 0 for any Vi outside

the conjunctive query set.
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3.5 Learning LDVC by Ranking Sensitive Boosting

We further propose a Ranking Sensitive Vocabulary Boost-
ing to improve the efficiency of LDVC learning, which ap-
proximates the nonlinear coding matrix MRegion learnt by
rsPCA. Our boosting treats vocabulary coding as an Ad-
aBoost (Freund and Schapire 1994) based codeword selec-
tion. The weak learner is each single codeword, and the
learning is to minimize the ranking loss with more compact
descriptors. This coding scheme can be also interpreted as a
linear and greedy dimension reduction.

More formally, we define a unified error weighting vec-
tor [w1, . . . ,wnsample ] to measure the ranking consistency
loss for nsample conjunctive rankings. To unify mathemati-
cal formulations, in vocabulary boosting, MRegionMT

Region is
a diagonal matrix. Suppose at the tth iteration, we got the
current Mt−1

Region with (t − 1) non-zero diagonal elements
to indicate the selection of (t − 1) codewords. To select
the tth codeword, we first estimate the ranking preservation
of Mt−1

Region:

Loss(I ′
i ) = wt−1

i

R∑

r=1

R(Ai
r )WAi

r
‖Mt−1

RegionCI ′
i
,VAi

r
‖Cosine

(27)

R(Ai
r ) denotes the current ranking of the original rth re-

turning of query I ′
i ; wt−1

i is the (t − 1)th error weighting
of query I ′

i to measure its ranking loss. Subsequently, we
have:

LossRegion
Rank =

nsample∑

i=1

Loss(I ′
i )

=
nsample∑

i=1

wt−1
i

R∑

r=1

R(Ai
r )WAi

r
‖Mt−1

Region

× CI ′
i
,VAi

r
‖Cosine (28)

for which the best new codeword Ct is selected as the one
that minimizes the following loss:

Ct = arg min
j

nsample∑

i=1

wt−1
i

R∑

r=1

Rank(Ai
r )WAi

r
‖[Mt−1

Region

+ [0, . . . ,pos(j), . . . ,0]M [0, . . . ,pos(t), . . . ,0]TK ]
× CI ′

i
,VAi

r
‖ (29)

[0, . . . ,pos(j), . . . ,0]M is a M × 1 selection vector to se-
lect the jth column into the linear projection; [0, . . . ,pos(t),
. . . ,0]K is a K × 1 position vector to map this column into
the selected word Ct . Subsequently, we update the error

Algorithm 1: Ranking Sensitive Vocabulary Boosting
for LDVC Construction in Each Region

Input: BoW histograms V = {Vi}ni=1; conjunctive rankings1

{Query(I ′
r )}Rr=1; boosting threshold τ ; error weighting

vector [w1, . . . ,wnsample ]; boosting iteration t = 0.

Pre-Computing: Calculate LossRegion
Rank using (28);2

while {∑nsample
i=1 wt

i
≤ τ } do3

Loss Estimation: Calculate LossRegion
Rank using (28).4

Codeword Selection: Select the codeword Ct that5

minimizes the loss in (29).
Error Re-weighting: Update [w1, . . . ,wnsample ] using6

(30);
Transform Update: Update Mt−1

Region using (31).7

t + +;8

end9

Output: The learnt transformation MRegion, the LDVC10

codebook Cregion = MT
RegionVregion.

weighting of each wt−1
i :

wt
i =

R∑

r=1

R(Ai
r )WAi

r
‖[Mt−1

Region

+ [0, . . . ,pos(j), . . . ,0]M [0, . . . ,pos(t), . . . ,0]TK ]
× CI ′

i
,VAi

r
‖ (30)

which updates the contribution of different conjunctive
queries in selecting the next codeword. Also, the MRegion

at the tth round is updated as follows:

Mt
Region = Mt−1

Region

+[0, . . . ,pos(j), . . . ,0]M [0, . . . ,pos(t), . . . ,0]TK
(31)

The codeword boosting is finalized when
∑nsample

i=1 wt
i ≤ τ ,

which results in a scalable LDVC coding length that may
adapt with the visual complexity in the current region: For
regions that contain complicated landmarks, our LDVC cod-
ing would be less compact to maintain its discriminabil-
ity; for regions that contain visually simple landmarks, the
LDVC would be more compact towards low bit rate wireless
transmission. Algorithm 1 summarizes our Boosting based
LDVC coding.

Learning Convergence Proven Our LDVC aims to pre-
serve the conjunctive rankings (see (27)) of the original
BoW histogram with as fewer codewords as possible. In
the worst case (which is almost impossible), by setting the
threshold τ as

∑nsample
i=1 wt

i = 0, the maximum length of
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LDVC is proportional to the volume of all non-zero code-
words in this region, which is degenerated to Tree Histogram
coding. Therefore, our boosting always converges.

3.6 Model Degeneration Analysis

rsPCA vs. Ranking Sensitive Vocabulary Boosting By
maintaining a diagonal matrix MRegionMT

Region, our Ranking
Sensitive Vocabulary Boosting serves as a linear simplifica-
tion of rsPCA in optimal MRegion learning as follows:

MBoosting

s.t. ∀k∈[1,K]
∑M

i=1 Mi,k = Mj,k|Mj,k �= 0;
∀m∈[1,M]

∑K
k=1 |Mm,k| ≤ 1

(32)

Each column in MBoosting has only one non-zero item; each
row in MBoosting contains only one non-zero item if any.

With this simplified matrix MBoosting and its correspond-
ing z transform, the learning of optimal Mregion is simplified
by a greedy gradient descendent approach: It learns only one
column in MBoosting at the kth boosting (k = [1,K]), which
simulates the learning of Mnew for rsPCA in (23) as:

Mnew
Boosting = Mold

Boosting + [0, . . . ,pos(t), . . . ,0]M
× [0, . . . ,pos(k), . . . ,0]TK

s.t.

ct = arg minj

nsample∑

i=1

wk′
i

R∑

r=1

R(Ai
r )WAi

r
‖[Mold

Boosting

+[0, . . . ,pos(t), . . . ,0]M [0, . . . ,pos(k), . . . ,0]TK ]
× CI ′

i
,VAi

r
)‖

(33)

which is similar to (29) that selects the tth codeword into the
current boosted codeword set.

