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Abstract

Structured output learning has been successfully applied to object localization,
where the mapping between an image and an object bounding box can be well
captured. Its extension to action localization in videos, however, is much more
challenging, because one needs to predict the locations of the action patterns both
spatially and temporally, i.e., identifying a sequence of bounding boxes that track
the action in video. The problem becomes intractable due to the exponentially
large size of the structured video space where actions could occur. We propose
a novel structured learning approach for spatio-temporal action localization. The
mapping between a video and a spatio-temporal action trajectory is learned. The
intractable inference and learning problems are addressed by leveraging an effi-
cient Max-Path search method, thus makes it feasible to optimize the model over
the whole structured space. Experiments on two challenging benchmark datasets
show that our proposed method outperforms the state-of-the-art methods.

1 Introduction

Blaschko and Lampert have recently shown that object localization can be approached as structured
regression problem [2]. Instead of modeling object localization as a binary classification and treating
every bounding box independently, their method trains a discriminant function directly for predicting
the bounding boxes of objects located in images. Compared with conventional sliding-window based
approach, it considers the correlations among the output variables and avoids an exhaustive search
of the subwindows for object detection.

Motivated by the successful application of structured regression in object localization [2], it is nat-
ural to ask if we can perform structured regression for action localization in videos. Although
this idea looks plausible, the extension from object localization to action localization is non-trivial.
Different from object localization, where a visual object can be well localized by a 2-dimensional
(2D) subwindow, human actions cannot be tightly bounded in such a similar way, i.e., using a 3-
dimensional (3D) subvolume. Although many current methods for action detection are based on this
3D subvolume assumption [6, 9, 20, 29], and search for video subvolumes to detect actions, such
an assumption is only reasonable for “static” actions, where the subjects do not move globally e.g.,
pick-up or kiss. For “dynamic” actions, where the subjects can move globally e.g., walk, run, or
dive, the subvolume constraint is no longer suitable. Thus, a more accurate localization scheme that
can track the actions is required for localizing dynamic actions in videos. For example, one can lo-
calize an action by a 2D bounding box in each frame, and track it as the action moves across different
frames. This localization structured output generates a smooth spatio-temporal path of connected
2-D bounding boxes. Such a spatio-temporal path can tightly bound the actions in the video space
and provides a more accurate spatio-temporal localization of actions.
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Figure 1: Complexities of object and action localization: a) Object localization is of O(n4). b)
Action localization by subvolume search is of O(n6). c) Spatio-temporal action localization in a
much larger search space.

However, as the video space is much larger than the image space, spatio-temporal action localization
has a much larger structured space compared to object localization. For a video with size w × h ×
n, the search space for 3D subvolumes and 2D subwindows is only O(w2h2n2) and O(w2h2),
respectively (Figure 1). However, the search space for possible spatio-temporal paths in the video
space is exponential O(whnkn)[23] if we do not know the start and end points of the path (k is
the number of incoming edges per node). Any one of these paths can be the candidates for spatio-
temporal action localization, thus an exhaustive search is infeasible. This huge structured space
keeps structured learning approaches from being practical to spatio-temporal action localization due
to intractable inferences.

This paper proposes a new approach for spatio-temporal action localization which mainly addresses
the above mentioned problems. Instead of using the 3D subvolume localization scheme, we precisely
locate and track the action by finding an optimal spatio-temporal path to detect and localize actions.
The mapping between a video and a spatio-temporal action trajectory is learned. By leveraging
an efficient Max-Path search method [23], the intractable inference and learning problems can be
addressed, thus makes our approach practical and effective although the structured space is very
large. Being solved as structured learning problem, our method can well exploit the correlations
between local dependent video features, and therefore optimizes the structured output. Experiments
on two challenging benchmark datasets show that our method significantly outperforms the state-of-
the-art methods.