On Correlation to Word Frequency Thresholding and Tree
Histogram Coding (Chen et al. 2009) The word frequency
thresholding (i.e. keeping those codewords with the t high-
est IDF) can be interpreted by simplifying our Vocabulary
Boosting as:

Mnew
Boosting = Mold

Boosting + [0, . . .pos(t), . . .0]M
×[0, . . .pos(k), . . .0]TK

s.t.

Ct = arg minj

nsample∑

i=1

wk
i

R∑

r=1

WAi
r
‖[Im×k

+[0, . . . ,pos(t), . . . ,0]M [0, . . . ,pos(k), . . . ,0]TK ]
×CI ′

i
,VAi

r
‖

(34)

[0, . . . ,pos(t), . . . ,0]M is an M × 1 selection vector, which
selects the jth column into the linear projection of boosting.
[0, . . . ,pos(k), . . . ,0]K is a K ×1 position vector to map vj

into new codeword Ct . Equation (34) selects the codeword
with the highest IDF into MBoosting

new . Obviously, it’s subopti-
mal to our vocabulary boosting in two-fold:

(1) The Word Frequency Thresholding in (34) does not
consider the effects of previously selected codewords in
each new round of discriminative codeword selection;

(2) It also discards the ranking position R() in loss func-
tion, where choosing words present in the top returning re-
sults is regardless of their positions.

Similarly, Tree Histogram Coding (Chen et al. 2009) also
attempt to choose the non-zero codewords with the similar
principle of (34) to incorporate all codewords with non-zero
IDF into optimization. In contrast, although they are both
more compact and lossy, our rsPCA and Ranking Sensitive
Vocabulary Boosting can better preserve the retrieval rank-
ing capability of the original BoW histograms, which would
be proven subsequently in Sect. 5.5.

4 A Novel Mobile Landmark Search Framework

We further present a novel mobile landmark search frame-
work using our LDVC descriptor, which handles two unad-
dressed issues: (1) how to determine the best geographical
partition to extract LDVC in each region. It is addressed by a
Visual Aware Spectral Clustering in Sect. 4.1; (2) how to ef-
ficiently update the visual vocabulary maintained in the mo-
bile end for the subsequent LDVC extraction. It is addressed
by a Location Based Vocabulary Adaption in Sect. 4.3, with
a two-way LDVC transmission in Fig. 1.

4.1 Visual Aware Geographical Segmentation

We use the geographical tags (latitude, longitude) of land-
mark photos to segment each city into geographical regions.
To avoid incorrect partition of the images from an identical
landmark, we present a Visual Aware Spectral Clustering,
which models the fact that only those geographically nearby
and visually similar photos should be assigned to the same
partition.

Suppose there are in total N photos in a given city, we
first formulate an N -node fully connected graph G. Each
node gi represents a photo, and a link lij denotes the visual
and geographical distance between gi and gj . Subsequently,
we aim to partition G into L subgraphs {G′

l}Ll=1. While di-
rect optimal graph partition is NP hard, we resort to a spec-
tral clustering to achieve this goal, which is proven to be
equivalent to the normalized cut in Ng et al. (2001).

To strictly ensure only geographically nearby photos are
partitioned into the identical region, we leverage a ε-ball op-
eration to disconnect far-away photos in GN×N as:

GN×N =
{

Gi,j , Gi,j < ε

∞, Gi,j ≥ ε
(35)
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Algorithm 2: Visual Aware Spectral Clustering to Seg-
ment Geographical Regions

Input: Geographical Similarity Graph G.1

Output: Spectrum Clustering Graph S.2

ε-Ball Operation on G using (35);3

Build Laplacian Graph L = I − D−1/2GD−1/2;4

Spectral Graph Construction by SVD over L into5

SN×K , with eigenvectors [e1, e2, . . . , eL];
Clustering N rows in SN×L into L clusters using (37);6

Return Spectrum clustering S as graph partition G′;7

Then, we build a diagonal matrix D whose (i, i)-element is
the sum of G’s ith row (dk = ∑N

n=1 Gk,n), based on which a
Laplacian matrix L is built:

L = I − D−1/2GD−1/2 (36)

Subsequently, we extract the L largest eigenvectors (we de-
note them as e1, e2, . . . , eL) from LN×N . They transform
LN×N into a spectral matrix SN×L, in which each row Si is
a L-dimensional normalized eigenvector [e1, e2, . . . , eL] ∈
RL.

We incorporate visual similarity into the clustering of the
rows in SN×K with the similarity as:

Sim(Si ,Sj ) = ‖BoWi,BoWj‖Cosine · ‖Si ,Sj‖2 (37)

where Si and Sj denote two rows in SN×K (K-dimensional).
Based on (37), the visual similarity is integrated into the

spectral graph, rather than directly in G, because G is op-
erated on with a ε-ball to disconnect geographical distant
nodes, hence is hard to control the visual similarity thresh-
old. Algorithm 2 summarizes the overall clustering; Figs. 4
and 5 show two exemplar partitions in Beijing and New York
City respectively; and Fig. 9 shows a typical geographical
scale distribution of regions in Beijing.

4.2 Geographical IDF Evaluation

We propose a refined word frequency measurement to re-
place the IDF weighting of WAi

r
in (27), (28), (29), (30),

(33), and (34), which significantly improves our rsPCA and
Ranking Sensitive Vocabulary Boosting by distinguish the
contributions of discriminative codewords better.

To facilitate landmark search, we aim to distinguish the
contributions of codewords together with their spatial cues.
When the descriptors falling into a codeword are geograph-
ically scatted over the entire region, the codeword is less
discriminative than those concentrated in this region, even
an identical IDF is produced. Hence, we incorporate the ge-
ographical codeword distribution to refine the codeword dis-
criminability beyond the original IDF.

Fig. 4 (Color online) The visual aware spectral clustering to parti-
tion Beijing into geographical regions. Different colors denote differ-
ent clusters

Fig. 5 The visual aware spectral clustering to partition New York into
geographical regions. Different colors denote different clusters

For a given codeword Vi , we incorporate the geograph-
ical distances amongst the images containing Vi to re-
estimate the original IDF IDFi

Original of Vi in G′
j as:

IDFi
Original = log

NG′
j

Ni

(38)

NG′
j

is the number of photos in region G′
j ; and Ni is the

number of photos in region G′
j that contain codeword Vi .

We propose a novel Geographical IDF IDFi
Geo on Vi :

IDFi
Geo

= log

( ∑
Im∈G′

j

∑
In∈G′

j
GeoDis(Im, In)

∑
Im∈G′

j , Vi∈Im

∑
In∈G′

j , Vi∈In
GeoDis(Im, In)

)

(39)

where GeoDis(Im, In) denotes their geographical distance,
which is measured by the L2 distance of their corresponding
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Fig. 6 The typical photo collections within Beijing, New York City, Singapore, and Florence

geographical location6; Im ∈ G′
j denotes image Im falling

into region G′
j ; Vi ∈ Im denotes that image Im contains Vi .

From (39), a codeword that is distributed in a more con-
centrated geographical scale is more likely to produce a
higher IDF, and vice versa. This IDF measure is location
sensitive. Towards efficient LDVC learning, the geograph-
ical IDF should be applied in each region to pre-filter out
less discriminative codewords. However, since the number
of non-zero codewords in each region is limited (Fig. 9), the
directly LDVC learning is also efficient.

4.3 Location based Online Vocabulary Adaption

We present our location-based online vocabulary adaption in
Fig. 1, in which steps 1©– 4© show the interleaved upstream
and downstream operations in adaption:

Step 1©: In a typical scenario, once a mobile user ac-
tivates the landmark search functionality, the geographical
location of this mobile device is sent to the remote server.
This location guides the remote server to locate and assign
the mobile user to one of geographical regions in this city.

Step 2©: Then, the server downstream transmits MRegion

of a current region to the mobile device, where the original
BoW histogram is to be online updated. In other words, the
location of the mobile device serves as an indicator to de-
cide whether to update the compression settings of compact
landmark descriptors.

Step 3©: Once a mobile user takes a query photo as
shown in Fig. 7, either SIFT (Lowe 2004) or CHoG (Chan-
drasekhar et al. 2009a) are directly extracted on the mobile
device. Then, these local descriptors are quantized into an
initial BoW histogram, which is subsequently compressed
using MRegion, typically producing a 10–50 bits LDVC land-
mark descriptor that is upstream delivered to the server.

Step 4©: The server decodes the received LDVC descrip-
tor into the original BoW histogram, and then searches near-
duplicate landmark photos in the inverted indexing system.
Consequently, the remote server downstream delivers the
top-returning photos as well as their locations to the mobile
end, as shown in Fig. 7.

6In our implementation, we adopt GPS to infer the location. Other lo-
cation cues, such as base station information, can be also used.

Fig. 7 User interface of our mobile landmark search, which is devel-
oped in HTC DESIRE G7 smart phone (512 MB ROM + 576 MB
RAM memory, an 8G extended storage, a 528 MHz processor, and an
embedded camera with maximal 2592 × 1944 resolution)

5 Quantitative Evaluations

5.1 Datasets and Evaluation Criteria

Data Collection We collected over 10 million geo-tagged
photos from photo sharing websites of Flickr (http://www.
Flickr.com) and Panoramio (http://www.Panoramio.com).
Our data covers typical areas i.e. Beijing, New York City,
Lhasa, Singapore, and Florence. Figure 6 shows the exem-
plar photos in Beijing, New York City, Singapore, and Flo-
rence. Figure 8 shows the geographical photo distribution in
Beijing, which may delineate the photograph activity of mo-
bile users from a geographical point of view. For instance,
these photos are basically distributed along roads or around
landmarks. In addition, popular landmarks are more likely to
have more near-duplicate photos. As more and more popular
photograph viewpoints result from the consensus of photo
contributors, compact LDVC descriptors are more likely to
be learnt at such locations.

Generating Conjunctive Query Our system randomly se-
lects nsample photos from every region in each city as the
conjunctive queries to train region-specific LDVC. Our sys-
tem collects the top R returning photos for each query using
the original BoW histogram, which finally form a conjunc-
tive query set for LDVC learning subsequently.

Ground Truth Labeling for Evaluation We invite volun-
teers to label landmark queries and their correct matching:

http://www.Flickr.com
http://www.Flickr.com
http://www.Panoramio.com
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Fig. 8 The geographical distribution of community contributed photos
with geographical tagging in Beijing, for which the location distribu-
tion can reveal human activities in their photographing manners

– For each city, we select the top 30 most dense regions
as well as 30 random selected regions based on the geo-
graphical partition.

– Since manually identifying the complete list of related
photos (query and reference) is intensive, we prefer to
identify one or more dominant landmark views from each
of these 60 regions. In practice, all their near-duplicate
photos are manually labeled in its belonging and nearby
regions.

– Finally, 300 queries as well as their ground truth of rank-
ing lists in each city are yielded. In total, we have 300 × 5
(cities) queries in the overall evaluation.

Building Scalable Vocabulary Tree For the landmark photo
collection in each city, we extract both SIFT (Lowe 2004)
and CHoG (Chandrasekhar et al. 2009a) features from each
photo. Using all features in this city, we build a Scalable
Vocabulary Tree model (Nister and Stewenius 2006) V us-
ing hierarchical k means clustering, which generates a BoW
histogram Vi for each database photo Ii . We denote the hi-
erarchical layers as H and the branching factor as B . We
stop the further quantization division when a leaf node con-
tains less than 1,000 descriptors, and this leaf node becomes
a codeword. This settlement gives at most M = BH words
at the finest level. In a typical setting, we have H = 5 and
B = 10 to produce approximate 100,000 codewords. For
Boosting and rsPCA, we built up and maintain a single SVT
tree based on Beijing photo database, which is used in all
touristic cities i.e. Beijing, New York City, Lhasa, Singa-
pore, and Florence.7 Our subsequent experiments will show
that our LDVC adaptation ensures the promising search ef-

7For comparison baselines, we still built the vocabulary within each
city respectively.

fectiveness and efficiency when a mobile user enters any
geographical region.