1.1 Related work

Human action detection is traditionally approached by spatio-temporal video volume matching using
different features: space-time orientation [6], volumetric [9], action MACH [20], HOG3D [10]. The
sliding window scheme is then applied to locate actions which is ineffective and time-consuming.
Different matching, learning models have also been introduced. Boiman and Irani proposed ensem-
bles of patches to detect irregularities in images and videos [3]. Hu et al used multiple-instance
learning to detect actions [8]. Mahadevan et al used mixtures of dynamic textures to detect anomaly
events [15]. Le et al used deep learning to learn unsuppervised features for recognizing human activ-
ities [14]. Niebles et al used a probabilistic latent semantic analysis model for recognizing actions
[17]. Yao et al trained probabilistic non-linear latent variable models to track complex activities
[28]. Yuan et al extended the branch-and-bound subwindow search [11] to subvolume search for
action detection [29]. Recently, Tran and Yuan relaxed the 3D bounding box constraint for detecting
and localizing medium and long video events [23]. Despite the improvements over 3D subvolume
based approaches, this method did not fully utilize the correlations between local part detectors as
they were independently trained.

Max-margin structured output learning [19, 21, 24] was recently proposed and demonstrated its
success in many applications. One of its attractive features is that although the structured space
can be very large, whenever inference is tractable, learning is also tractable. Finley and Joachims
further showed that overgenerating (e.g. relaxations) algorithms have theoretic advantages over
undergenerating (e.g. greedy) methods when exact inference is intractable [7]. Various structured
learning based approaches were proposed to solve computer vision problems including pedestrian
detection [22], object detection [2, 25], object segmentation [1], facial action unit detection [16],
human interaction recognition [18], group activity recognition [13], and human pose parsing [27].
More recently, Lan et al used a latent SVM to jointly detect and recognize actions in videos [12].
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Among these work, Lan et al is most similar to ours. However, this method requires a reliable
human detector in both inference and learning, thus it is not applicable to “dynamic” actions where
the human poses are significantly varied. Moreover, because of its using HOG3D [26], it only detects
actions in a sparse subset of frames where the interest points present.

2 Spatio-Temporal Action Localization as Structured Output Regression

Given a video x with the size of w × h ×m where w × h is the frame size and m is its length, to
localize actions, one needs to predict a structured object y which is a smooth spatio-temporal path in
the video space. We denote a path y = {(l, t, r, b)i=1..m} where (l, t, r, b)i are respectively the left,
top, right, bottom of the rectangle that bounds the action in the i-th frame. These values of (l, t, r, b)
are all set to zeros when there is no action in this frame. Because of the spatio-temporal smoothness
constraint, the boxes in y are necessarily smoothed over the spatio-temporal video space. Let us
denote X ⊂ [0, 255]3whm as the set of color videos, and Y ⊂ R4m as the set of all smooth spatio-
temporal paths in the video space. The problem of spatio-temporal action localization becomes to
learn a structured prediction function of f : X 7→ Y .

2.1 Structured Output Learning

Let {x1, . . . , xn} ⊂ X be the training videos, and {y1, . . . , yn} ⊂ Y be their corresponding anno-
tated ground truths. We formulate the action localization problem using the structured learning as
presented in [24]. Instead of searching for f , we learn a discriminant functionF : X×Y 7→ R. F is a
compatibility function which measures how compatible the localization y will be suited to the given
input video x. If the model utilizes a parameter set of w, then we denote F (x, y;w) = 〈w, φ(x, y)〉,
which is a family of functions parameterized by w, and φ(x, y) is a joint kernel feature map which
represents spatio-temporal features of y given x.

Once F is trained, meaning the optimal parameter w∗ is determined, the final prediction ŷ can be
obtained by maximizing F over Y for a specific input x.

ŷ = f(x;w∗) = argmax
y∈Y

F (x, y;w∗) = argmax
y∈Y

〈w∗, φ(x, y)〉 (1)

The optimal parameter set w∗ is selected by solving the convex optimization problem in Eq. 2:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

s.t. 〈w, φ(xi, yi)− φ(xi, y)〉 ≥ ∆(yi, y)− ξi,∀i,∀y ∈ Y\yi,
ξi ≥ 0,∀i.