Evaluation Criterion Both Precision@N and Mean Aver-
age Precision at N (MAP@N) are used to evaluate our per-
formance. Both are widely used in state-of-the-arts (Sivic
and Zisserman 2003; Philbin et al. 2007; Schindler and
Brown 2007; Chandrasekhar et al. 2009a; Jegou et al. 2010a,
2010b). MAP reveals the position-sensitive ranking preci-
sion of the queries based on the returning lists as:

MAP@N = 1

Nq

Nq∑

i=1

( ∑N
r=1 P(r)rel(r)

min(N,#-relevant-images)

)
(40)

Nq is the number of queries; r is the rank, N the number of
related images for query i; rel(r) a binary function on the
relevance of r ; and P(r) precision at the cut-off rank of r .

Note that here we have a min operation between the top N
returning and #-relevant-images. In a large scale search sys-
tem, there are always over hundreds of ground truth relevant
images to each query. Therefore, dividing by #-relevant-
images would result in a very small MAP. Alternatively,
a better choice is the division by the number of return-
ing images. We use min(N, #-relevant-images) to calculate
MAP@N.

As N is at most 20 in our evaluation and always smaller
than the number of labeled ground truth, we simply replace
min(N, #-relevant-images) with N in subsequent calcula-
tion.8

It is worth mentioning that, in many cases the complete
labels are not available due to the incomplete manual la-
beling. But the practice of labeling partial images from the
nearby regions of each query has satisfied our location sen-
sitive experimental set-up. In addition, noisy or wrong GPS
tags may give imprecise or incorrect location, which leads to
the ground truth matching falling outside the nearby regions.
So some effective measurements (like recall@precision 1)
would be inaccurate, as we are prohibited from labeling the
ground truth over the entire database for exhaustive efforts
otherwise.

5.2 Validating Motivations of our LDVC Coding

Geographical Distribution Sparsity of Codewords First,
we show in Fig. 9 that the visual appearances of landmark
images basically produce compactness or consistency within
each geographical region, which investigates whether the vi-
sual vocabulary in a given region is compressible.

From Fig. 9, it is easy to figure out the sparse distribu-
tion of words among geographically nearby photos, typi-
cally 500–800 words from the original large vocabulary (say

8The min(N, #-relevant-images) operation is a common evaluation in
the TRECVID evaluation (http://trecvid.nist.gov/).

http://trecvid.nist.gov/
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Fig. 9 (1) the photo volume of each geographical region; (2) the num-
ber of non-zero codewords in a region (the region-level visual content
complexity may be revealed, and more diverse images more words);
(3) the average number of local features per photo in a region; and

(4) the average number of local features per photo vs. number of pho-
tos per region in Beijing (totally 576), which is an indicator that image-
level visual content complexity is independent of the image number in
a region

how many photos and non-zero codewords are there). As
shown in Fig. 9, this sparsity depends on the scene com-
plexity in a region. For different regions, the image volume
and the number of non-zero codewords would vary, which
allows us to develop scalable vocabulary coding in the cod-
ing length (or compression rate) to flexibly handle the visual
content variances in different regions.

Simplifying Codeword Frequency into Occurrence Sec-
ond, we investigate whether it is feasible to transmit the
Hits/No-Hits (0-1) occurrence histogram instead of the orig-
inal frequency histogram of BoW. If true, one dimensional
signal compression methods (such as run-length coding or
arithmetic coding) can be applied to compress this occur-
rence histogram. Figure 11 shows the performance degener-
ation with our Hits/No-Hits replacement, which empirically
demonstrate that this simplification does not significantly
degenerate precision. Hence, we prefer the replacement of
Hits/Non-Hits in our LDVC coding.

Codeword Frequency Thresholding Third, we investigate
the feasibility of transmitting only the most frequent code-
words in each region. From a lossy compression viewpoint,
this practice can discard “unimportant” codewords in the
original BoW histogram that serves the subsequent low bit

coding. In Fig. 13, we adjust the codeword maintenance per-
centages of top 10–90% by thresholding IDF or Geo-IDF
(see Sect. 4.2) to produce the retrieval MAP degeneration.

Figure 13 shows that IDF thresholding produces accept-
able MAP degeneration, even when keeping top 10% fre-
quent codewords only (which leads to an 1 : 10 compres-
sion rate). However, as shown in the subsequent vocabulary
boosting, our LDVC can further achieve up to 1 : 10,000
compression rate while maintaining over 90% MAP. An-
other important finding is that Geographical IDF is much
more discriminative than IDF: maintaining less codewords
by using Geographical IDF can yield good search perfor-
mance comparable to that by maintaining more codewords
using IDF. In addition, the queries in different regions of-
ten produce diverse performances in this simple compres-
sion scheme, which also validates our basic motivation of
scalable descriptor compression in different regions.

Geographical Scales of Different Landmarks Finally we
validate that the geographical scales of landmarks are di-
verse. Figure 10 shows that different queries should be per-
formed in different scales, depending on both visual content
statistics and scene constitution. For instance, the queries of
“Summer Palace” are with a larger geographical scale, com-
paring with the queries of “Temple of Heaven”. Hence, the
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Fig. 10 Geographical photo distribution function with respect to their geographical distances to the query. x-axis: km; y-axis: photo volume

Fig. 11 Precision@N degeneration by using Hits/No-Hits (0-1) his-
togram instead of the original frequency histogram

region scale depends not only on the geographical distance
but also the visual diversity of landmark photos.

Average Landmarks per Region For addition information
on the subsequent LDVC evaluation, we give the average
number of landmarks of 60 geographical regions of each
city. The average number of 24 landmarks per region is
much less than the maximum representation capability of
LDVC (say 10–50 bits). Undoubtedly, LDVC representation
has been much less redundant. Another empirical finding is
that more diverse images in a region are often with longer
LDVC descriptors.

5.3 Parameters Tuning

Visual Embedding and Eigenvector Selection in the Spec-
tral Clustering This tuning relates to the geographical par-

tition in two aspects: (1) embedding the visual discriminabil-
ity; (2) selecting a proper number of eigenvectors, which are
both reflected in our visual aware spectral clustering.

Figure 12 presents the results of tuning both factors.
With visual embedding (see (37)), we achieved better perfor-
mance of searching with less codewords in both IDF thresh-
olding and Vocabulary Boosting for codeword compression.
In practice, validation experiments of tuning above parame-
ters can be done for each city to figure out the best number
of regions in geographical partitioning. Figure 12 shows the
influence of selecting the number of regions in the visual
aware spectral clustering. There is a trade off between set-
ting the number of regions and better LDVC performance.
That is, smaller regions typically have higher LDVC com-
pression rates, but demand more frequent downstream vo-
cabulary adaption. Meanwhile, incorrect matching happen-
ing on the region margins would be more probable. On the
contrary, larger regions typically produce a less compact
LDVC set due to the large visual complexity in that region,
with less mismatching happening on the margin.

Geographical IDF vs. Original IDF Comparing with the
original IDF, we further reveal our geographical IDF is more
discriminative to identity important codewords and to pre-
serve the ranking capability of the original BoW in each
region. In Fig. 14, with the selected top 10%–90% code-
words by thresholding IDF or Geographical IDF, we mea-
sure MAP degeneration. Clearly, our Geographical IDF is
better in identifying the most discriminative codewords to-
wards a compact landmark descriptor.

One explanation lies in that the traditional IDF com-
pletely ignores the spatial distribution of visual words. An
intuitive fact is a frequent codeword would be less discrimi-
native when it is with diverse geographical distribution. On
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Fig. 12 The influence of both visual discriminability embedding and different region numbers in Visual Aware Spectral Clustering, measured by
Precision@N using our ground truth query set

Fig. 13 The retrieval MAP loss by maintaining codewords with the
top k% IDF or top k% Geographical IDF values

the contrary, once a codeword is more concentrated in a
given region it could be more discriminative with identical
or even less (original) frequency. This is a commonsense
in image distribution at landmarks as many near-duplicate
photos are geographically nearby. Those concentrated code-
words with higher geographically IDF have higher priority
to be selected into a LDVC set.

Compression Rates in both rsPCA and Ranking Sensitive Vo-
cabulary Boosting There are other parameters in our rank-
ing sensitive LDVC descriptors. In both rsPCA and Ranking
Sensitive Vocabulary Boosting, one important parameter is
the compression rate with respect to the MAP degeneration:
For rsPCA, we need to decide how many principle compo-

Fig. 14 Geographical IDF comparison with the original IDF by main-
taining only the top K highest IDF using our ground truth query set

nents in the learnt Mregion; For the Ranking Sensitive Vocab-
ulary Boosting, it means how many codewords are boosted
from training in the conjunctive queries. Section 5.5.3 shows
the quantitative comparisons of applying different types of
rate distortion.

Average Energy Consumption On a mobile device, we are
constrained by the battery life. Therefore, energy conserv-
ing is critical for mobile applications. One interesting study
is to compare the average mobile energy consumption in:
(1) extracting and sending compact descriptors, (2) extract-
ing and sending the BoW signature, and (3) sending the
original query image. We empirically test the number of
image queries that the mobile can send before the battery
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Fig. 15 Compression rate and
ranking distortion analysis
comparing with approaches in
Chen et al. (2009),
Chandrasekhar et al. (2009a),
Jegou et al. (2010a) using our
ground truth query set. The
corresponding downstream
LDVC set cost are shown in
Fig. 19

Fig. 16 Comparison of average energy consumption through 3G wire-
less link, through transmitting an entire query image, extracting and
transmitting LDVC, and other compact descriptors

runs out of power for 3G network connections. A typical
phone battery has a voltage of 4.0 V and a capacity of
1400 mAh (or 20.2 k joules). Hence, for 3G connections,
the maximum number of images that the mobile can send is
20.2 k joules/52.4 joules = 385 total queries. For the extrac-
tion and transmitting of our proposed LDVC, we are able to
perform 20.2 k joules/8.1 joules = 2494 total queries, which
are 6 times as many queries as transmitting the entire query
image.

Figure 16 reveals that sending either original query im-
ages or the high-dimensional descriptors would cause seri-
ous energy consumption, comparing with performing visual
descriptor compression on the mobile and then sending the
compact descriptors instead.

The study on Concurrent Query Capability At the server
end, a mobile visual search system is constrained by avail-

able wireless bandwidth, which limits the capability of con-
current upstream queries as well as the concurrent down-
stream deliveries of search results. To run an online visual
search service, we have to apply for the wireless bandwidth
from the network service providers and its maintenance is
often of high cost. The relations of concurrent query, band-
width (upstream/downstream), as well as query delivery de-
lay may be briefed as follows:

BandwidthOverall

= BandwidthUpstream + BandwidthDownstream (41)

|QueryConcurrent| =
BandwidthUpstream

DeliveryUpstream/DelayUpstream

|ResultConcurrent| = BandwidthDownstream

DeliveryDownstream/DelayDownstream

(42)

|QueryConcurrent| denotes the number of concurrent (up-
stream) queries that the server end can receive;
|ResultConcurrent| the number of (downstream) concurrent
results that the server can deliver; and DeliveryUpstream and
DeliveryDownstream denote the upstream and downstream de-
lays respectively.

At the server end, the capability of receiving concurrent
queries depends on both upstream query delivery size and
the wireless delivery delay. It is practically useful to make
the upstream data delivery as small as possible. For instance,
suppose that a server is with a 10 Mbps link, and the wire-
less network delivery delay is 2 second on average, sending
one query photo of 100 KB would lead to 100 KB × 8/2 =
400 Kbps bandwidth cost, and then the server end can con-
currently receive 10 Mbps/400 Kbps = 25.6 queries in total.
If the size of each upstream query is reduced from 100 KB
to 100 B (by LDVC), the capability of receiving multiple
queries would be scaled up by 1,000 (approximate 25,000
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queries), regardless of the searching capability of the back-
bone of a cluster of servers.