(2)

Eq. 2 optimizes w such that the score of the true structure yi of xi will be larger than any other
structure y by a margin which is rescaled by the loss of ∆(yi, y). The loss function will be defined
in Section 2.3. This optimization is similar to the traditional support vector machine (SVM) formu-
lation except for two differences. First, the number of constraints is much larger due to the huge
size of the structure space Y . Secondly, the margins are rescaled differently by the constraint’s loss
∆(yi, y). Because of the large number of constraints, the problem in Eq. 2 cannot be solved directly
although it is a convex problem. Alternatively, one can solve the above problem by the cutting plane
algorithm [24] or subgradient methods [19, 21]. We use the cutting plane algorithm to solve this
learning problem. The algorithm starts with a random parameter w and an empty constraint set. At
each round, it searches for the most violated constraint and add it to the constraint set. This step is
to search for y that maximizes the violation value ξi (Eq. 3). When a new constraint is found, the
optimization is applied to update w. The process is repeated until no more constraint is added. This
algorithm is proven to converge [24] and normally within a small number of constraints due to the
sparsity of the structured space.

ξi ≥ ∆(yi, y) + 〈w, φ(xi, y)〉 − 〈w, φ(xi, yi)〉,∀y ∈ Y\yi (3)

2.2 The Joint Kernel Feature Map for Action Localization

Let us denote x|y as the video portion cut out from x by the path y, namely the stack of images
cropped by the bounding boxes b1..m of y. We also denote ϕ(bi) ∈ Rk as a feature map for a 2D
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box bi. It is worth noting that ϕ(bi) can be represented by either local features (e.g. local interest
points) or global features (e.g. HOG, HOF) of the whole box bi. We thus have a feature map for x|y
as φ(x, y) which is also a vector in Rk:

φ(x, y) =
1

m

m∑
i=1

ϕ(bi) (4)

Finally, the decision function of our structured prediction is now formed as in Eq. 5.

F (x, y;w) = 〈w, φ(x, y)〉 =
1

m

m∑
i=1

〈w,ϕ(bi)〉. (5)

2.3 Loss Function

We define a Hinge loss function ∆ : Y × Y 7→ [0, 1] for evaluating the loss induced by a predicted
structure ŷ compared to a true structure label y. We denote y = {bi=1..m}, where bi = (l, t, r, b)i is
the ground truth box of the i-th frame. Similarly, we denote ŷ = {b̂i=1..m} the predicted structure.
The loss function is defined as follow:

∆(y, ŷ) =
1

m

m∑
i=1

δ(bi, b̂i). (6)

δ(b, b̂) =

{
1− Area(b∩b̂)

Area(b∪b̂)
if lb = lb̂ = 1

1− ( 1
2 (lblb̂ + 1)), otherwise.

(7)

lb =

{
−1 if b = (0, 0, 0, 0)
1, otherwise. (8)

3 Inference and Learning

We need a feasible way to perform the inference in Eq. 1 during testing which can be rewritten as
in Eq. 9.

ŷ = argmax
y∈Y

〈w, φ(x, y)〉 =
1

m
argmax
y∈Y

m∑
i=1

〈w,ϕ(bi)〉. (9)

During training, we need to search for the most violated constraints by maximizing the right hand
side of Eq. 3 which is equivalent to Eq. 10. From now on, we denote ȳ for yi in Eq. 2 because the
example index i is no longer important.

max
y∈Y
{∆(y, ȳ) + 〈w, φ(x, y)〉} (10)

= max
y∈Y

{
1

m

m∑
i=1

δ(bi, b̄i) +
1

m

m∑
i=1

〈w,ϕ(bi)〉

}
(11)

=
1

m
max
y∈Y

{
m∑
i=1

(
δ(bi, b̄i) + 〈w,ϕ(bi)〉

)}
(12)

To solve Eq. 9 and Eq. 12, one needs to search for a smooth path y∗ in the spatio-temporal video
space Y which gives the maximum total score. Both of the above equations are difficult due to the
large size ofY , e.g. the exponential number of possible spatio-temporal paths inY (see supplemental
material). We now show that both problems in Eq. 9 and Eq. 12 can be reduced to Max-Path search
problem and solved by [23] efficiently. Max-Path algorithm [23] was proposed to detect dynamic
video events. It is guaranteed to obtain the best spatio-temporal path in the video space provided that
the local windows’ scores can be precomputed. The algorithm takes a 3D trellis of local windows’
scores as input, and outputs the best path which the maximum total score. In testing, the trellis’s
local scores are 〈w,ϕ(bi)〉 where bi is the local window. These values are easily evaluated given a w
and a feature map ϕ. In training, those values of the trellis are δ(bi, b̄i) + 〈w,ϕ(bi)〉 which are also
computable given parameter w, feature map ϕ, and ground truth b̄i. After the trellis is constructed,
the Max-Path algorithm is employed to find the best path, therefore we can identify the smoothed
spatio-temporal path y∗ that maximizes Eq. 9 and Eq. 12.
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3.1 Constraint Enforcement

Let us consider one constraint in Eq. 2, here we ignore the index i of the example for simplicity and
use ȳ as the ground truth for example x. We also denote y = b1..m and ȳ = b̄1..m.

〈w, φ(x, ȳ)〉 − 〈w, φ(x, y)〉 ≥ ∆(ȳ, y)− ξ,∀y ∈ Y\ȳ (13)

⇔ 1

m

m∑
i=1

〈w,ϕ(b̄i)〉 −
1

m

m∑
i=1

〈w,ϕ(bi)〉 ≥
1

m

m∑
i=1

δ(bi, b̄i)− ξ,∀y ∈ Y\ȳ (14)

⇔
m∑
i=1

〈w,ϕ(b̄i)〉 −
m∑
i=1

〈w,ϕ(bi)〉 ≥
m∑
i=1

δ(bi, b̄i)−mξ,∀y ∈ Y\ȳ (15)

The constraint in Eq. 15 can be split into m constraints in Eq. 16 which are harder, therefore
satisfying these m constraints will lead to satisfying the Eq. 15 constraint

〈w,ϕ(b̄i)〉 − 〈w,ϕ(bi)〉 ≥ δ(bi, b̄i)− ξ,∀i ∈ [1..m],∀y ∈ Y\ȳ (16)

In training, instead of solving Eq. 2 with the constraints in Eq. 13, we solve it with the set of
constraints as in Eq. 16. The problem is harder because of tighter constraints. However, the im-
portant benefit of using such enforcements is that instead of comparing features of two different
spatio-temporal paths y and ȳ, one can compare the features of individual box pairs (bi, b̄i) of those
two paths. This constraint enforcement will help the training algorithm to avoid comparing features
of two paths of different lengths which is unstable due to feature normalization.

4 Experimetial Setup

Datasets: we conduct experiments on two datasets: UCF-Sport [20] and Oxford-TV [18]. UCF-
Sport dataset consists of 150 video sequences of 10 different action classes. We use the same split
as in [12] for training and testing. On this dataset, we detect three different actions: horse-riding,
running, and diving. We choose those actions because they have different levels of body movements.
Horse riding is relatively rigid; running is more deformable; while diving is extremely deforming
in terms of articulated body movements. Oxford-TV dataset consists of 300 videos taken from real
TV programs. It has 4 classes of actions: hand-shake, high-five, hug, kiss, and a set of 100 negative
videos. As used in [18], this dataset is divided into two equal subsets. We use set 1 for training
and set 2 for testing. We perform the task of kiss detection and localization on this dataset. Kissing
actions is more challenging compared with other action classes in this dataset due to less motion and
appearance cues.