In practice, due to the technical restrictions or running
cost considerations, the significant enhancement in 3G wire-
less linking cannot be guaranteed. With the ever increasing
mobile computing capability, our compact LDVC descriptor
can in principle improve the throughput for most state-of-
the-art mobile visual search frameworks. More importantly,
once the upstream bandwidth cost is much reduced, more
bandwidth can be saved up to improve the amount of con-
current delivery of search results.

5.4 Comparison Baselines

1. Original BoW Histogram: Transmitting the original BoW
histogram has the lowest compression rate (without any
compression). It is supposed to provide an upper bound
of search performance without any word information
loss. However, as shown in our experiments, the noisy
codewords should be removed in the learning process.

2. Word Frequency Compression: This baseline serves as
the most straightforward solution to compress the his-
togram representation of a landmark, which retains those
codewords with the highest IDF values. The subsequent
experiment will show that it is suboptimal comparing
with LDVC in terms of both compression rate and rank-
ing precision.

3. Geographical Word Frequency Compression: This base-
line serves as an alternative scheme for lossy codeword
compression. We will show that the geographical IDF
yield better performance than the original IDF.

4. Vocabulary Boosting Regardless of Ranking Positions:
This baseline is to show the effectiveness of applying the
ranking position to our ranking loss model. We degen-
erate the Rank function by dismissing the influence of
ranking positions in Vocabulary Boosting based LDVC
learning.

5. Probabilistic PCA (pPCA): To quantize the effectiveness
of ranking supervision in our rsPCA, we use unsuper-
vised probabilistic PCA to learn the best vocabulary cod-
ing Mregion in each region.

6. Ranking Sensitive PCA (rsPCA): This is an optimal solu-
tion of our LDVC descriptor, which learns a non-linear
vocabulary transformation with minimal ranking loss.
One negative point is low efficiency due to the EM style
learning, which is addressed by Baseline (7).

7. Ranking Sensitive Vocabulary Boosting: This is a simpli-
fied version of rsPCA, which adopts Boosting to learn
LDVC by taking into account the ranking position loss.
We will show good performance comparable to rsPCA,
but with superior computational efficiency. Comparing
with Baseline (3), much better performance results with
ranking positions.

8. Aggregating Local Descriptors (Jegou et al. 2010a): To
the best of our knowledge, the work in Jegou et al.
(2010a) reported the most comparable performance to
our LDVC in terms of compactness, which employs sub-
space quantization to obtain a low bit rate signature that
is to approximate the square distance between original
BoW histograms. For fair comparison to rsPCA and
Ranking Sensitive Vocabulary Boosting, we fed the BoW
histogram of the original vocabulary V as the input.

9. Tree Histogram Coding (THC) (Chen et al. 2009): Chen
et al. (2009) compressed the SVT histogram, which
serves as the most related work to ours. Their scheme
encoded the position difference of non-zero bins in BoW
histogram, which produces an approximate 2 KB coding
length per image for a vocabulary with 1 M words (much
less than directly sending the BoW histogram that costs
more than 5 KB).

10. CHoG (Chandrasekhar et al. 2009a): As an alternative
approach, we replace the SIFT descriptor with CHoG,
which produces a more compact local descriptor with ap-
proximate 50 bits, This may reduce the storage cost in a
mobile device. In subsequent experiments, we report bet-
ter performance (rate distortion) by replacing SIFT with
CHoG. The reason is that, landmark queries are often
taken carefully and may not produce serious scale and ro-
tation variations, hence descriptor invariance is not very
elementary (indeed would occasionally degenerate the
precision by introducing description synonymy). Finally,
we choose CHoG as the local descriptor in our landmark
search prototype systems.

5.5 Quantitative Results and Comparisons

5.5.1 Ranking Effectiveness Comparisons

Figures 15 and 18 show that our proposed rsPCA and
Ranking Sensitive Vocabulary Boosting won superior per-
formance over Baselines (3)–(5). As a linear simplification,
our Ranking Sensitive Vocabulary Boosting achieves the
promising performance comparable to rsPCA. In our land-
mark search prototype systems, Ranking Sensitive Vocabu-
lary Boosting is finally employed.

We would like to compare Baselines (8)(9)(10) in Fig. 15
subsequently, since Fig. 18 maintains only the top 300 most
discriminative codewords to show the 2D Precision@N
comparison graph. For Baseline (8), we directly apply the
code available in Jegou et al. (2010c), and then we fix the
upstream rate at 512 bits. For Baseline (9), the Tree His-
togram Coding (THC) maintains all non-zero codewords,
which differs from the comparison in Fig. 18 in maintaining
the top 300 codewords. The comparison of Baseline (10) is
well shown in Fig. 15.
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Fig. 17 Top: query of the Peking Hotel taken at the early of 1950 right after its completion. Middle: A query of Northeast Wall in Beijing, taken
at 1860 during the Qing Dynasty of China. Down: A fake query of the CCTV Building in construction

Fig. 18 MAP comparisons with
respect to the top N ranking
positions using our ground truth
query set. In this figure,
“Top300” denotes we maintain
the top 300 codewords by
settling K = 300 in MM×K ,
with comparisons to using GPS
to re-rank IDF, GeoIDF, original
vocabulary, and THC (Chen
et al. 2009). “Top50%” denotes
we maintain the top 50%
codewords with the highest IDF
or GeoIDF

Fig. 19 The upstream and downstream transmission cost with respect to the ranking distortions

5.5.2 Comparing with GPS based Visual Search
Re-ranking

We did comparisons with the alternative approaches that use
GPS to re-rank the visual search results (including baselines
of IDF, GeoIDF, original vocabulary, and THC (Chen et al.
2009)). Results show that our Boosting outperforms those
schemes with GPS based visual search re-ranking. One ex-
planation goes to the performance degeneration of noisy
GPS signals or location tags (Fig. 25).

In addition, we provide the performance of applying
Boosting at the city-scale. This is to study the cases when
the exact location of a query is missing except the correct
identity of a given city by parsing the base station infor-
mation. Now the task is to offline learn a compact code-
book by using the images from an entire city. Once the
server identifies the missing GPS information from the mo-
bile upstream delivery, this city-level codebook will be sent
to the mobile for coding landmark descriptors. As shown
in Fig. 18, although the performance degenerates when non
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region-specific Boosting is applied, our Boosting scheme at
the entire city sill outperform those approaches (IDF when
N > 3 and GeoIDF when N > 7). However, to achieve de-
sirable precision, a less compact LDVC results in the ab-
sence of GPS usage.

5.5.3 Rate Distortion Analysis

To compare our LDVC descriptors to the baselines (Chen
et al. 2009; Chandrasekhar et al. 2009a; Jegou et al. 2010a),
we give the rate distortion analysis. Both rsPCA and Rank-
ing Sensitive Vocabulary Boosting have achieved the best
performances. From Fig. 15, we can see the highest com-
pression rates with comparable distortion (horizontal), as
well as the highest ranking performance with comparable
compression rates (vertical). In addition, without using rank-
ing position embedding (Baseline (4)(5)), we have achieved
better performance than almost all alternatives and state-of-
the-art approaches.

In some cases, our LDVC descriptor can even outperform
the original BoW histogram (Baseline (1)). Our rsPCA and
Ranking Sensitive Vocabulary Boosting attempt to extract
the most discriminative words by learning from the con-
junctive ranking list. Therefore, both schemes may largely
filter out the incorrect matching from cluttered, occlusion,
etc. This mechanism is in spirit similar to “Query Expan-
sion” in information retrieval, where incorrect ranking of a
given query can be well improved from those conjunctive
rankings (in the current region). This is one important rea-
son why more compact LDVC yields more robustness than
the original BoW.

5.5.4 Upstream and Downstream Transmission Cost

We further study both upstream and downstream transmis-
sion cost from the location based vocabulary adaptation. As
a mobile users enter a new region, this region’s LDVC set

is downstream transmitted to the mobile device. Note that
a mobile user may deliver multiple queries in a region, so
the downstream adaptation and the upstream query deliver-
ies do not have an one-to-one relationship, but an one-to-
many correspondence. However, based on the rate distor-
tion analysis in Fig. 19, even for one-to-one correspondence,
we can still achieve the lowest bit rate, as well as the high-
est ranking MAP, comparing with all state-of-the-art base-
lines (Chen et al. 2009; Jegou et al. 2010a) in Fig 15. Fur-
thermore, the right subfigure of Fig. 19 shows that the data
amount of upstream delivery is almost linear to downstream
delivery.

5.5.5 Memory and Time Cost in Mobile Devices

We deploy the prototype system on HTC Desire G7 as a
software App. HTC DESIRE G7 is equipped with an em-
bedded camera with maximal 2592 × 1944 resolution, a
Qualcomm MSM7201A processor at 528 MHz, a 512 M
ROM + 576 M RAM memory, 8G extended storage, and
an embedded GPS. Table 1 further shows the memory and
time part of our search system with comparisons to state-
of-the-art works in Chen et al. (2009), Chandrasekhar et al.
(2009a), Jegou et al. (2010a). In our LDVC descriptor ex-
traction, the most time-consuming cost comes from the local
feature extraction, which can be further accelerated by ran-
dom sampling, instead of using the interest point detectors
(Chandrasekhar et al. 2009a; Lowe 2004).

5.5.6 Case Study

Figure 20 gives some examples of our Ranking Sensitive
Vocabulary Boosting comparing with (1) state-of-the-art
works in Chen et al. (2009) and the original BoW histogram
(both have identical performance), and (2) IDF Thresh-
olding. We can observe that the current LDVC descriptor
achieves comparable (or even better) performance to the

Table 1 Memory (MB) and
time (Second) requirements for
SVT and the availability on
several mobile phones

Tree Structure Memory Requirement

SIFT SVT, H = 6, B = 10 59 MB

CHoG SVT, H = 6, B = 10 24 MB

Aggregate Local Descriptors (Jegou et al. 2010a) 728 MB

Compression Feature BoW Vocabulary

Methods Extraction Generation Coding

BoW Histogram 1.25S 0.14S ≈0S

GeoIDF Compression 1.25S 0.14S ≈0S

Aggregate Local Descriptors (Jegou et al. 2010a) 1.25S 0.14S 1.5S

Tree Histogram Coding (Chen et al. 2009) 1.25S 0.14S ≈0S

Vocabulary Boosting 1.25S 0.14S ≈0S

rsPCA 1.25S 0.14S ≈0S
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Fig. 20 The visualized ranking performance of Ranking Sensitive Vo-
cabulary Boosting based LDVC landmark descriptor in comparison to
the alternative approach in Chen et al. (2009). Each photo on the left
is the query, each line of returning results corresponds to an approach.

Top: LDVC; Middle: Original BoW feature or Tree Histogram Coding
(Chen et al. 2009) (since work in Chen et al. 2009 is a lossless com-
pression scheme, it produces identical returning results to the BoW
feature); Bottom: IDF Thresholding

original BoW histogram and the state-of-the-arts (Chen et al.
2009).

We further study 6 groups of query scenarios to visualize
the performance comparison with Baselines (1)(2)(9) (Chen
et al. 2009). These cases are most likely to cause mismatches
in our empirical study.

Scene Variations Since our landmark photos are collected
from photo sharing websites Flickr and Panoramio, our

database involves extensive landmark appearance diversity
from changes in seasons and building appearances during
times. For instance, Fig. 17 shows several unrealistic land-
mark queries taken long time ago, together with their search
results using LDVC based descriptors.