Features and Parameters: our algorithm needs a feature representation ϕ(b) of a cropped image
b. We use a global representation for ϕ(b) using Histogram of Oriented Gradients (HOF) [4] and
Histogram of Flows (HOF) [5]. The cropped image b is divided into h × v half-overlapped blocks;
each block has 2×2 cells. Each cell is represented by a 9-bin histogram. The feature vector’s length
become h× v× 2× 2× 9× 2 = 72×h× v for both HOG and HOF. (h, v) can be different for each
class due to different shape-ratios of the actions (e.g. rectangle boxes for horse-riding and running,
square boxes for diving). More specifically, we use (7, 15) for horse-riding and running, (11, 11)
for diving, (9, 7) for kissing. The regularization parameter C in Eq. 2 is set to 1 for all cases.

Evaluation Metrics: we quantitatively evaluate different methods in both detection and localization.
As used in [12], the video localization score is measured by averaging its frame localization scores
which are the overlap area divided by the union area of the predicted and truth boxes. A prediction
is then considered as correct if its localization score is greater or equal to σ = 0.2. It is worth
noting that detection evaluations are applied to both positive and negative testing examples while
localization evaluations are only applied to positive ones. As a result, the detection metric is to
measure the reliability of the detections (precision/recall) where the localization metric indicates the
quality of detections, e.g. how accurate are the predicted spatio-temporal paths compared to ground
truth. More specific, detection is to answer the question “Is there any action of interest in this
video?” while localization is to answer to “Provided that there is one action instance that appears in
this video, where is it?”.
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Figure 2: Action detection results on UCF-Sport: detection curves of our proposed method com-
pared with [12] and [23]. Upper plots are detection results evaluated on subset frames given by [12],
while lower plots are the results of all-frame evaluations. Except for diving, our proposed method
significantly improves the other methods.

Eval. Set Method H-Ride Run Dive Average
Subset [12] 21.75 19.60 42.67 28.01

[23] 62.19 50.20 16.41 42.93
Our 68.06 61.41 36.54 55.34

All [12] N/A N/A N/A N/A
[23] 63.06 48.09 22.64 44.60
Our 64.01 61.86 37.03 54.30

Table 1: Action localization results on UCF-Sport: comparisons among our proposed method,
[12], and [23]. The upper section presents results evaluated on a subset of frames given by [12],
while the lower section reports results from evaluating on all frames. Our method improves 27.33%
from [12] and 12.41% from [23] on subset evaluations and improves 9.7% from [23] on all-frame
evaluations. N/A indicates not applicable.

5 Experimental Results

UCF-Sport: we compare our method with two current approaches: Lan et al [12], Tran and Yuan
[23]. The output predictions of Lan et al are directly obtained from [12]. For [23], we train a linear
SVM detector for each action class using the same features as ours. The Max-Path algorithm is then
applied to detect the actions of interest. According to [12], its method used HOG3D [26], so that it
is only able to detect and localize actions at a sparse set of frames where the HOG3D interest points
present. To provide a fair comparison with [12], we report two different sets of evaluations. The first
set is applied only to the subset of frames where [12] reports detections and the second set is to take
all frames into consideration.

Table 1 reports the results of action localization of different methods and action classes. On average,
our method improves 27.33% from [12] and 12.41% from [23] on subset evaluations and improves
9.7% from [23] on all-frame evaluations. Figure 2 shows detection results of different methods on
UCF-Sport dataset. Our method significantly improves over [23] for all three action classes on both
subset and all-frame evaluations. Compared to [12] on subset evaluations, our method significantly
improve over [12] on horse-riding and running detection. However, [12] provides better detection re-
sults than ours on diving detection. This better detection is because their interest-point-based sparse
features are more suitable to deformable actions as diving. For a complete presentation, we visu-
alze localization results of our method comapared with those of [12] and [23] on a diving sequence
(Figure 3). All predicted boxes are plotted together with ground truth boxes for comparisons. It
is worth noting that [12] has only predictions at a sparse set of frames, therefore blue squares are
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Figure 3: Visualization of diving localization: the plots of localization scores of different methods
on a diving video sequence. Lan et al’s [12] results are visualized in blue, Tran and Yuan’s [23] are
green, ours are red, and ground truth are black boxes. Best view in color.