Illumination, Scale, and Blurring Variations Some queries
happen at night; some queries occur in different scales (from
either nearby views or distant views); and mobile phones
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Fig. 21 Case study of landmark search with illumination changes,
scale changes, and blurred photographing. Each photo on the left is
the query, each line of returning results corresponds to an approach.
Top: LDVC; Middle: Original BoW feature or Tree Histogram Coding
(Chen et al. 2009); Bottom: IDF Thresholding

Fig. 22 Case study of landmark search with occlusions and partial
landmark queries. Each photo on the left is the query, each line of re-
turning results corresponds to an approach. Top: LDVC; Middle: Orig-
inal BoW or Tree Histogram Coding (Chen et al. 2009); Bottom: IDF
Thresholding

often produce blurred queries. Figure 21 shows the list of
ranking results where LDVC descriptors better preserve the
ranking precision, comparing with Baseline (1)(2)(9) (Chen
et al. 2009).

Photographing Occlusions and Partial Matching We se-
lected a set of suboptimal queries containing partial occlu-
sions from foreground objects or peoples, as well as with
partial landmark views. Figure 22 shows that our LDVC de-
scriptor outperforms Baseline (1)(2)(9) (Chen et al. 2009).
Currently, geometry consistency is not used to verify the top
returning images. The reason is that we are validating the
LDVC descriptor in compactness and effectiveness in rep-
resenting visual content. So all alternative approaches are
performed without geometry verification. However, spatial
re-ranking as well as geometry consistency verification are
very useful complements to our approach. We may transmit
both LDVC Hits/Non-hit and the spatial layout of words.
A spatial pyramid or max/averaged pooling (Wang et al.
2010) can be employed to encode spatial layout in the BoW
histogram representation.

Location Distortions in Our Database We evaluate the ro-
bustness of LDVC by adding Gaussian random distortion

to the GPS of database images. With the same pipeline,
we re-learn LDVC descriptors over the distorted image
datasets. Figure 22 shows the results of different distor-
tions in the upstream GPS location: (1) The original GPS
location is distorted with Gaussian Noise scale = 30 m
(a typical case that GPS is obtained within a building or
nearby dense buildings). Our LDVC yields promising per-
formance comparable to that using precise GPS, more ro-
bust than alternative approaches in Fig. 15 and Fig. 18;
(2) GPS falls outside the current region (thereby a wrong
LDVC set is assigned to the current query), which leads to
performance degeneration. To address this, we can further
adopt a larger geographical scale in city map segmentation
to reduce the probability that a query falls outside its true
region.

Exemplar Transmission Rate Figure 23 shows several
groups of exemplar upstream transmission rates of Base-
line (2)(3)(7). LDVC produces variant coding lengths for
different landmark queries. In general, LDVC generates the
most compact descriptor, comparing to simply maintaining
the most discriminative codewords by using IDF or Geo-
graphical IDF thresholding. The latter (GeoIDF) yields a
compression rate that is most comparable to LDVC.

Where LDVC Descriptors are Matched Figure 24 illus-
trates where our LDVC descriptors yield the matches from
a query photo to the database images, where different col-
ors show that those descriptors are quantized into different
codewords in LDVC. Not all the detected local features in a
query (on average 300–400) are kept track of BoW. In con-
trast, LDVC deals with the most discriminative local fea-
tures only.

Which LDVC Codewords are Transmitted Finally, we in-
vestigate which LDVC codewords are transmitted the up-
stream query. Figure 26 illustrates that LDVC selects the
most discriminative local patches for a given landmark
query. By visualizing the centroid patch of the codeword
to which a LDVC landmark descriptor is assigned, we can
easily identify different non-zero codewords in different
queries. In our LDVC coding, these words are delivered as
the most important cue to represent and distinguish the vi-
sual appearance of a query.

6 Conclusions and Future Works

We have leveraged the mobile-end visual descriptor extrac-
tion to reduce the latency of visual query delivery over the
(3G) wireless link. Distinct from previous works, our pro-
posed Location Discriminative Vocabulary Coding (LDVC)
exploits the pervasive location context to generate extremely



Int J Comput Vis

Fig. 23 (Color online) Case study of the upstream transmission rates for representative landmark queries in Beijing and New York. Each photo
on the left is the query, its left histogram is the transmission rate of Baseline (2) (Red) Baseline (3) (Green), and Baseline (7) (Blue)

Fig. 24 (Color online) Case study of the spatial matching for LDVC descriptors between query (left photo) and the top returning results. Different
colors denote different codewords

compact visual descriptors. We have come up with a uni-
fied framework to accomplish promising landmark search
from three aspects: low transmission cost, discriminative
description, as well as scalable descriptor delivery. In par-
ticular, our proposed location based vocabulary adaptation
breakthroughs the traditional one-way upstream query de-
livery pipeline. By using a preliminary downstream adapta-
tion with respect to different locations, the mobile device is

to extract a region-specific LDVC descriptor. Such teach-
ing mode is especially suitable for two way communica-
tion of a mobile device. We have successfully deployed the
mobile landmark search system in a million scale landmark
database covering five typical areas like Beijing, New York
City, Lhasa, Singapore, and Florence. The extensive exper-
imental results have shown that our LDVC descriptor has
significantly outperformed state-of-the-art compact visual
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Fig. 25 Precision@N
degeneration by adding location
distortions in our ground truth
query set

Fig. 26 Case study of the LDVC set as well as the transmitted LDVC
landmark descriptor in the several landmark queries in New York.
Left: the LDVC set within its current geographical region; Middle: the

detected codewords that are preserved after LDVC coding; Right: the
corresponding codeword centers of the non-zero LDVC codeword bins

descriptors (Nister and Stewenius 2006; Chen et al. 2009;
Chandrasekhar et al. 2009a; Jegou et al. 2010a) in terms of
compression rate (10–50 bits with arithmetical coding) and
retrieval MAP in mobile landmark search.

Two interesting issues remain open: First, as imprecise
GPS does not significantly degenerate the LDVC perfor-
mance, it is worthy to explore the capability of other coarse
but easily available location information (like base station
identity) to learn our LDVC descriptor. Since this can be
directly accessed from the query the requirement of initial
upstream GPS updates can be removed. Second, as a natural
extension, to allow the landmark search system to scale up
from million-scale to billion-scale, we need to make further
efforts in both parallel computing and distributed indexing
techniques that are relevant to more comprehensive research
of scalability issues in the Web scale search applications.
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