Figure 4: Action detection and localization on UCF-Sport: Lan et al’s [12] results are visualized
in blue, Tran and Yuan’s [23] are green, ours are read, and ground truth are black. Our method and
[23] can detect multiple instances of actions (two bottom left images).

visualized as discrete dots while the other methods are visualized by continuous curves. Our method
(red curve) localizes diving action much more accurately than [23] (green curve). [12] localizes div-
ing action fairly good, however it is not applicable when more accurate localizations (e.g. all frame
predictions) are required.

Oxford-TV: we compare our method with [23] on both detection and localization tasks. For detec-
tion, we report two different quantitative evaluations: the equal precision-recall (EPR) and the area
under ROC curve (AUC). For localization, besides the spatial localization (SL) metric as used in
UCF dataset experiments, we also evaluate different methods by temporal localization (TL) metric.
This metric is not applicable to UCF dataset because most action instances in UCF dataset start
and end at the first and last frame, respectively. Temporal localization is computed as the length

Method EPR(%) AUC SL(%) TL(%)
[18] 32.50* N/A N/A N/A
[23] 24.14 0.27 18.46 40.09
Our 38.89 0.42 39.52 45.30

Table 2: Kiss detection and localization results. We improve 14.74% in equal precision/recall
detection rate, 0.15 in area under ROC curve, 21.06% in spatial localization, and 5.21% in temporal
localization over [23]. *Result of [18] is not directly comparable. N/A indicates not applicable.
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Figure 5: Visualizaiton of kiss detection: our results are visualized in red; ground truths are in
green. The upper two rows are some of correct detections while the last row shows false or missed
detections.
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Figure 6: Kiss detection results: a) Precision-recall curves with σ = 0.2. b) Precision-recall curves
with σ = 0.4. c) ROC curves with σ = 0.2. Numbers inside the legends are best precision-recall
values(a and b) and the area under ROC curve(c).

(measured in frames) of the intersection divided by the union of detection and ground truth. Table 2
presents detection and localization results of our proposed method compared to [23]. On localization
task, our method improves 21.06% in spatial localization, and 5.21% in temporal localization over
[23]. On detection task, by using the cut-off threshold σ = 0.2, our method improves 14.74% in
equal precision-recall rate and 0.15 in area under ROC curve over [23] (Figure 6a and 6c). One may
further ask “what if we need more accurate detections?”. Interestingly, when we increase the cut-off
threshold σ to 0.4, [23] significantly drops from 24.11% to 8.82% while our method remains 29.03%
(Figure 6b) which demonstrates that our method can simultaneously detect and localize actions with
high accuracy.

6 Conclusions

We have proposed a novel structured learning approach for spatio-temporal action localization in
videos. While most of current approaches detect actions as 3D subvolumes [6, 9, 20, 29] or a
sparse subset of frames [12], our method can precisely detect and track actions in both spatial and
temporal spaces. Although [23] is also applicable to spatio-temporal action detection, this method
cannot be optimized over the large video space due to its independently trained detectors. Our ap-
proach significantly outperforms [23] thanks to the structured optimization. This improvement gap
is also consistent with the theoretic analysis in [7]. Moreover, being free from people detection
and background subtraction, our approach can efficiently handle unconstrained videos and be easily
extended to detect other spatio-temporal video patterns. Strong experimental results on two chal-
lenging benchmark datasets demonstrate that our proposed method significantly outperforms the
state-of-the-arts.
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